Isometric Multi-Shape Matching

Maolin Gao1 Zorah Lähner1,3 Johan Thunberg2 Daniel Cremers1 Florian Bernard1

1 Technical University of Munich 2 Halmstad University 3 University of Siegen

Figure 1. \textbf{Left:} We present a novel approach for isometric multi-shape matching based on matching each shape to a (virtual) universe shape (shown semi-transparent). Our formulation represents point-to-point correspondences between shapes i and j as the composition of the shape-to-universe permutation matrix P_i and the universe-to-shape permutation matrix P_j^\top. By doing so, the pairwise matchings $P_{ij} = P_i P_j^\top$ are by construction cycle-consistent. \textbf{Middle:} Our formulation successfully solves isometric multi-matching of partial shapes. \textbf{Right:} Due to the cycle-consistency we can use our correspondences to faithfully transfer textures across a shape collection.

Abstract

Finding correspondences between shapes is a fundamental problem in computer vision and graphics, which is relevant for many applications, including 3D reconstruction, object tracking, and style transfer. The vast majority of correspondence methods aim to find a solution between pairs of shapes, even if multiple instances of the same class are available. While isometries are often studied in shape correspondence problems, they have not been considered explicitly in the multi-matching setting. This paper closes this gap by proposing a novel optimisation formulation for isometric multi-shape matching. We present a suitable optimisation algorithm for solving our formulation and provide a convergence and complexity analysis. Our algorithm obtains multi-matchings that are by construction provably cycle-consistent. We demonstrate the superior performance of our method on various datasets and set the new state-of-the-art in isometric multi-shape matching.

1. Introduction

The identification of correspondences between 3D shapes, also known as the shape matching problem, is a longstanding challenge in visual computing. Correspondence problems have a high relevance due to their plethora of applications, including 3D reconstruction, deformable object tracking, style transfer, shape analysis, or general data canonicalisation, e.g. to facilitate learning by establishing a common vector space representation.

There are certain problem formulations that cover generic correspondence problems involving different types of data and varying application scenarios. One example is the widely-studied quadratic assignment problem (QAP) [36]. Due to its NP-hardness [53], reasonably large QAPs cannot be solved satisfactorily in most settings. However, contrary to bringing generic objects (e.g. graphs) into correspondence, when considering 3D shapes it is possible to exploit particular structural properties in order to effectively solve the shape matching problem.

For example, it has been demonstrated that explicitly modelling the low-dimensional structure of shape matching problems often allows to find global optima for a wide range of shape matching formulations [5]. It was also shown that learning suitable feature representations from shapes improves the matching performance drastically compared to using hand-crafted features [40].

Moreover, when assuming (near)-isometries between shapes, efficient and powerful spectral approaches can be leveraged for shape matching [51]. Isometries describe
classes of deformable shapes of the same type but in different poses, e.g. humans or animals who are able to adopt a variety of poses. Potential applications for isometric shape matching include AR/VR or template matching. While (near-)isometric shape matching has been studied extensively for the case of matching a pair of shapes, the isometric multi-shape matching problem, where an entire collection of (near-isometric) shapes is to be matched, is less explored. Important applications of isometric multi-shape matching include learning low-dimensional shape space representations [82], motion tracking and reconstruction.

In principle, any pairwise shape matching method can be used for matching a shape collection. To do so, one can select one of the shapes as reference, and then solve a sequence of pairwise shape matching problems between each of the remaining shapes and the reference. However, a major disadvantage is that such an approach has a strong bias due to the choice of the reference. Alternatively, one could solve pairwise shape matching problems between all pairs of shapes in the shape collection. Although this way there is no bias, in general the resulting correspondences are not cycle-consistent. As such, matching shape A via shape B to shape C, may lead to a different correspondence than matching shape A directly to C.

In order to achieve cycle consistency, so-called permutation synchronisation methods can be used as post-processing [52]. A disadvantage of synchronisation-based multi-shape matching is that it is a two-stage procedure, where pairwise matchings are obtained in the first procedure, and synchronization is assured in the second. With that, the matching results are often suboptimal – even if one reverts to an alternating procedure using a soft coupling [63]. For isometric multi-shape matching this sequential procedure is particularly disadvantageous, since during the second stage the very strong prior about the isometric nature of the shapes is completely ignored.

Although multi-matchings obtained by synchronisation procedures are cycle-consistent, the matchings are often spatially non-smooth and noisy, as illustrated in Sec. 5. From a theoretical point of view, the most appropriate approach for addressing multi-shape matching is based on a unified formulation, where cycle consistency is assured already when the multi-matchings are computed. Although some approaches fit into this category [17, 8], none of the existing methods are tailored explicitly towards isometric matching in order to take full advantage in this setting. In this work we fill this gap by introducing a generalisation of state-of-the-art isometric two-shape matching approaches towards isometric multi-shape matching. We demonstrate that explicitly exploiting the isometry property leads to a natural and elegant formulation that achieves improved results compared to previous methods. Our main contributions can be summarised as:

- A novel optimisation formulation for isometric multi-shape matching.
- An efficient and easy-to-implement algorithm with provable convergence.
- Guaranteed cycle-consistency without enforcing explicit constraints.
- Improvements over the state-of-the-art on various shape matching benchmarks.

2. Related Work

Assignment problems. Shape matching can be formulated as bringing points defined on one shape into correspondence with points on another shape. A simple mathematical formulation for doing so is the linear assignment problem (LAP) [49], where a linear cost function is optimised over the set of permutation matrices. The objective function defines the cost for matching points on the first shape to points on the second shape. In shape matching, the costs are typically computed based on feature descriptors, such as the heat kernel signature [13], wave kernel signature [2], or SHOT [61]. Despite the exponential size of the search space, there exist efficient polynomial-time algorithms to solve the LAP [10]. A downside of the LAP is that the geometric relation between points is not explicitly taken into account, so that the found matchings lack spatial smoothness. To compensate for this, a correspondence problem formulation based on the quadratic assignment problem (QAP) [35, 36, 53, 14, 41] can be used. In that case, in addition to linear point-to-point matching costs, quadratic costs for matching pairs of points on the first shape to pairs of points on the second shape are taken into account. Since pairs of points can be understood as edges in a graph, this corresponds to graph matching. Due to the NP-hardness of the QAP [53], there are no algorithms that can reliably find global optima efficiently for large (non-trivial) problem instances. In addition to exhaustive search algorithms that have exponential worst-case time complexity [4], there are various more efficient but non-optimal solution strategies. They include spectral methods [38, 18], convex relaxations [79, 23, 69, 33, 68], some of them relying on path-following [78, 80, 20, 6], as well as various non-convex formulations [37, 66, 72, 27]. For suitably defined matching costs the QAP is an appropriate formalism for modelling isometric shape matching. However, due to its NP-hardness the QAP is computationally very difficult to solve. Moreover, due to the generality of the formalism, it does not fully exploit the structural properties present in isometric shape matching problems, and is therefore a suboptimal choice from a computational perspective.

Isometric shape matching. The near-isometric shape correspondence problem has been studied extensively in the literature, see [60] for a recent survey. Apart from methods tackling a QAP formulation (see previous paragraph),
there exist directions utilising other structural properties of isometries. The Laplace-Beltrami operator (LBO) [54], a generalisation of the Laplace operator on manifolds, as well as its eigenfunctions are invariant under isometries. Methods like [46, 47] directly incorporate this knowledge into the pipeline, or use descriptors based on these [2, 71, 13]. Functional maps [51] reformulate the point-wise correspondence problem as a correspondence between functions. The functional mapping is represented as a low-dimensional matrix for suitably chosen basis functions. The classic choice are the eigenfunctions of the LBO, which are invariant under isometries and predestined for this setting. Moreover, for general non-rigid settings learning these basis functions has also been proposed [43]. A wide variety of extensions to make functional maps more robust or more flexible have been developed. This includes orientation-preservation [56], image co-segmentation [73], denoising [22, 55], partiality [58], and non-isometries [21]. However, extracting a point-wise correspondence from a functional map matrix is not trivial [16, 57]. This is mainly because of the low-dimensionality of the functional map, and the fact that not every functional map matrix is a representation of a point-wise correspondence [51]. In [44], the authors simultaneously solve for point-wise correspondences and functional maps for non-rigid shape matching.

Due to their low-dimensionality and continuous representation, functional maps also serve as the backbone of many deep learning architectures for 3D correspondence. One of the first examples is FMNet [40], which has also been extended for unsupervised learning settings recently [26, 3, 59]. Other learning methods rely on a given template for each class [24] or local neighbourhood encoding to learn a compact representation [39]. The recently conducted SHREC correspondence contest on isometric and non-isometric 3D shapes [19] revealed that there is still room for improvement in both fields.

Generic multi-matching. The multi-matching problem is relatively well-studied for generic settings, e.g. for matching multiple graphs [77, 76, 65, 6, 67, 75], or matching keypoints in image collections [74, 70, 42]. A desirable property of multi-matchings is cycle consistency (which we will formally define in Sec. 3.1). Establishing cycle consistency in a given set of pairwise matchings, known as permutation synchronisation, has been addressed extensively in the literature [50, 52, 29, 15, 81, 64, 70, 45, 62, 7].

Multi-shape matching. There are various works that particularly target the matching of multiple shapes. In [29, 32], semidefinite programming relaxations are proposed for the multi-shape matching problem. However, due to the employed lifting strategy, which drastically increases the number of variables, these methods are not scalable to large problems and only sparse correspondences are obtained. In [17], a game-theoretic formulation for establishing multi-matchings is introduced. Due to the use of a sparse modelling approach, the method also has the disadvantage that only few points per shape are matched, see Fig. 2. [30] analyses similarity on large heterogeneous shape collections by imposing cycle consistency on given pairwise functional maps. In [28], tensor maps are introduced for synchronising heterogeneous shape collections using a low-rank tensor decomposition formulation. The work [25] presents a self-supervised learning approach for finding surface deformations. A higher-order projected power iteration approach was presented in [8], which was applied to various multi-matching settings, such as multi-image matching or multi-shape matching. A shortcoming when applying the mentioned multi-shape matching approaches to isometric settings is that they do not exploit structural properties of isometric shapes. Hence, they lead to suboptimal multi-matchings, which we experimentally confirm in Sec. 5. One exception is the recent work on spectral map synchronisation [31], which builds upon functional maps and is, in principal, well-suited for isometric multi-shape matching. However, although the authors take into account cycle consistency, respective penalties are only imposed on pairwise functional maps, rather than on the point-wise correspondences. In Sec. 5 we demonstrate that it leads to multi-matchings that have large cycle errors.

3. Background

In this section we introduce our representation for multi-matchings of 3D shapes, formalise the notion of cycle consistency, and provide a recap of functional maps.

3.1. Multi-Matching Representation

We are given a collection X_1, \ldots, X_k of k 3D shapes, where each shape is a triangular surface mesh that discretises a two-dimensional Riemannian manifold. The i-th shape X_i is represented by a total of m_i vertices in 3D space. For any two non-negative integers s and t,

$$P_{st} = \{ P \in \{0, 1\}^{s \times t} : P 1_t \leq 1_s, 1_s^T P \leq 1_t^T \}, \quad (1)$$

is the set of partial permutation matrices, where 1_s is the s-dimensional column vector with each element equals to 1.
As such, correspondences between vertices of pairs of shapes X_i and X_j can be represented by using the partial permutation matrix $P_{ij} \in \mathbb{P}_{m_i m_j}$. To be more specific, if the element at position (u, v) in P_{ij} has the value 1, the w-th vertex of X_i is said to be in correspondence with the v-th vertex of X_j. We assume $P_{ij} = P_{ji}^\top$ and $P_{ii} = I_{m_i}$, where I_{m_i} denotes the identity matrix of size m_i.

Cycle consistency (pairwise). For bijective matchings, in which case the P_{ij} are full permutation matrices (the inequalities in (1) become equalities), cycle consistency [29] means that for all $i, j, \ell \in \{1, \ldots, k\}$, it holds that

$$P_{ij}P_{j\ell} = P_{i\ell}. \quad (2)$$

Cycle consistency is a natural property and constitutes a necessary condition for the pairwise matchings to correspond to the ground truth. As such, cycle consistency can serve as additional constraint in order to better restrict the space of solutions in multi-matching problems.

Cycle consistency (universe). Instead of using the explicit cycle consistency constraints in (2), one can represent multi-matchings by using shape-to-universe matchings [52, 29, 70, 7]. In this case, cycle consistency holds implicitly without having to enforce the constraints (2) in the problem formulation, and without having to develop a customised solution strategy. The union of all distinct points across all k shapes are called universe points, and we use d to denote the total number of universe points. The shape-to-universe formulation of cycle consistency also applies to the case of partial multi-matchings, which is the setting we are interested in. The main idea of the shape-to-universe representation is that each point in each of the k shapes is brought into correspondence with exactly one of the universe points. Then, all points across the k shapes that are in correspondence with the same universe point are said to be in correspondence with each other [29]. Mathematically, let $P_i \in \mathbb{P}_{m_i d}$ be the partial permutation matrix that represents the matching of the i-th shape to the universe. Since each of the m_i points is assigned to exactly one universe point, we have $P_i1_d = 1_{m_i}$. Pairwise matchings can be obtained from the shape-to-universe matchings via

$$P_{ij} = P_iP_j^\top. \quad (3)$$

The intuition is that the matching from i to j can be represented as matching i to the universe, followed by matching the universe to j, which is illustrated in Fig. 1.

For our later elaborations it will be convenient to stack all P_i’s into a tall block-matrix, which we define as

$$U = [P_1^\top, P_2^\top, \ldots, P_k^\top]^\top. \quad (4)$$

The matrix U is $(m \times d)$-dimensional, where $m = \sum_{i=1}^k m_i$. Moreover, we introduce the blockwise partial permutation constraint notation $U \in \mathbb{P}$ (without subscript in \mathbb{P}) to indicate that for each block P_i in U it holds that $P_i \in \mathbb{P}_{m_i d}$ and $P_i1_d = 1_{m_i}$. We emphasise that by representing multi-matchings in terms of the matrix U, the resulting pairwise matchings are, by definition, cycle-consistent.

3.2. Functional Maps

Functional Maps [51] formulate the correspondence problem as a linear mapping $C_{ij} : L^2(X_i) \to L^2(X_j)$ between function spaces on the surfaces of X_i, X_j, rather than as a point-to-point correspondence between vertices. Let $\Phi_i \in \mathbb{R}^{m_i \times b}, \Phi_j \in \mathbb{R}^{m_j \times b}$ be the first b eigenfunctions of the Laplace-Beltrami operator (LBO) [54]. Then C_{ij} transfers the function F represented in the basis Φ_i to the function G represented in the basis Φ_j, i.e.

$$C_{ij}(\Phi_i F) = \Phi_j^\top G. \quad (5)$$

Here, Φ_j^\top denotes the Moore-Penrose pseudoinverse of Φ_j. In particular, the optimal C_{ij} will map compatible functions $F \in L^2(X_i)$ and $G \in L^2(X_j)$, e.g. descriptor functions or indicator functions on corresponding points, onto each other. We will use C without subscripts to describe common properties of all C_{ij}. Due to the linearity of C, it can be written as a matrix. Orthogonality of C is related to area preservation in the correspondence [51] which is also a property of isometries. Thus, we use orthogonality as a prior by projecting all C’s onto the set of orthogonal matrices

$$\mathbb{O}_b = \{ C \in \mathbb{R}^{b \times b} : CC^\top = I_b \}. \quad (6)$$

Similar to the previous section, we want to impose cycle consistency on the pairwise functional maps C_{ij}. We do so by defining a shape-to-universe functional map C_i from X_i to a (virtual) universe shape. We achieve cycle consistency by composing each pairwise functional map using shape-to-universe functional maps, i.e.

$$C_{ij} = C_iC_j^\top. \quad (7)$$

Analogously to (4), we stack all C_i into a tall $(kb \times b)$-dimensional block-matrix that we call

$$Q = [C_1^\top, C_2^\top, \ldots, C_k^\top]^\top. \quad (8)$$

In accordance with the definition of the permutation constraint, we define the stacked block-orthogonal constraint $Q \in \mathbb{O}$ (without subscript in \mathbb{O}) that indicates that every block $C_i \in \mathbb{O}_b$.

4. Isometric Multi-Shape Matching

In this section, we introduce our matching formulation, the optimisation algorithm thereof, and provide a theoretical analysis. Our notation is summarised in Tab. 1.
4.1. Problem Formulation

The objective function of our isometric multi-matching formulation (that we will later maximise) reads

\[f(U, Q) = \sum_{i,j=1}^{k} \langle P_i^T \Phi_i C_i, P_j^T \Phi_j C_j \rangle \]

\[= \langle U^T \Phi Q, U^T \Phi Q \rangle , \]

where \(\Phi = \text{diag}(\Phi_1, \ldots, \Phi_k) \in \mathbb{R}^{m \times kb} \). The equality between the explicit summation formulation in (9) and the matrix formulation in (10) can be verified by expanding the matrix multiplications. When maximising the objective function, the inner product between the aligned basis functions \(\Phi_i \) and \(\Phi_j \) is maximised for all pairs \(i, j \). For that purpose, \(P_i \) and \(P_j \) permute the vertices in terms of universe points, while \(C_i \) and \(C_j \) align the basis functions on the same universe points via an orthogonal transform. Rewriting each summand of (9) as \(\text{tr}\left((P_i^T \Phi_i) C_i C_j (P_j^T \Phi_j)^T\right) \), we see each operation explicitly: \(P_i^T \Phi_i \) shuffles the vertices into consistent universe ordering, \(C_i C_j \) composes the (cycle-consistent) functional maps between \(i \) and \(j \) according to (7).

The overall optimisation is performed with respect to \(U \) and \(Q \), with the constraints \(U \in \mathbb{P} \) and \(Q \in \mathbb{Q} \). As such, our isometric multi-shape matching formulation reads

\[
\max_{U,Q} \quad \langle U^T \Phi Q, U^T \Phi Q \rangle \quad \text{s.t.} \quad U \in \mathbb{P}, Q \in \mathbb{Q}.
\]

4.2. Algorithm

In order to solve Problem (11), we propose a novel projection-based algorithm that we call IsoMuSh (Isometric Multi-Shape Matching). The optimisation alternates between updating \(U \) and \(Q \). Each update step involves simple matrix multiplications, as well as the Euclidean projection onto the sets \(\mathbb{P} \) and \(\mathbb{Q} \). For permutations, as well as different objective functions, a similar strategy has been proven effective in [71, 8]. We denote the Euclidean projections as \(\text{proj}_\mathbb{P}(\cdot) \) and \(\text{proj}_\mathbb{Q}(\cdot) \). Each Euclidean projection returns the closest element in the constraint set according to the squared Frobenius norm. For the set \(\mathbb{Q} \), it is defined as

\[
\text{proj}_\mathbb{Q}(Q) = \arg\min_{Y \in \mathbb{Q}} \| Y - Q \|_F^2,
\]

\[
= \arg\max_{Y \in \mathbb{Q}} 2 \langle Q, Y \rangle - \langle Y, Y \rangle = \arg\max_{Y \in \mathbb{Q}} \langle Q, Y \rangle.
\]

The last equality arises from the orthonormality of all \(C_i \) in \(Q \). The projection onto the set \(\mathbb{P} \) is defined analogously, in which case the term \(\langle Y, Y \rangle \) has the constant value \(m \) for \(Y \in \mathbb{P} \), since the term simply counts the total number of ones in \(Y \), which has the fixed value \(m \) because \(U \in \mathbb{P} \) implies \(U_{1d} = 1_m \). By \(U_t \) and \(Q_t \), we denote the values of \(U \) and \(Q \) at iteration \(t \), respectively.

U-update. For \(Z = \Phi Q_t \Phi^T \), the \(U \)-update step projects \(ZU_t \) onto \(\mathbb{P} \). Hence, the \(U \)-update reads

\[
U_{t+1} = \text{proj}_\mathbb{P}(ZU_t) = \arg\max_{U \in \mathbb{P}} \langle Zu_t, U \rangle
\]

\[
= \begin{bmatrix} \arg\max_{P_{i} \in \mathbb{P}_{m \times d}} \langle [Zu_t]_1, P_{i} \rangle \\ \vdots \\ \arg\max_{P_{k} \in \mathbb{P}_{m \times d}} \langle [Zu_t]_k, P_{k} \rangle \end{bmatrix},
\]

where \([Zu_t]_i \) denotes the \(i \)-th block (of size \(m_i \times d \)) of \(ZU_t \). Each block of \(U \) in (13) is independent, and consequently can be optimised separately, as written in (14). This reduces the projection into solving \(k \) independent (partial) linear assignment problems, which are solved by an efficient implementation [9] of the Auction algorithm [10].

Q-update. For \(\tilde{Z} = \Phi^T U_{t+1} \Phi^T \), the \(Q \)-update step projects \(\tilde{Z} Q_t \) onto \(\mathbb{Q} \). It is given by

\[
Q_{t+1} = \text{proj}_\mathbb{Q}(\tilde{Z}Q_t) = \arg\max_{Q \in \mathbb{Q}} \langle \tilde{Z}Q_t, Q \rangle
\]

\[
= \begin{bmatrix} \arg\max_{C_{t} \in \mathbb{O}} \langle [\tilde{Z}Q_t]_1, C_{t} \rangle \\ \vdots \\ \arg\max_{C_{k} \in \mathbb{O}} \langle [\tilde{Z}Q_t]_k, C_{k} \rangle \end{bmatrix},
\]

\[
\text{Algorithm 1: IsoMuSh algorithm.}
\]

| Input: \(\Phi, \epsilon \) (relative objective improvement) |
| Output: \(U, Q \) |
| Initialise: \(t \leftarrow 0 \), \(U_0 \in \mathbb{P}, Q_0 \in \mathbb{Q} \) |
| repeat |
| \(U_{t+1} \leftarrow \text{proj}_\mathbb{P}(\Phi Q_t \Phi^T U_t) \) |
| \(Q_{t+1} \leftarrow \text{proj}_\mathbb{Q}(\Phi^T U_{t+1} U_{t+1}^T \Phi Q_t) \) |
| \(t \leftarrow t+1 \) |
| until \(\frac{f(U_{t+1}, Q_{t+1})}{f(U_t, Q_t)} \geq 1 - \epsilon \) |
where \([ZQ_t]_i\) denotes the \(i\)-th block (of size \(b \times b\)) of \(ZQ_t\). Similar as in the \(U\)-update, the result for each block of \(Q\) in (15) is independent, and can thus be optimised separately. Thus we can solve \(k\) independent singular value decompositions (SVDs), each for a small matrix of size \(b \times b\).

4.3. Theoretical Analysis

In this section, the properties of the ISOMuSH algorithm is analysed. To this end, we prove that the algorithm converges, and present a complexity analysis.

4.3.1 Convergence

The convergence of our algorithm follows from the monotonicity of the individual updates. Here, we present the respective results, and refer readers to the supplementary material for the proofs.

Lemma 1 \((U^T_t \Phi Q_t, U^T_{t+1} \Phi Q_t) \geq (U^T_t \Phi Q_t, U^T_{t+1} \Phi Q_t)\) holds for any \(t\).

Proposition 2 (Monotonicity of \(U\)-update)

The objective value cannot decrease through the \(U\)-update step (13), and \((U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t) \geq (U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t)\) holds.

Lemma 3 In each iteration \(t\), \((U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t) \geq (U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t)\) holds.

Proposition 4 (Monotonicity of \(Q\)-update)

The objective value cannot decrease through the \(Q\)-update (15), and \((U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t) \geq (U^T_{t+1} \Phi Q_t, U^T_{t+1} \Phi Q_t)\) holds.

By combining these properties, and exploiting that \(U\) and \(Q\) are in compact sets, we obtain the following result:

Theorem 5 (Convergence)

The sequence \((f(U_t, Q_t))_{t=1,2,...}\) is monotonically increasing and convergent. Algorithm 1 terminates in finite time.

4.3.2 Complexity Analysis

The steps in the ISOMuSH algorithm comprises matrix multiplications and projections onto the sets \(\mathcal{P}\) and \(\mathcal{O}\). In the following, we break down the complexity of each step:

Multiplications in \(U\)-update: The term \(\Phi Q Q^T \Phi^T U\) can be computed as \(AB\) for \(A = \Phi Q\) and \(B = A^T U\). Computing \(A \in \mathbb{R}^{m \times b}\) has complexity \(O(b^2 m)\) (\(\Phi\) is a block-diagonal matrix). Computing \(B = A^T U \in \mathbb{R}^{b \times d}\) has complexity \(O(bdk)\) (\(U\) is a sparse matrix with at most \(k\) nonzero elements per column). Finally, computing \(AB \in \mathbb{R}^{m \times d}\) has complexity \(O(bdm)\). This results in an complexity of \(O(bm \cdot \max(d, b))\) for the \(U\)-step matrix multiplication.

Multiplications in \(Q\)-update: The term \(\Phi^T U U^T \Phi Q\) can be computed as \(A^T D\) for \(A = U^T \Phi\) and \(D = U^T \Phi\). Computing \(A \in \mathbb{R}^{d \times kb}\) has complexity \(O(bdk)\) (\(U\) is a sparse matrix with at most \(k\) nonzero elements per column, and \(\Phi\) is a block-diagonal matrix). Computing \(D = C^T Q \in \mathbb{R}^{d \times kb}\) has complexity \(O(b^2 dk)\). Computing \(C^T D \in \mathbb{R}^{kb \times b}\) has complexity \(O(b^2 dk)\). This results in an complexity of \(O(b^2 dk)\) for the \(Q\)-step matrix multiplication.

Projection onto \(\mathcal{P}\): the projection onto \(\mathcal{P}\) is computed by \(k\) linear assignment problems of size \(m_i \times d\). The auction algorithm has an average time complexity of \(O(d^2 \log(d))\), so that the overall projection has \(O(kd^2 \log(d))\).

Projection onto \(\mathcal{O}\): the projection onto \(\mathcal{O}\) is computed by solving \(k\) independent projections onto \(O_b\). Using SVD, this amounts to a complexity of \(O(b^3)\).

5. Experiments

We show the effectiveness of our method on several datasets and compare against state-of-the-art approaches.

Error measure. We evaluate the accuracy of correspondences using the Princeton benchmark protocol [34]. Given the ground-truth correspondences \((x_i, x_j)\) for each \(x_i \in X_t\), the error of the calculated match \((x_i, x_j)\) is given by the normalised geodesic distance between \(x_j\) and \(x_j^*\)

\[
e(x_i) = \frac{\text{dist}_{geo}(x_j, x_j^*)}{\text{diam}(X_j)},
\]

where \(\text{diam}(\cdot)\) denotes the shape diameter. We plot the accumulated errors smaller than a certain relative error, which is known as percentage of correct keypoints (PCK) curve. The perfect solution results a constant error at 100\%, which amounts to an area under the curve (AUC) of 1.

Cycle consistency. We quantify the cycle consistency of the methods in terms of the cycle error, which is the proportion of the number of cycle-consistency violations, divided by the total number of cycles. Without loss of generality we consider only triplet-cycles, see (2).

Methods. We compare our method against several recent state-of-the-art methods, including the pairwise matching approach ZOOMOUT [47], the two-stage approach ZOOMOUT+SYNC that performs synchronisation to achieve cycle consistency in the results produced by ZOOMOUT, as well as the multi-matching methods HiPPI [8] and CONSISTENTZOOMOUT [31]. Both HiPPI and CONSISTENTZOOMOUT utilise only a single representation in isolation, a point-wise and functional map representation, respectively. In contrast, ISOMuSH leverages both simultaneously, and we experimentally show that this is more robust and accurate.

Setup. We use results produced by ZOOMOUT to initialise all other methods. ZOOMOUT itself is initialised by the functional map solution [51] \(\min_{C \in \mathbb{R}^{kb \times b}} \|FC - G\|_2^2\).
shows that and Tab. are close, the AUC in and Tab. 3 section we also report results of the initialisation methods competitors on this dataset, see Fig. 5.1. Comparisons to State-of-the-Art Methods method shows state-of-the-art results and surpasses all competitors on this dataset, see Fig. 3 and Tab. 2. While the PCK curves between ours, ZoomOut+Sync and HiPPI in Fig. 3 are close, the AUC in Tab. 2 shows that our performance is still superior by a small margin. Qualitative results can be found in the supplementary material. SCAPE dataset. The SCAPE dataset [1] contains 72 poses of the same person, of which we choose 15 randomly and downsample them to 2,000 faces. Our method shows state-of-the-art results on this dataset, see Fig. 3 and Tab. 2. Exemplary matchings of all methods can be found in Fig. 5. 5.2. Multi-Matching of Partial Shapes We demonstrate that our method applies to the difficult setting of matching partial shapes. As a proof-of-concept, we created a partial dataset by removing parts of shapes from the TOSCA dataset. Most partial matching pipelines include the full reference shape to resolve some of the complexity. Although our optimisation does not need any information about the complete geometry, we use a partiality-adjusted version of ZoomOut to obtain the shape-to-universe initialisation for IsoMush. In this case, the universe has the dimension of the full shape. Our method finds the correct correspondence among the partial shapes, while being cycle-consistent, see Fig. 1. Partial functional maps are rectangular and low-rank [58], and this experiments shows that our method can handle this more general case. See the supplementary material for details.

6. Discussion & Future Work Deep learning. It was shown that deep learning is an extremely powerful approach for extracting shape correspondences [40, 26, 59, 25]. However, the focus of this work is on establishing a fundamental optimisation problem for-
mulation for cycle-consistent isometric multi-shape matching. As such, this work does not focus on learning methods per-se, but we believe that it has a strong potential to spark further work in this direction. In particular, our isometric multi-matching formulation can be integrated into an end-to-end learning framework via differentiable programming techniques [48]. Moreover in machine learning, an entire shape collection is typically used for training, so that our multi-matching setting is conceptually better-suited compared to the traditionally used pairwise matching methods.

Convergence. We have proven that the IsoMUSH algorithm is convergent in the objective \(f(\cdot, \cdot) \). However, we did not establish convergence of the variables \(U \) and \(Q \). In this context, we note that there are equivalence classes of \(U \) and \(Q \) that lead to the same objective value. To be more specific, for any (full) \(d \times d \) permutation matrix \(P \), and any \(C \in \mathbb{O}_b \) we have \((UP) \in \mathbb{P}, (QC) \in \mathbb{O}, \) and \(f(U, Q) = f(UP, QC) \). The latter can be verified by plugging \(UP \) and \(QC \) into \(f \) while making use of the orthogonality of \(P \) and \(C \). Although the IsoMUSH algorithm is convergent, and we have empirically verified that it improves upon the state-of-the-art for the isometric multi-shape matching problem, the investigation of stronger convergence results is an interesting direction for future work.

7. Conclusion

We presented a novel formulation for the isometric multi-shape matching problem. Our main idea is to simultaneously solve for shape-to-universe matchings and shape-to-universe functional maps. By doing so, we generalise the popular functional map framework to multi-matching, while guaranteeing cycle consistency, both for the shape-to-universe matchings, as well as for the shape-to-universe functional maps. This contrasts the recent CONS\(\text{I\textsc{istentZOOMOut}} \) [31] method, which does not obtain cycle-consistent multi-matching. Our algorithm is efficient, straightforward to implement, and monotonically increases the objective function. Experimentally we have demonstrated that our method outperforms recent state-of-the-art techniques in terms of matching quality, while producing cycle-consistent results and being efficient.

Acknowledgements. The authors gracefully acknowledge the support from the ERC Advanced Grant SIMULACRON, the Munich Center for Machine Learning and the Swedish Research Council (2019-04769).
References

[29] Qi-Xing Huang and Leonidas Guibas. Consistent shape maps via semidefinite programming. In Symposium on Geometry Processing, 2013. 3, 4
[60] Yusuf Sahillioglu. Recent advances in shape correspondence. The Visual Computer, 2019. 2

[62] Michele Schiavinatto and Andrea Torsello. Synchronization over the birkhoff polytope for multi-graph matching. In International Workshop on Graph-Based Representations in Pattern Recognition, pages 266–275, 2017. 3

[80] Feng Zhou and Fernando De la Torre. Factorized Graph Matching. 38(9):1774–1789, 2016. 2
