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Figure 1. Left: We present a novel approach for isometric multi-shape matching based on matching each shape to a (virtual) universe

shape (shown semi-transparent). Our formulation represents point-to-point correspondences between shapes i and j as the composition

of the shape-to-universe permutation matrix Pi and the universe-to-shape permutation matrix PT
j . By doing so, the pairwise matchings

Pij = PiP
⊤
j are by construction cycle-consistent. Middle: Our formulation successfully solves isometric multi-matching of partial

shapes. Right: Due to the cycle-consistency we can use our correspondences to faithfully transfer textures across a shape collection.

Abstract

Finding correspondences between shapes is a fundamen-

tal problem in computer vision and graphics, which is rel-

evant for many applications, including 3D reconstruction,

object tracking, and style transfer. The vast majority of cor-

respondence methods aim to find a solution between pairs

of shapes, even if multiple instances of the same class are

available. While isometries are often studied in shape cor-

respondence problems, they have not been considered ex-

plicitly in the multi-matching setting. This paper closes

this gap by proposing a novel optimisation formulation for

isometric multi-shape matching. We present a suitable op-

timisation algorithm for solving our formulation and pro-

vide a convergence and complexity analysis. Our algorithm

obtains multi-matchings that are by construction provably

cycle-consistent. We demonstrate the superior performance

of our method on various datasets and set the new state-of-

the-art in isometric multi-shape matching.

1. Introduction

The identification of correspondences between 3D

shapes, also known as the shape matching problem, is a

longstanding challenge in visual computing. Correspon-

dence problems have a high relevance due to their plethora

of applications, including 3D reconstruction, deformable

object tracking, style transfer, shape analysis, or general

data canonicalisation, e.g. to facilitate learning by establish-

ing a common vector space representation.

There are certain problem formulations that cover

generic correspondence problems involving different types

of data and varying application scenarios. One exam-

ple is the widely-studied quadratic assignment problem

(QAP) [36]. Due to its NP-hardness [53], reasonably large

QAPs cannot be solved satisfactorily in most settings. How-

ever, contrary to bringing generic objects (e.g. graphs) into

correspondence, when considering 3D shapes it is possible

to exploit particular structural properties in order to effec-

tively solve the shape matching problem.

For example, it has been demonstrated that explicitly

modelling the low-dimensional structure of shape matching

problems often allows to find global optima for a wide range

of shape matching formulations [5]. It was also shown that

learning suitable feature representations from shapes im-

proves the matching performance drastically compared to

using hand-crafted features [40].

Moreover, when assuming (near)-isometries between

shapes, efficient and powerful spectral approaches can be

leveraged for shape matching [51]. Isometries describe
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classes of deformable shapes of the same type but in dif-

ferent poses, e.g. humans or animals who are able to adopt

a variety of poses. Potential applications for isometric shape

matching include AR/VR or template matching. While

(near)-isometric shape matching has been studied exten-

sively for the case of matching a pair of shapes, the iso-

metric multi-shape matching problem, where an entire col-

lection of (near-isometric) shapes is to be matched, is less

explored. Important applications of isometric multi-shape

matching include learning low-dimensional shape space

representations [82], motion tracking and reconstruction.

In principle, any pairwise shape matching method can

be used for matching a shape collection. To do so, one can

select one of the shapes as reference, and then solve a se-

quence of pairwise shape matching problems between each

of the remaining shapes and the reference. However, a ma-

jor disadvantage is that such an approach has a strong bias

due to the choice of the reference. Alternatively, one could

solve pairwise shape matching problems between all pairs

of shapes in the shape collection. Although this way there

is no bias, in general the resulting correspondences are not

cycle-consistent. As such, matching shape A via shape B to

shape C, may lead to a different correspondence than match-

ing shape A directly to C.

In order to achieve cycle consistency, so-called per-

mutation synchronisation methods can be used as post-

processing [52]. A disadvantage of synchronisation-based

multi-shape matching is that it is a two-stage procedure,

where pairwise matchings are obtained in the first procee-

dure, and synchronization is assured in the second. With

that, the matching results are often suboptimal – even if

one reverts to an alternating procedure using a soft coupling

[63]. For isometric multi-shape matching this sequential

procedure is particularly disadvantageous, since during the

second stage the very strong prior about the isometric nature

of the shapes is completely ignored.

Although multi-matchings obtained by synchronisation

procedures are cycle-consistent, the matchings are often

spatially non-smooth and noisy, as illustrated in Sec. 5.

From a theoretical point of view, the most appropriate ap-

proach for addressing multi-shape matching is based on a

unified formulation, where cycle consistency is assured al-

ready when the multi-matchings are computed. Although

some approaches fit into this category [17, 8], none of the

existing methods are tailored explicitly towards isometric

matching in order to take full advantage in this setting.

In this work we fill this gap by introducing a gener-

alisation of state-of-the-art isometric two-shape matching

approaches towards isometric multi-shape matching. We

demonstrate that explicitly exploiting the isometry property

leads to a natural and elegant formulation that achieves im-

proved results compared to previous methods. Our main

contributions can be summarised as:

• A novel optimisation formulation for isometric

multi-shape matching.

• An efficient and easy-to-implement algorithm with

provable convergence.

• Guaranteed cycle-consistency without enforcing ex-

plicit constraints.

• Improvements over the state-of-the-art on various

shape matching benchmarks.

2. Related Work

Assignment problems. Shape matching can be formu-

lated as bringing points defined on one shape into corre-

spondence with points on another shape. A simple math-

ematical formulation for doing so is the linear assignment

problem (LAP) [49], where a linear cost function is opti-

mised over the set of permutation matrices. The objective

function defines the cost for matching points on the first

shape to points on the second shape. In shape matching,

the costs are typically computed based on feature descrip-

tors, such as the heat kernel signature [13], wave kernel sig-

nature [2], or SHOT [61]. Despite the exponential size of

the search space, there exist efficient polynomial-time al-

gorithms to solve the LAP [10]. A downside of the LAP

is that the geometric relation between points is not explic-

itly taken into account, so that the found matchings lack

spatial smoothness. To compensate for this, a correspon-

dence problem formulation based on the quadratic assign-

ment problem (QAP) [35, 36, 53, 14, 41] can be used. In

that case, in addition to linear point-to-point matching costs,

quadratic costs for matching pairs of points on the first

shape to pairs of points on the second shape are taken into

account. Since pairs of points can be understood as edges

in a graph, this corresponds to graph matching. Due to the

NP-hardness of the QAP [53], there are no algorithms that

can reliably find global optima efficiently for large (non-

trivial) problem instances. In addition to exhaustive search

algorithms that have exponential worst-case time complex-

ity [4], there are various more efficient but non-optimal so-

lution strategies. They include spectral methods [38, 18],

convex relaxations [79, 23, 69, 33, 68], some of them re-

lying on path-following [78, 80, 20, 6], as well as various

non-convex formulations [37, 66, 72, 27]. For suitably de-

fined matching costs the QAP is an appropriate formalism

for modelling isometric shape matching. However, due to

its NP-hardness the QAP is computationally very difficult

to solve. Moreover, due to the generality of the formalism,

it does not fully exploit the structural properties present in

isometric shape matching problems, and is therefore a sub-

optimal choice from a computational perspective.

Isometric shape matching. The near-isometric shape

correspondence problem has been studied extensively in the

literature, see [60] for a recent survey. Apart from meth-

ods tackling a QAP formulation (see previous paragraph),
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there exist directions utilising other structural properties of

isometries. The Laplace-Beltrami operator (LBO) [54], a

generalisation of the Laplace operator on manifolds, as well

as its eigenfunctions are invariant under isometries. Meth-

ods like [46, 47] directly incorporate this knowledge into

the pipeline, or use descriptors based on these [2, 71, 13].

Functional maps [51] reformulate the point-wise correspon-

dence problem as a correspondence between functions. The

functional mapping is represented as a low-dimensional

matrix for suitably chosen basis functions. The classic

choice are the eigenfunctions of the LBO, which are in-

variant under isometries and predestined for this setting.

Moreover, for general non-rigid settings learning these ba-

sis functions has also been proposed [43]. A wide variety

of extensions to make functional maps more robust or more

flexible have been developed. This includes orientation-

preservation [56], image co-segmentation [73], denoising

[22, 55], partiality [58], and non-isometries [21]. However,

extracting a point-wise correspondence from a functional

map matrix is not trivial [16, 57]. This is mainly because of

the low-dimensionality of the functional map, and the fact

that not every functional map matrix is a representation of a

point-wise correspondence [51]. In [44], the authors simul-

taneously solve for point-wise correspondences and func-

tional maps for non-rigid shape matching.

Due to their low-dimensionality and continuous repre-

sentation, functional maps also serve as the backbone of

many deep learning architectures for 3D correspondence.

One of the first examples is FMNet [40], which has also

been extended for unsupervised learning settings recently

[26, 3, 59]. Other learning methods rely on a given tem-

plate for each class [24] or local neighbourhood encoding

to learn a compact representation [39]. The recently con-

ducted SHREC correspondence contest on isometric and

non-isometric 3D shapes [19] revealed that there is still

room for improvement in both fields.

Generic multi-matching. The multi-matching problem

is relatively well-studied for generic settings, e.g. for match-

ing multiple graphs [77, 76, 65, 6, 67, 75], or matching key-

points in image collections [74, 70, 42]. A desirable prop-

erty of multi-matchings is cycle consistency (which we will

formally define in Sec. 3.1). Establishing cycle consistency

in a given set of pairwise matchings, known as permutation

synchronisation, has been addressed extensively in the liter-

ature [50, 52, 29, 15, 81, 64, 70, 45, 62, 7].

Multi-shape matching. There are various works that

particularly target the matching of multiple shapes. In [29,

32], semidefinite programming relaxations are proposed for

the multi-shape matching problem. However, due to the em-

ployed lifting strategy, which drastically increases the num-

ber of variables, these methods are not scalable to large

problems and only sparse correspondences are obtained.

In [17], a game-theoretic formulation for establishing multi-

Colour legend Cosmo et al. Ours

Figure 2. The method by Cosmo et al. [17] leads to extremely

sparse multi-matchings (middle), whereas our method obtains

dense matchings (right).

matchings is introduced. Due to the use of a sparse mod-

elling approach, the method also has the disadvantage that

only few points per shape are matched, see Fig. 2. [30] anal-

yses similarity on large heterogeneous shape collections by

imposing cycle consistency on given pairwise functional

maps. In [28], tensor maps are introduced for synchronis-

ing heterogeneous shape collections using a low-rank ten-

sor decomposition formulation. The work [25] presents a

self-supervised learning approach for finding surface de-

formations. A higher-order projected power iteration ap-

proach was presented in [8], which was applied to various

multi-matching settings, such as multi-image matching or

multi-shape matching. A shortcoming when applying the

mentioned multi-shape matching approaches to isometric

settings is that they do not exploit structural properties of

isometric shapes. Hence, they lead to suboptimal multi-

matchings, which we experimentally confirm in Sec. 5. One

exception is the recent work on spectral map synchroni-

sation [31], which builds upon functional maps and is, in

principal, well-suited for isometric multi-shape matching.

However, although the authors take into account cycle con-

sistency, respective penalties are only imposed on pairwise

functional maps, rather than on the point-wise correspon-

dences. In Sec. 5 we demonstrate that it leads to multi-

matchings that have large cycle errors.

3. Background

In this section we introduce our representation for multi-

matchings of 3D shapes, formalise the notion of cycle con-

sistency, and provide a recap of functional maps.

3.1. Multi­Matching Representation

We are given a collection X1, . . . ,Xk of k 3D shapes,

where each shape is a triangular surface mesh that discre-

tises a two-dimansional Riemannian manifold. The i-th

shapeXi is represented by a total of mi vertices in 3D space.

For any two non-negative integers s and t,

Pst = {P ∈ {0, 1}
s×t : P1t ≤ 1s,1

⊤
s P ≤ 1

⊤
t } , (1)

is the set of partial permutation matrices, where 1s is the s-

dimensional column vector with each element equals to 1.
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As such, correspondences between vertices of pairs of

shapes Xi and Xj can be represented by using the partial

permutation matrix Pij ∈ Pmimj
. To be more specific, if

the element at position (u, v) in Pij has the value 1, the

u-th vertex of Xi is said to be in correspondence with the

v-th vertex of Xj . We assume Pij = P⊤
ji and Pii = Imi

,

where Imi
denotes the identity matrix of size mi.

Cycle consistency (pairwise). For bijective matchings,

in which case the Pij are full permutation matrices (the in-

equalities in (1) become equalities), cycle consistency [29]

means that for all i, j, ℓ ∈ {1, . . . , k}, it holds that

PijPjℓ = Piℓ . (2)

Cycle consistency is a natural property and constitutes a

necessary condition for the pairwise matchings to corre-

spond to the ground truth. As such, cycle consistency can

serve as additional constraint in order to better restrict the

space of solutions in multi-matching problems.

Cycle consistency (universe). Instead of using the ex-

plicit cycle consistency constraints in (2), one can rep-

resent multi-matchings by using shape-to-universe match-

ings [52, 29, 70, 7]. In this case, cycle consistency holds im-

plicitly without having to enforce the constraints (2) in the

problem formulation, and without having to develop a cus-

tomised solution strategy. The union of all distinct points

across all k shapes are called universe points, and we use d

to denote the total number of universe points. The shape-

to-universe formulation of cycle consistency also applies to

the case of partial multi-matchings, which is the setting we

are interested in. The main idea of the shape-to-universe

representation is that each point in each of the k shapes is

brought into correspondence with exactly one of the uni-

verse points. Then, all points across the k shapes that are in

correspondence with the same universe point are said to be

in correspondence with each other [29]. Mathematically, let

Pi ∈ Pmid be the partial permutation matrix that represents

the matching of the i-th shape to the universe. Since each

of the mi points is assigned to exactly one universe point,

we have Pi1d = 1mi
. Pairwise matchings can be obtained

from the shape-to-universe matchings via

Pij = PiP
⊤
j . (3)

The intuition is that the matching from i to j can be repre-

sented as matching i to the universe, followed by matching

the universe to j, which is illustrated in Fig. 1.

For our later elaborations it will be convenient to stack

all Pi’s into a tall block-matrix, which we define as

U =
[

P⊤
1 , P⊤

2 , . . . P⊤
k

]⊤
. (4)

The matrix U is (m×d)-dimensional, where m =
∑k

i=1 mi.

Moreover, we introduce the blockwise partial permutation

constraint notation U ∈ P (without subscript in P) to

indicate that for each block Pi in U it holds that Pi ∈ Pmid

and Pi1d = 1mi
. We emphasise that by representing

multi-matchings in terms of the matrix U , the resulting

pairwise matchings are, by definition, cycle-consistent.

3.2. Functional Maps

Functional Maps [51] formulate the correspondence

problem as a linear mapping Cij : L2(Xi) → L2(Xj) be-

tween function spaces on the surfaces of Xi,Xj , rather than

as a point-to-point correspondence between vertices. Let

Φi ∈ R
mi×b,Φj ∈ R

mj×b be the first b eigenfunctions of

the Laplace-Beltrami operator (LBO) [54]. Then Cij trans-

fers the function F represented in the basis Φi to the func-

tion G represented in the basis Φj , i.e.

Cij(Φ
†
iF ) = Φ†

jG . (5)

Here, Φ†
• denotes the Moore-Penrose pseudoinverse of Φ•.

In particular, the optimal Cij will map compatible functions

F ∈ L2(Xi) and G ∈ L2(Xj), e.g. descriptor functions

or indicator functions on corresponding points, onto each

other. We will use C without subscripts to describe common

properties of all Cij . Due to the linearity of C, it can be writ-

ten as a matrix. Orthogonality of C is related to area preser-

vation in the correspondence [51] which is also a property

of isometries. Thus, we use orthogonality as a prior by pro-

jecting all C’s onto the set of orthogonal matrices

Ob = {C ∈ R
b×b : CC⊤ = Ib} . (6)

Similar to the previous section, we want to impose cycle

consistency on the pairwise functional maps Cij . We do so

by defining a shape-to-universe functional map Ci from Xi

to a (virtual) universe shape. We achieve cycle consistency

by composing each pairwise functional map using shape-to-

universe functional maps, i.e.

Cij = CiC
⊤
j . (7)

Analogously to (4), we stack all Ci into a tall (kb×b)-
dimensional block-matrix that we call

Q =
[

C⊤1 , C⊤2 , . . . C⊤k
]⊤

. (8)

In accordance with the definition of the permutation con-

straint, we define the stacked block-orthogonal constraint

Q ∈ O (without subscript in O) that indicates that every

block Ci ∈ Ob.

4. Isometric Multi-Shape Matching

In this section, we introduce our matching formulation,

the optimisation algorithm thereof, and provide a theoretical

analysis. Our notation is summarised in Tab. 1.
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Symbol Meaning

k total number of shapes to be matched

mi total number of points in shape i

m =
∑k

i=1
mi total number of points across all k shapes

d universe size (total number of unique points

across all shapes)

Pi ∈ Pmid ⊂ Rmi×d shape-to-universe matching for shape i

U ∈ P ⊂ Rm×d stack of all shape-to-universe matchings

b number of LBO basis functions

Φi ∈ Rmi×b eigenfunction of the LBO of shape i

Φ ∈ Rm×kb block-diagonal matrix containing the eigenfunc-

tions of all shapes

Ci ∈ Rb×b shape-to-universe functional map for shape i

Q ∈ O ⊂ Rkb×b stack of all shape-to-universe functional maps

Table 1. Overview of our notation.

4.1. Problem Formulation

The objective function of our isometric multi-matching

formulation (that we will later maximise) reads

f(U,Q) =

k
∑

i,j=1

〈P⊤
i ΦiCi, P

⊤
j ΦjCj〉 (9)

= 〈U⊤
ΦQ,U⊤

ΦQ〉 , (10)

where Φ = diag(Φ1, . . . ,Φk) ∈ R
m×kb. The equality be-

tween the explicit summation formulation in (9) and the

matrix formulation in (10) can be verified by expanding

the matrix multiplications. When maximising the objec-

tive function, the inner product between the aligned basis

functions Φi and Φj is maximised for all pairs i, j. For that

purpose, Pi and Pj permute the vertices in terms of universe

points, while Ci and Cj align the basis functions on the same

universe points via an orthogonal transform. Rewriting each

summand of (9) as tr((P⊤
i Φi)CiC

⊤
j (P⊤

j Φj)
⊤), we see each

operation explicitly: P⊤
• Φ• shuffles the vertices into consis-

tent universe ordering, CiCj composes the (cycle-consistent)

functional maps between i and j according to (7).

The overall optimisation is performed with respect to U

and Q, with the constraints U ∈ P and Q ∈ O. As such,

our isometric multi-shape matching formulation reads

max
U,Q

〈U⊤
ΦQ,U⊤

ΦQ〉 (11)

s.t. U ∈ P, Q ∈ O .

4.2. Algorithm

In order to solve Problem (11), we propose a

novel projection-based algorithm that we call ISOMUSH

(Isometric Multi-Shape Matching). The optimisation alter-

nates between updating U and Q. Each update step involves

simple matrix multiplications, as well as the Euclidean pro-

jection onto the sets P and O. For permutations, as well

as different objective functions, a similar strategy has been

Algorithm 1: ISOMUSH algorithm.

Input: Φ, ǫ (relative objective improvement)

Output: U,Q

Initialise: t← 0, U0 ∈ P, Q0 ∈ O

1 repeat

2 Ut+1 ← projP(ΦQtQ
⊤
t Φ

⊤Ut)

3 Qt+1 ← projO(Φ
⊤Ut+1U

⊤
t+1ΦQt)

4 t← t+1

5 until
f(Ut,Qt)

f(Ut+1,Qt+1)
≥ 1−ǫ

proven effective in [71, 8]. We denote the Euclidean projec-

tions as projP(·) and projO(·). Each Euclidean projection

returns the closest element in the constraint set according to

the squared Frobenius norm. For the set O, it is defined as

projO(Q) = argmin
Y ∈O

‖Q− Y ‖2F (12)

= argmax
Y ∈O

2〈Q, Y 〉−〈Y, Y 〉 = argmax
Y ∈O

〈Q, Y 〉 .

The last equality arises from the orthonormality of all Ci in

Q. The projection onto the set P is defined analogously, in

which case the term 〈Y, Y 〉 has the constant value m for

Y ∈ P (since the term simply counts the total number of

ones in Y , which has the fixed value m because U ∈ P

implies U1d = 1m). By Ut and Qt we denote the values of

U and Q at iteration t, respectively.

U -update. For Z = ΦQtQ
⊤
t Φ

⊤, the U -update step

projects ZUt onto P. Hence, the U -update reads

Ut+1 = projP(ZUt) = argmax
U∈P

〈ZUt, U〉 (13)

=













argmax
P1∈Pm1d

〈[ZUt]1, P1〉

...

argmax
Pk∈Pmkd

〈[ZUt]k, Pk〉













, (14)

where [ZUt]i denotes the i-th block (of size mi×d) of ZUt.

Each block of U in (13) is independent, and consequently

can be optimised separately, as written in (14). This reduces

the projection into solving k independent (partial) linear as-

signment problems, which are solved by an efficient imple-

mentation [9] of the Auction algorithm [10].

Q-update. For Z = Φ
⊤Ut+1U

⊤
t+1Φ, the Q-update step

projects ZQt onto O. It is given by

Qt+1 = projO(ZQt) = argmax
Q∈O

〈ZQt, Q〉 (15)

=











argmax
C1∈O

〈[ZQt]1, C1〉

...

argmax
Ck∈O

〈[ZQt]k, Ck〉











, (16)
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where [ZQt]i denotes the i-th block (of size b×b) of ZQt.

Similar as in the U -update, the result for each block of Q

in (15) is independent, and can thus be optimised sepa-

rately. Thus we can solve k independent singular value de-

compositions (SVDs), each for a small matrix of size b×b.

4.3. Theoretical Analysis

In this section, the properties of the ISOMUSH algorithm

is analysed. To this end, we prove that the algorithm con-

vergences, and present a complexity analysis.

4.3.1 Convergence

The convergence of our algorithm follows from the mono-

tonicity of the individual updates. Here, we present the re-

spective results, and refer readers to the supplementary ma-

terial for the proofs.

Lemma 1 〈U⊤
t ΦQt, U

⊤
t+1ΦQt〉 ≥ 〈U⊤

t ΦQt, U
⊤
t ΦQt〉

holds for any t.

Proposition 2 (Monotonicity of U -update)

The objective value cannot decrease through the

U -update step (13), and 〈U⊤
t+1ΦQt, U

⊤
t+1ΦQt〉 ≥

〈U⊤
t ΦQt, U

⊤
t ΦQt〉 holds.

Lemma 3 In each iteration t, 〈U⊤
t+1ΦQt, U

⊤
t+1ΦQt+1〉 ≥

〈U⊤
t+1ΦQt, U

⊤
t+1ΦQt〉 holds.

Proposition 4 (Monotonicity of Q-update)

The objective value cannot decrease through the

Q-update (15), and 〈U⊤
t+1ΦQt+1, U

⊤
t+1ΦQt+1〉 ≥

〈U⊤
t+1ΦQt, U

⊤
t+1ΦQt〉 holds.

By combining these properties, and exploiting that U and Q

are in compact sets, we obtain the following result:

Theorem 5 (Convergence)

The sequence (f(Ut, Qt))t=1,2,... is monotonically increas-

ing and convergent. Algorithm 1 terminates in finite time.

4.3.2 Complexity Analysis

The steps in the ISOMUSH algorithm comprises matrix

multiplications and projections onto the sets P and O. In

the following, we break down the complexity of each step:

Multiplications in U -update: The term ΦQQ⊤
Φ

⊤U

can be computed as AB for A = ΦQ and B = A⊤U . Com-

puting A ∈ R
m×b has complexity O(b2m) (Φ is a block-

diagonal matrix). Computing B = A⊤U ∈ R
b×d has com-

plexityO(bdk) (U is a sparse matrix with at most k nonzero

elements per column). Finally, computing AB ∈ R
m×d

has complexity O(bdm). This results in an complexity of

O(bm ·max(d, b)) for the U-step matrix multiplication.

Multiplications in Q-update: The term Φ
⊤UU⊤

ΦQ

can be computed as C⊤D for C = U⊤
Φ and D = CQ.

Computing C ∈ R
d×kb has complexity O(bdk) (U is a

sparse matrix with at most k nonzero elements per column,

and Φ is a block-diagonal matrix). Computing D = CQ ∈
R

d×b has complexity O(b2dk). Computing C⊤D ∈ R
kb×b

has complexity O(b2dk). This results in an complexity of

O(b2dk) for the Q-step matrix multiplication.

Projection onto P: the projection onto P is computed by

k linear assignment problems of size mi × d. The auction

algorithm has an average time complexity of O(d2 log(d)),
so that the overall projection has O(kd2 log(d)).

Projection onto O: the projection onto O is computed

by solving k independent projections onto Ob. Using SVD,

this amounts to a complexity of O(b3).

5. Experiments

We show the effectiveness of our method on several

datasets and compare against state-of-the-art approaches.

Error measure. We evaluate the accuracy of corre-

spondences using the Princeton benchmark protocol [34].

Given the ground-truth correspondences (xi, x
∗
j ) for each

xi ∈ Xi, the error of the calculated match (xi, xj) is given

by the normalised geodesic distance between xj and x∗
j

e(xi) =
distgeo(xj , x

∗
j )

diam(Xj)
, (17)

where diam(·) denotes the shape diameter. We plot the ac-

cumulated errors smaller than a certain relative error, which

is known as percentage of correct keypoints (PCK) curve.

The perfect solution results a constant curve at 100%, which

amounts to an area under the curve (AUC) of 1.

Cycle consistency. We quantify the cycle consistency

of the methods in terms of the cycle error, which is the pro-

portion of the number of cycle-consistency violations, di-

vided by the total number of cycles. Without loss of gener-

ality we consider only triplet-cycles, see (2).

Methods. We compare our method against sev-

eral recent state-of-the-art methods, including the pair-

wise matching approach ZOOMOUT [47], the two-stage

approach ZOOMOUT+SYNC that performs synchronisa-

tion to achieve cycle consistency in the results produced

by ZOOMOUT, as well as the multi-matching methods

HIPPI [8] and CONSISTENTZOOMOUT [31]. Both HIPPI

and CONSISTENTZOOMOUT utilise only a single represen-

tation in isolation, a point-wise and functional map repre-

sentation, respectively. In contrast, ISOMUSH leverages

both simultaneously, and we experimentally show that this

is more robust and accurate.

Setup. We use results produced by ZOOMOUT to ini-

tialise all other methods. ZOOMOUT itself is initialised by

the functional map solution [51] minC∈Rb×b ‖FC − G‖2F

14188



0 5 · 10−2 0.1 0.15

70

80

90

100

Geodesic error

%
C

o
rr

es
p

o
n

d
en

ce
s

TOSCA

ZoomOut

ZoomOut+Sync

ConsistentZoomOut

HiPPI

Ours

0 5 · 10−2 0.1 0.15

70

80

90

100

Geodesic error

FAUST

0 5 · 10−2 0.1 0.15

70

80

90

100

Geodesic error

SCAPE

Figure 3. Percentage of correct keypoints (PCK) curves for TOSCA, FAUST and SCAPE. Our method leads to better PCK curves (also see

the AUC in Tab. 2) than its competitors across all datasets. Dashed lines indicate methods that do not jointly optimise for multi-matchings.
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A AUC ↑ 0.968 0.951 0.943 0.882 0.956

time [s] ↓ 28.3 95.2 305.9 164.6 79.9

cycle error ↓ 0 0 0 0.68 0.17

F
A

U
S

T AUC ↑ 0.914 0.911 0.909 0.891 0.908

time [s] ↓ 23.2 82.8 170.6 122.8 52.9

cycle error ↓ 0 0 0 0.41 0.16

S
C

A
P

E AUC ↑ 0.940 0.938 0.925 0.884 0.922

time [s] ↓ 126.5 218.8 552.3 275.2 82.0

cycle error ↓ 0 0 0 0.58 0.25

Table 2. Quantitative evaluation in terms of the area under the PCK

curve (AUC), the runtime (excluding initialisation), and the cycle

error. All values are averaged over all instances for each dataset.

(without regularisers), where F and G are the concatenation

of normalised Heat Kernel Signature [13] and SHOT [61].

The output of ZOOMOUT are pairwise correspondences

{Pij} and pairwise functional maps {Cij} between all pairs

of shapes. CONSISTENTZOOMOUT directly operates on

the {Cij}, so they are used for its initialisation. In con-

trast, HIPPI and our method require shape-to-universe rep-

resentations. To obtain these, we use synchronisation to ex-

tract the shape-to-universe representation from the pairwise

transformations. By doing so, we obtain the initial U and

Q. We refer to this method of synchronising the ZOOMOUT

results as ZOOMOUT+SYNC, which directly serves as ini-

tialisation for HIPPI and our method. Throughout this

section we also report results of the initialisation methods

ZOOMOUT and ZOOMOUT+SYNC. Further details can be

found in the supplementary material.

5.1. Comparisons to State­of­the­Art Methods

TOSCA dataset. The TOSCA dataset [12] contains

76 shapes from 8 classes depicting different humans and

creatures. We downsample all shapes to 2,000 faces. Our

method shows state-of-the-art results and surpasses all com-

petitors on this dataset, see Fig. 3 and Tab. 2. Exemplary

matchings of all competing methods can be found in Fig. 4.

FAUST dataset. The FAUST dataset [11] contains real

scans of 10 different humans in different poses. We use

the registration subset with 10 poses for each class and

downsample each shape to 2,000 faces. Our method shows

state-of-the-art results on this dataset, see Fig. 3 and Tab. 2.

While the PCK curves between ours, ZOOMOUT+SYNC

and HIPPI in Fig. 3 are close, the AUC in Tab. 2 shows that

our performance is still superior by a small margin. Quali-

tative results can be found in the supplementary material.

SCAPE dataset. The SCAPE dataset [1] contains 72
poses of the same person, of which we choose 15 randomly

and downsample them to 2,000 faces. Our method shows

state-of-the-art results on this dataset, see Fig. 3 and Tab. 2.

Exemplary matchings of all methods can be found in Fig. 5.

5.2. Multi­Matching of Partial Shapes

We demonstrate that our method applies to the diffi-

cult setting of matching partial shapes. As a proof-of-

concept, we created a partial dataset by removing parts

of shapes from the TOSCA dataset. Most partial match-

ing pipelines include the full reference shape to resolve

some of the complexity. Although our optimisation does

not need any information about the complete geometry, we

use a partiality-adjusted version of ZOOMOUT to obtain

the shape-to-universe initialisation for ISOMUSH. In this

case, the universe has the dimension of the full shape. Our

method finds the correct correspondence among the partial

shapes, while being cycle-consistent, see Fig. 1. Partial

functional maps are rectangular and low-rank [58], and this

experiments shows that our method can handle this more

general case. See the supplementary material for details.

6. Discussion & Future Work

Deep learning. It was shown that deep learning is an ex-

tremely powerful approach for extracting shape correspon-

dences [40, 26, 59, 25]. However, the focus of this work

is on establishing a fundamental optimisation problem for-
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Colour legend Ours (bijective ✓, cycle-consistent ✓) HIPPI (bijective ✓, cycle-consistent ✓)

ZOOMOUT+SYNC (bijective ✗, cycle-consistent ✗) ZOOMOUT (bijective ✗, cycle-consistent ✗) CONSISTENTZOOMOUT (bij. ✗, cycle-cons. ✗‡)

Figure 4. Qualitative examples of correspondences on the TOSCA dog class. Black indicates no matching due to non-bijectivity. Our

method is cycle-consistent and improves upon the non-smooth and noisy correspondences of the two-stage initialisation obtained via

ZOOMOUT+SYNC, whereas HIPPI does not (red circles). ZOOMOUT and CONSISTENTZOOMOUT have many unmatched points (black

areas). ‡CONSISTENTZOOMOUT obtains cycle-consistent Cij , but not Pij . (Best viewed magnified on screen)

Colour legend Ours (bijective ✓, cycle-consistent ✓) HIPPI (bijective ✓, cycle-consistent ✓)

ZOOMOUT+SYNC (bijective ✓, cycle-consistent ✓) ZOOMOUT (bijective ✗, cycle-consistent ✗) CONSISTENTZOOMOUT (bij. ✗, cycle-cons. ✗‡)

Figure 5. Qualitative examples of correspondences on SCAPE. Black indicates no matching due to non-bijectivity. As in Fig. 4, our results

contain the least noise and are cycle-consistent, although there is one outlier shape where neither HIPPI nor our method could recover

from a bad initialisation. ‡CONSISTENTZOOMOUT obtains cycle-consistent Cij , but not Pij . (Best viewed magnified on screen)

mulation for cycle-consistent isometric multi-shape match-

ing. As such, this work does not focus on learning methods

per-se, but we believe that it has a strong potential to spark

further work in this direction. In particular, our isometric

multi-matching formulation can be integrated into an end-

to-end learning framework via differentiable programming

techniques [48]. Moreover in machine learning, an entire

shape collection is typically used for training, so that our

multi-matching setting is conceptually better-suited com-

pared to the traditionally used pairwise matching methods.

Convergence. We have proven that the ISOMUSH algo-

rithm is convergent in the objective f(·, ·). However, we

did not establish convergence of the variables U and Q.

In this context, we note that there are equivalence classes

of U and Q that lead to the same objective value. To

be more specific, for any (full) d × d permutation matrix

P , and any C ∈ Ob we have (UP ) ∈ P, (QC) ∈ O,

and f(U,Q) = f(UP,QC). The latter can be verified

by plugging UP and QC into f while making use of the

orthogonality of P and C. Although the ISOMUSH algo-

rithm is convergent, and we have empirically verified that it

improves upon the state-of-the-art for the isometric multi-

shape matching problem, the investigation of stronger con-

vergence results is an interesting direction for future work.

7. Conclusion

We presented a novel formulation for the isometric

multi-shape matching problem. Our main idea is to si-

multaneously solve for shape-to-universe matchings and

shape-to-universe functional maps. By doing so, we gen-

eralise the popular functional map framework to multi-

matching, while guaranteeing cycle consistency, both for

the shape-to-universe matchings, as well as for the shape-

to-universe functional maps. This contrasts the recent CON-

SISTENTZOOMOUT [31] method, which does not obtain

cycle-consistent multi-matchings. Our algorithm is effi-

cient, straightforward to implement, and montonically in-

creases the objective function. Experimentally we have

demonstrated that our method outperforms recent state-of-

the-art techniques in terms of matching quality, while pro-

ducing cycle-consistent results and being efficient.
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[37] D Khuê Lê-Huu and Nikos Paragios. Alternating direction

graph matching. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4914–4922. IEEE, 2017. 2

[38] Marius Leordeanu and Martial Hebert. A Spectral Technique

for Correspondence Problems Using Pairwise Constraints. In

International Conference on Computer Vision (ICCV), 2005.

2

[39] Isaak Lim, Alexander Dielen, Marcel Campen, and Leif

Kobbelt. A simple approach to intrinsic correspondence

learning on unstructured 3d meshes. In European Confer-

ence on Computer Vision (ECCV), 2018. 3

[40] Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein,

and Michael Bronstein. Deep functional maps: Structured

prediction for dense shape correspondence. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 1, 3, 7

[41] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo

Oswaldo Boaventura Netto, Peter Hahn, and Tania Maia

Querido. A survey for the quadratic assignment problem. Eu-

ropean Journal of Operational Research, 176(2):657–690,

2007. 2

[42] Jiayi Ma, Xingyu Jiang, Aoxiang Fan, Junjun Jiang, and

Junchi Yan. Image matching from handcrafted to deep fea-

tures: A survey. International Journal of Computer Vision,

pages 1–57, 2020. 3

[43] Riccardo Marin, Marie-Julie Rakotosaona, Simone Melzi,

and Maks Ovsjanikov. Correspondence learning via linearly-

invariant embedding. In Adv. Neural Inform. Process. Syst.,

2020. 3

[44] Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky,

and Yaron Lipman. Point registration via efficient convex

relaxation. ACM Transactions on Graphics (TOG), 35(4):1–

12, 2016. 3

[45] Eleonora Maset, Federica Arrigoni, and Andrea Fusiello.

Practical and Efficient Multi-View Matching. In Interna-

tional Conference on Computer Vision (ICCV), 2017. 3

[46] Diana Mateus, Radu Horaud, David Knossow, Fabio Cuz-

zolin, and Edmond Boyer. Articulated shape matching using

laplacian eigenfunctions and unsupervised point registration.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2008. 3

[47] Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek
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