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Abstract

Channel pruning is a class of powerful methods for

model compression. When pruning a neural network, it’s

ideal to obtain a sub-network with higher accuracy. How-

ever, a sub-network does not necessarily have high accu-

racy with low classification loss (loss-metric mismatch).

In the paper, we first consider the loss-metric mismatch

problem for pruning and propose a novel channel pruning

method for Convolutional Neural Networks (CNNs) by di-

rectly maximizing the performance (i.e., accuracy) of sub-

networks. Specifically, we train a stand-alone neural net-

work to predict sub-networks’ performance and then max-

imize the output of the network as a proxy of accuracy to

guide pruning. Training such a performance prediction net-

work efficiently is not an easy task, and it may potentially

suffer from the problem of catastrophic forgetting and the

imbalance distribution of sub-networks. To deal with this

challenge, we introduce a corresponding episodic memory

to update and collect sub-networks during the pruning pro-

cess. In the experiment section, we further demonstrate

that the gradients from the performance prediction network

and the classification loss have different directions. Exten-

sive experimental results show that the proposed method

can achieve state-of-the-art performance with ResNet, Mo-

bileNetV2, and ShuffleNetV2+ on ImageNet and CIFAR-10.

1. Introduction

Convolutional Neural Networks (CNNs) have demon-

strated great successes in many computer vision and ma-

chine learning applications, like classification [32], de-

tection [47, 48], action recognition [51] and self-driving

cars [2]. To achieve better performances on these tasks, the

*This work was partially supported by NSF IIS 1845666, 1852606,

1838627, 1837956, 1956002, 2040588.

design of CNNs becomes more and more complex in terms

of depth and width [52, 13, 21] since AlexNet [32]. How-

ever, the huge consumption of computing power and mem-

ory footprint prevents these complex CNNs to be deployed

on embedded or mobile devices. To overcome this problem,

model compression emerges as a promising solution to get

a compact sub-network from the original model. Popular

model compression techniques include weight pruning [12],

quantization [3], structural pruning [34] and so on.

Channel pruning, which belongs to structural pruning,

effectively reduces FLOPs and memory footprint from the

original model without any post-processing steps. On the

contrary, weight pruning or quantization usually requires

specifically designed software or hardware to achieve ac-

tual acceleration. As a result, we aim to develop a novel

model compression method for channel pruning.

In the context of channel pruning, a sub-network with

high accuracy is believed as a good candidate for the final

solution [16, 37]. To find such a sub-network, many existing

channel pruning approaches [28, 57, 58] use the classifica-

tion loss as guidance. However, the classification loss is not

always a good approximation to the accuracy, which is also

termed as loss-metric mismatch [20]. To tackle this prob-

lem, we train a performance prediction network to predict

the accuracy of sub-networks. We then guide the search of

sub-networks by directly maximizing the accuracy. In ad-

dition, we do not abandon the classification loss (usually,

cross-entropy loss), and both classification loss and per-

formance maximization are considered in the final pruning

problem defined in Eq. 8, which is inspired by the idea of

multi-objective learning. The rationale behind this is that

both the classification loss and performance maximization

provide useful but different information for pruning, and

merging them will lead to better results.

The training of the performance prediction network has

several difficulties. How to collect samples for training this

network is not clear. Random sampling often produces triv-
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ial sub-networks (performance near-random guessing). To

get meaningful sub-networks, we start from the original net-

work and prune it to the given budget using a differentiable

pruning approach. We can directly use the sub-network and

mini-batch accuracy as a sample to train the performance

prediction network during this pruning process. However,

only using the latest sub-network will lead to catastrophic

forgetting [10], where the performance prediction network

may forget the information about previous sub-networks.

To tackle this issue, we use an episodic memory module

to collect samples along the pruning trajectory. Directly us-

ing these samples is problematic since the accuracy distri-

bution of these samples is far from uniform. This problem

is solved by re-sampling these samples. With above tech-

niques, the performance prediction network is incremen-

tally trained during the pruning process. After the perfor-

mance prediction network visits enough samples and is con-

fident enough, it is then put into the pruning process to pro-

vide additional supervision for channel pruning. Since the

training of the performance prediction network and pruning

proceed simultaneously, there is no extra cost.

Our main contributions can be summarized as follows:

1) We propose a novel channel pruning method for CNNs

by directly maximizing the accuracy of sub-networks.

To the best of our knowledge, this is the first paper to

consider the problem of loss-metric mismatch for net-

work pruning.

2) We train a performance prediction network, and use it

as a proxy of accuracy metric for sub-networks. Our

method further leverages the benefits from both per-

formance maximization and classification loss to guide

search of sub-networks.

3) Extensive experimental results show that our method

can achieve the state-of-the-art performance with

ResNet, MobileNetV2, and ShuffleNetV2+ on Ima-

geNet and CIFAR-10.

2. Related Works

2.1. Model Compression

Weight pruning. Weight pruning tries to eliminate

weights from the original model. Early works either add

sparsity induced penalty on the weights [54] or remove

weights based on the sensitivity [33, 27]. A more recent

weight pruning work [12] prunes weights according to their

L2 or L1 norms. Another work by Dong et al. [7] ex-

plored weight pruning based on second derivative informa-

tion. Other weight pruning methods include data-driven

pruning [19], variational dropout [41], utilizing determinan-

tal point process [40] and so on. Different from the above

works, the lottery ticket hypothesis [8] argues that there ex-

ist good sub-networks within a randomly initialized large

network. Follow up works [9, 43] show that this claim can

be extended to different architectures and datasets. While

weight pruning achieves many good results when compress-

ing a neural network, the saving in terms of computational

cost is not optimal since the sparse weight matrices cannot

be efficiently utilized by modern hardware.

Structural pruning. Structural pruning aims to remove

redundant structures such as filters, channels, or layers. Un-

like weight pruning, structural pruning can reduce infer-

ence time without specialized hardware or software sup-

port. Given a pre-trained model, filter pruning [34] removes

filters based on their L1 norms. Soft filter pruning [15]

keeps all filters during training but resets least important

ones (smaller norm). These two methods use group norms

to indicate the importance of structures. Sparse structure se-

lection [22] adds learnable scaling factors to prune neurons

or layers with the sparsity regularization. Discrimination-

aware pruning [58] considers both classification loss and

norms to guide the pruning of the model. Gate decora-

tor [57] inserts learnable factors for each channel and then

uses Taylor expansion of the loss to estimate the global im-

portance. Operation-aware pruning [26] makes a joint con-

sideration of batchnorm and ReLU operations and learns

differentiable masks for individual channels. These meth-

ods all use classification loss to help the structural prun-

ing. Automatic model compression (AMC) [16] adapts

reinforcement learning for structural pruning. With rein-

forcement learning, model accuracy can be directly used in

reward function to guide the pruning process. Metaprun-

ing [37] utilizes a hypernet to predict the weights of sub-

networks, and it then applies the evolutionary search for

pruning. With an evolutionary search, accuracy is directly

used as guidance.

Differentiable pruning approaches [26, 57, 28, 11] are

more efficient and easy to train compared to reinforcement

learning or evolutionary search. However, it can not use the

accuracy to guide pruning due to the accuracy metric is not

differentiable. The mismatch of accuracy and classification

loss may lead to inferior performance. To leverage the ben-

efits from both sides, we aim to maximize the accuracy of

sub-networks within a differentiable pruning framework.

2.2. Performance Prediction

To our best knowledge, predicting the performance of

a neural network is not well studied within the context of

model compression. There exist several works to predict

the accuracy of a neural network based on some different

conditions. A recent work [53] tries to connect the model

accuracy with the weights of the model. With simple statis-

tics of weights, accuracy predictors can correctly rank neu-

ral networks by their performance. In [25], they use margin

distributions of multiple layers to predict the generalization

gaps of neural networks. A more related work [23] trains

an accuracy predictor for neural architecture search (NAS)
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Figure 1: The flowchart of performance maximization process. A sub-network is first sampled from differentiable gates. The

performance prediction network is then used as a proxy to maximize the accuracy of sub-networks.

to include both architecture information and characteriza-

tion of the dataset-difficulty. Training an accuracy predictor

for NAS is quite time-consuming, and every network has

to be trained from scratch to provide its accuracy. We do

not want to spend so much computational cost for acquir-

ing these samples. To save costs and get meaningful sub-

networks, we prefer to collect sub-networks in-place during

the pruning process.

3. Network Pruning via Performance Maxi-

mization

3.1. Notations

To better describe our approach, necessary notations are

introduced first. In a CNN, the feature map of i-th layer can

be represented by Fi ∈ RCi×Wi×Hi , i = 1, . . . , L, where

Ci is the number of channels, Wi and Hi are height and

width of the current feature map, L is the number of lay-

ers. The mini-batch dimension of feature maps is ignored

to simplify notations. 1(·) is the indicator function. ⊙ is the

element-wise product.

3.2. Generate Sub­networks

As we discussed previously, directly sampling sub-

networks often produces trivial results, especially when

pruning rate is high. To train a performance prediction net-

work for channel pruning, we do not need all sub-networks.

Suppose the FLOPs of the original model is Ttotal and the

pruning rate is p, we are interested in sub-networks with

FLOPs from pTtotal to Ttotal. Sub-networks with FLOPs

lower than pTtotal are discarded since they do not satisfy

FLOPs constraint. As a result, we prefer to generate mean-

ingful sub-networks with certain FLOPs as training samples

for the performance prediction network.

We start to generate these sub-networks by pruning the

original model to the target FLOPs pTtotal. To achieve

this, we first introduce the basic differentiable pruning algo-

rithm. We use differentiable gates to characterize a channel.

For ith layer, gates are defined as:

oi = 1/(1 + e−(wi+s)/τ)), (1)

where 1/(1 + e−x) is a sigmoid function, oi ∈ RCi and

oi ∈ [0, 1], wi ∈ RCi are learnable parameters of this gate,

s is sampled from Gumbel distribution: s ∈ Gumbel(0, 1),
and τ is a hyperparameter to control sharpness. oi here is

continuous, to precisely generate sub-networks, we further

round it to 0 or 1:

ai = 1oi>
1
2
(oi), (2)

where ai ∈ {0, 1}Ci . Since the indicator function 1(·) is

not differentiable, we use straight-through estimator [1] to

calculate gradients. The differentiable gate in Eq. 1 and

Eq. 2 uses Gumbel-Solftmax [24] technique to approximate

Bernoulli distribution. Although there are alternative tech-

niques to approximate Bernoulli distribution, we found that

the difference is not significant.

To prune channels of a CNN, we apply gates on the fea-

ture map Fi:

F̂i = ai ⊙Fi, (3)

where ai is expanded to the same size of Fi. The optimiza-

tion of the pruning process is given by:

min
w

L(f(x;a,Θ), y) +R(T (a), pTtotal), (4)

where w contains all learnable weights of gates defined

in Eq. (1). Here a is a vector representing the structure

of a CNN: a = cat(a1, · · · , ai, · · · , aL), i = 1, · · · , L,

T (a) is the FLOPs defined by the sub-network structure

a, x, y are input images and labels, f(·;a,Θ) here is a

CNN parameterized by Θ, and its structure is decided by

a. R(T (a), pTtotal) = log(max(T (a), pTtotal)/pTtotal) is the

regularization term to push sub-networks to reach the target

FLOPs.
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During the optimization of Eq. 4, many sub-networks

with different structures a are generated. If accuracy q is

calculated based on a given a mini-batch, we can have a pair

of sample (a, q) representing a sub-network and its accu-

racy. Although the mini-batch accuracy may not be a good

proxy of the true accuracy, we have a starting point at least.

3.3. Performance Prediction Network

Once we have (a, q), we can train a neural network

to predict the performance given the structure of a sub-

network. We firstly define the performance prediction net-

work: qpred = PN(a). PN(·) is the proposed performance

prediction network. We use the sigmoid function as the out-

put activation, and qpred is in the range between 0 and 1.

The performance prediction network is composed of

fully-connected layers and GRU [5]; the detailed settings

are listed in the supplementary materials. In short, fully-

connected layers transform each layer’s structure vector into

a compact representation, and GRU is used to connect dif-

ferent layers. We use GRU since ai−1 and ai have im-

plicit dependence. By doing so, the performance prediction

network has the potential to capture complex interactions

within a sub-network.

The optimization of PN is a regression problem, we use

mean absolute error loss (MAE) to optimize it:

min
wP

LP = |q − PN(a)|, (5)

where wP is the weights of the performance prediction net-

work. The target q is also normalized within [0, 1] to facili-

tate the training.

3.4. Episodic Memory Module

The early version of this work directly utilizes the sub-

network from the current iteration to train the performance

prediction network. However, we found that it only de-

teriorates the pruning process. After carefully examining

the results, the performance prediction network can hardly

predict early sub-networks. This phenomena is known as

catastrophic forgetting [10]. To overcome this issue, we

need to periodically replay previous sub-networks. We

further propose an episodic memory module to remember

early sub-networks. The episodic memory is defined as:

EM = (A,Q), where A ∈ Rm×K and Q ∈ RK , m is the

length of vector a and K is the current size of the episodic

memory. When adding one sub-network to the episodic

memory, K is increased by 1, and K is smaller than Kmax.

As we mentioned before, mini-batch accuracy is not a

good estimation of the accuracy. On the other hand, the

computational cost is too expensive if we use the whole

training dataset to calculate the accuracy. To leverage ef-

ficiency and precision, we collect sub-networks and corre-

sponding mini-batch accuracy for every c iterations to con-

Figure 2: Empirical distribution of the accuracy from sub-

networks collected during the pruning process. The results

are based on ResNet-56 on CIFAR-10.

struct an enhanced representation of sub-networks. The en-

hanced representation of sub-networks is:

ā = 1
a> 1

2
(
1

c

c
∑

i=1

ai), q̄ =
1

c

c
∑

i=1

qi. (6)

Within certain iterations, sub-networks produced by Eq. 1

and Eq. 2 are similar, due to the nature of differentiable

pruning. Thus, using (ā, q̄) as a sample is reasonable. If

c is too large, then above arguments are not valid, and the

enhanced representation is useless. We do not calculate gra-

dient when collecting sub-networks.

Suppose we already have K sub-networks in the episodic

memory module, then the EM is updated by:







Ai = ā, i = argmin
i

|Qi − q̄| if K = Kmax,

AK+1 = ā otherwise.
(7)

ā is the sub-network defined in Eq. 6, the update of Q
is done in a similar way. When K < Kmax, the up-

date of episodic memory is a simple insert process. When

K = Kmax, we replace the item in the episodic memory

with the closest accuracy to the current sample. In fact,

most of sub-networks during the pruning process have sim-

ilar performance after the target FLOPs is met. As a result,

we use Kmax to encourage the diversity of sub-networks.

3.5. Imbalanced Accuracy Distribution

In Fig. 2, we plot the empirical distribution of the accu-

racy from sub-networks during the pruning process. In the

figure, the accuracy is concentrated around 84. To prevent

the performance prediction network from providing trivial

solutions and making it converge faster, we re-sample the

sub-networks according to their accuracy. All sub-networks

are split into N groups according to Q with equal margin
1

N−1 (max(Q) − min(Q)). Then, we count sub-networks

in each group and re-sample them according to the inverse
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Algorithm 1: Network Pruning via Performance

Maximization
Input: D, p, λ, E, f , Kmax, c, bP.

Initialization: initialize w; randomly initialize wP for

PN. initialize K = 0
for e := 1 to E do

shuffle(D)

for a mini-batch (x, y) in D do
1. generate a structure vector a from Eq. 1 and

Eq. 2 and its accuracy q

2. update the sub-network according to Eq. 6.

3. update EM with Eq. 7 and K every c

iterations.

if K > bP then
4. update wp with Eq. 5 with a mini-batch

sampled from EM.

end

5. calculate gradients for w by backpropagation

through Eq. 8.

6. modify gradients according to Eq. 9.

7. update w with ADAM.

end

end

return w.

of their count. This is equivalent to create N pseudo-classes

and conduct re-sampling.

3.6. Performance Maximization

After having a relative confident performance predic-

tion network, we start to maximize the performance for

searching better sub-networks. The performance of a sub-

network can be represented as PN(a), thus we can maxi-

mize PN(a) as a proxy of accuracy. max
w

PN(a) is equiv-

alent to min
w

1
PN(a) . To stabilize the training, we optimize

the follwing problem instead: min
w

log( 1
PN(a) ). The overall

optimization problem is shown in the following equation:

min
w

J (w) =L(f(x;a,Θ), y) + γ(K,LP) · log(
1

PN(a)
)

+ λR(T (a), pTtotal), (8)

where γ(K,LP) is a function to reflect the confidence of the

performance prediction network and it is used to automati-

cally control the magnitude of log( 1
PN(a) ), λ is used to con-

trol the magnitude of the regularization, and the other terms

are introduced in Eq. 4. γ(K,LP) is defined as: γ(K,LP) =
1

K≥
Kmax

4
(K) · (1− Lp)

2, and the range of γ(K,LP) is [0, 1].

Usually, lower LP indicates higher confidence of PN(·).
However, the training of PN is an incremental learning task,

LP maybe unreliable until PN visits enough samples.

Although there exists loss-metric mismatch, the informa-

tion from the loss function and performance maximization

still has some overlaps. Since we already use the classifica-

tion loss, it’s desirable to acquire unique information from

performance maximization. To achieve this, we make the

gradients orthogonal to each other. Let giL = ∂L
∂wi

repre-

sents the gradient from the classification loss of ith layer,

and giP =
∂ log( 1

PN(a)
)

∂wi

be the gradient from performance

maximization. The modified gradients from these two terms

are:

gi = giL + ĝiP, (9)

where giP is decomposed to two parts: giP = ĝiP + ḡiP, ĝiP ⊥
giL, and ḡiP has the same direction with giL.

The overall algorithm is shown in Alg. 1. The process of

performance maximization is shown in Fig. 1. The expla-

nation of inputs is listed here: D: dataset, p: pruning rate

of FLOPs, λ is introduced in Eq. 8, E: number of trainig

epochs, f : the pre-trained CNN, Kmax and c: hyperparme-

ters for episodic memory, and bP: mini-batch size when

training PN. As shown in Alg. 1, we perform channel prun-

ing and training of PN simultaneously with little extra com-

putational cost. The calculation of gP and updates of wP

is much cheaper compared to gL. The problem in Eq. 8 si-

multaneously minimizes classification loss and maximizes

accuracy of sub-networks, thus better aligns loss and accu-

racy. Given the complexity of the problem, solely using the

classification loss or performance maximization may lead

to sub-optimal results. Moreover, the information from two

perspectives is different, and we can achieve a better result

by merging them.

The proposed PN shares certain properties of the value

function [30]. In the context of reinforcement learning, the

value function is trained along the way of exploring the

search space. The PN is also trained when searching sub-

networks. However there exists some obvious differences.

A value function is generally used in a Markov Decision

Process, aiming to reduce the variance of gradient-based

policy optimization methods but giving no direct guidance.

While our method considers a stochastic optimization prob-

lem, the PN directly guides the search of sub-networks.

4. Experiments

4.1. Implementation Details

In the experiment section, our method is dubbed as

NPPM (Network Pruning via Performance Maxmization).

We use CIFAR-10 [31] and ImageNet [6] to verify the per-

formance of our method, as they are used in many model

compression works.

On CIFAR-10, we evaluate our method on ResNet-56

and MobileNetV2. For ImageNet, ResNet-34/50/101 [13],

MobileNetV2 [50] and ShuffleNetV2+ [39, 49] are used

for evaluation. ShuffleNetV2+ is an improved version of

ShuffleNetV2 which has similar performance with Mo-

bileNetV3 [18]. These models are generally harder to prune
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Method Architecture Baseline Acc Pruned Acc ∆-Acc ↓ FLOPs

AMC [16]

ResNet-56

92.80% 91.90% -0.90% 50.0%

SFP [15] 93.59% 93.35% -0.24% 52.6%

DCP [58] 93.80% 93.81% +0.01% 47.0%

CCP [46] 93.50% 93.42% -0.08% 52.6%

HRank [36] 93.26% 92.17% -0.09% 50.0%

Pruning Criterion [14] 93.59% 93.24% -0.35% 52.6%

NPPM(ours) 93.04% 93.40% +0.36% 50.0%

WM [58]

MobileNetV2

94.47% 94.17% -0.30% 26.0%

DCP [58] 94.47% 94.69% +0.22% 26.0%

NPPM(ours) 94.23% 94.75% +0.52% 47.0%

Table 1: Comparison on the accuracy changes (∆-Acc) and reduction in FLOPs of various channel pruning algorithms on

CIFAR-10. +/- indicates increase/decrease compared to baselines.

compared with AlexNet or VGG. We use p to decide how

much FLOPs should be removed, the detailed choices of p
are listed in supplementary materials. We choose λ = 2
used in Eq. 8 for all experiments.

We train ResNet-56 and MobileNetV2 on CIFAR-10

from scratch following pytorch examples. After pruning,

we finetune the model for 200 epochs using SGD with a

start learning rate 0.01, weight decay 0.0001, and momen-

tum 0.9. The learning rate is decayed to 0.01 and 0.001 at

epoch 100 and 150. One benefit of our method is that we

can directly prune pre-trained models. Thus, we use pre-

trained models released from pytorch or their official imple-

mentation on ImageNet. After pruning, we finetune ResNet

models for 100 epochs using SGD with a start learning rate

0.01, and the learning rate is multiplied by 0.1 at epoch 30,

60 and 90. For MobileNetV2 on ImageNet, we use cosine

annealing scheduler with a start learning rate 0.01 and also

finetune for 100 epochs following their original paper [50].

For ShuffleNetV2+, we decay the learning rate at every step

and finetune for 100 epochs with a start learning rate 0.1
following the original settings [39, 49] too.

When training w and wP, we use ADAM [29] optimizer

with a constant learning rate 0.001 and train them for 200

epochs. To produce a near all-one vector for a, w is initial-

ized to 3. The training is conducted on a subset of the whole

dataset. We use 2,500 and 10,000 samples for CIFAR-10

and ImageNet separately. A stand-alone validation set is

not necessary; subsets come from the training set directly.

We set Kmax and c as 500 and 5 on both datasets. The

mini-batch size is 64, 128, and 512 for the performance

prediction network, CIFAR-10, and ImageNet. All codes

are implemented with pytorch [45]. The experiments are

conducted on a machine with 4 Nvidia Tesla P40 GPUs.

4.2. CIFAR­10 Results

In Tab. 1, we present the results of ResNet-56 and Mo-

bileNetV2 on CIFAR-10. Our method has the best ∆-Acc

with ResNet-56. After pruning, our method improves the

baseline performance by 0.36%. Our method is better than

(a) (b)

Figure 3: (a): Test accuracy of sub-networks given different

pruning settings. (b): Test accuracy of sub-networks given

different choice of λ. Both experiments are on CIFAR-10

with ResNet-56

the second best DCP by 0.35% in terms of ∆-Acc with sim-

ilar FLOPs (ours 50% vs. DCP 47%). The advantage of our

method is quite obvious when comparing with other meth-

ods. HRank and Pruning Criterion are two recent meth-

ods, and our method can achieve better accuracy and ∆-

Acc than these two methods. For MobileNetV2 on CIFAR-

10, our method can prune 47% of FLOPs, and the accuracy

is improved by 0.52%. Our method prunes most FLOPs

and achieves the best accuracy. Compared with DCP, our

method prunes 21% more FLOPs and still achieves better

accuracy. The results of CIFAR-10 show that performance

maximization can improve network pruning.

4.3. ImageNet Results

We present all results for ImageNet in Tab. 2. The

FLOPs of the original models are 3.68G, 4.12G and 7.85G

for ResNet-34, ResNet-50 and ResNet-101. The FLOPs

of MobileNetV2 and ShuffleNetV2+(Small) are 314M and

156M. Compared to CIFAR-10, ImageNet is more reliable

when evaluating model compression methods.

ResNet-34: With ResNet-34, our method can achieve the

best top-1 accuracy by pruning 44% of FLOPs. Our method

largely outperforms FPGM and SFP when pruning simi-

lar FLOPs (44.0% vs. 41.1%). Specifically, the pruned
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Method Architecture Pruned Top-1 Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs FLOPs

Pruning Filters [34]

ResNet-34

72.17% - -1.06% - 24.8% 2.77G

SFP [15] 71.84% 89.70% -2.09% -1.92% 41.1% 2.17G

IE [42] 72.83% - -0.48% - 24.2% 2.79G

FPGM [17] 72.63% 91.08% -1.29% -0.54% 41.1% 2.16G

NPPM(ours) 73.01% 91.30% -0.29% -0.12% 44.0% 2.06G

DCP [58]

ResNet-50

74.95% 92.32% -1.06% -0.61% 55.6% 1.83G

CCP [46] 75.21% 92.42% -0.94% -0.45% 54.1% 1.89G

MetaPruning [37] 75.40% - -1.20% - 51.2% 2.01G

GBN [57] 75.18% 92.41% -0.67% -0.26% 55.1% 1.85G

HRank [36] 74.98% 92.33% -1.17% -0.54% 43.8% 2.32G

Hinge [35] 74.70% - -1.40% - 54.4% 1,88G

DSA [44] 74.69% 92.45% -1.33% -0.80% 50.0% 2.06G

SCP [26] 75.27% 92.30% -0.62% -0.68% 54.3% 1.88G

LeGR [4] 75.70% 92.70% -0.40% -0.20% 42.0% 2.39G

NPPM(ours) 75.96% 92.75% -0.19% -0.12% 56.0% 1.81G

Rethinking [55]

ResNet-101

77.37% - -2.10% - 47.0% 4.16G

IE [42] 77.35% - -0.02% - 39.8% 4.72G

FPGM [17] 77.32% 93.56% -0.05% 0.00% 41.1% 4.80G

NPPM(ours) 77.83% 93.77% +0.46% +0.21% 56.0% 3.46G

MobileNetV2 0.75 [50]

MobileNetV2

69.80% 89.60% -2.00% -1.40% 30.0% 220M

AMC [16] 70.80% - -1.00% - 30.0% 220M

MetaPruning [37] 71.20% - -0.80% - 30.7% 217M

LeGR [4] 71.40% - -0.40% - 30.0% 220M

Greedy Pruning [56] 71.60% - -0.40% - 30.0% 220M

NPPM(ours) 72.02% 90.26% +0.02% -0.12% 29.7% 221M

Uniform

ShuffleNetV2+(Small)

71.92% 90.61% -2.18% -1.09% 23.1% 120M

DG 72.62% 91.00% -1.48% -0.70% 23.8% 119M

NPPM(ours) 73.06% 91.10% -1.04% -0.60% 25.0% 117M

Table 2: Comparison on the Top-1/Top-5 accuracy changes (∆ Top-1/Top-5) and reduction in FLOPs of various channel

pruning algorithms on ImageNet. +/- indicates increase/decrease compared to baselines.

Setting Architecture Pruned Top-1 Pruned Top-5 ∆ Top-1 ∆ Top-5

Finetune
ShuffleNetV2+(Small)

73.06% 91.10% -1.04% -0.60%

Scratch 72.32% 90.86% -1.78% -0.84%

Finetune
MobileNetV2

72.02% 90.26% +0.02% -0.12%

Scratch 71.14% 89.71% -0.86% -0.67%

Table 3: Difference between finetuning and training from

scratch for our method.

top-1 accuracy is 1.17% and 0.38% higher than SFP and

FPGM separately, and similar observations hold for other

measurements, like ∆ Top-1 accuracy. IE and Pruning Fil-

ters prune around 24% FLOPs. Usually, pruned Top-1 accu-

racy is higher with a smaller amount of pruned FLOPs. Our

method can prune 20% more FLOPs and still achieves bet-

ter performance than IE. In short, our method prunes more

FLOPs with less performance drop on ResNet-34.

ResNet-50: ResNet-50 is a very popular model when evalu-

ating pruning algorithms. Thus, more comparison methods

are listed. Our approach can prune 56.0% of FLOPs with

marginally performance loss on top-1 and top-5 accuracy

(0.19% and 0.12% separately). LeGR can achieve the sec-

ond best result on pruned top-1 accuracy, and our method

prunes 14% more FLOPs with less accuracy drop (0.26%
and 0.21% higher on pruned Top-1 acc and ∆ Top-1 acc).

GBN and SCP have similar performance with ∆ Top-1 ac-

curacy, and their performance is higher than other compar-

ison methods with similar FLOPs. Our approach can out-

perform GBN and SCP by at least 0.43% with ∆ Top-1 ac-

curacy. Overall speaking, pruning methods guided by the

classification loss [57, 26, 58] have better results than rest

approaches. On top of the classification loss, our method

utilizes information from performance maximization. The

superb performance on ResNet-50 again demonstrates the

effectiveness of the proposed performance maximization.

ResNet-101: ResNet-101 is a parameter-heavy model, and

it is easier to prune compared to ResNet-34 and ResNet-

50. With the same pruning rates of ResNet-50 (remove

56% FLOPs), our method can achieve 77.83%/93.77%
Top-1/Top-5 accuracy, which is even higher than the orig-

inal model (+0.46%/ + 0.21% with ∆ Top-1/∆ Top-5).

IE and FPGM can prune around 40% of FLOPs with lit-

tle accuracy drops. Compared with these methods, our ap-

proach can prune 16% more FLOPs (around 1.3G FLOPs)

while achieving performance gain. Moreover, the FLOPs of

the pruned model from our method has fewer FLOPs than

the original ResNet-34 and ResNet-50 (pruned ResNet-101:

3.46G, ResNet-34/ResNet-50: 3.68G/4.12G.)

MobileNetV2: MobileNetV2 is a computationally efficient

model, which makes it harder to prune. All methods prune

around 30% of FLOPs. AMC, LeGR, and MetaPruning

have a clear advantage over the uniform baseline, but they

are worse than Greedy Pruning. Our method outperforms
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(a) ResNet-56 (b) ResNet-50 (c) MobileNetV2 (d) ShuffleNetV2+

(e) ResNet-56 (f) ResNet-50 (g) MobileNetV2 (h) ShuffleNetV2+

Figure 4: (a)∼(d): Gradient similarity between different losses. Shaded area shows standard deviation. (e)∼(h): Predicted

accuracy and actual accuracy for some sub-networks. ResNet-56 is evaluated on CIFAR-10 and rest models are on ImageNet.

Greedy Pruning by 0.42% with Top-1 accuracy.

ShuffleNetV2+: ShuffleNetV2+ is a highly efficient model

with a similar performance to MobileNetV3. On Shuf-

fleNetV2+, we compare our method against uniform prun-

ing and DG (differentiable gate in Eq. 4). DG can be seen

as a variant of our method without performance maximiza-

tion. Our method is better than uniform pruning by 1.14%
on Top-1 accuracy. By directly comparing our method

and DG, we can see that performance maximization helps

the search of sub-networks and results in 0.44% improve-

ments. The results on ShuffleNetV2+ and MobileNetV2

show that performance maximization improves the qual-

ity of sub-networks for both parameter-heavy models and

computation-efficient models.

4.4. Analysis and Discussion

To provide a deeper understanding of our method, we

plot the predictions from PN and the similarity between

layer-wise gradients from two losses: simi =
(gi

L)T (gi

P)

‖gi

L
‖‖gi

P
‖

in

Fig. 4. To plot predictions from PN, we sample 100 sub-

networks in EM and calculate the accuracy on the sub-

set. From Fig. 4 (e)∼(h), we can see that the predicted

performance closely matches the actual accuracy, which

demonstrates that the information from PN is trustworthy.

From the results of Fig. 4 (a)∼(d), it’s obvious that the

gradients from the classification loss and PN are different

(max(simi) < 0.55), the similarity becomes smaller when

the dataset becomes more complex. These results show that

the performance prediction network can provide different

and reliable information to help search for sub-networks.

Another interesting observation is that later layers often

have smaller gradient similarity, showing that they are more

sensitive to performance maximization.

In Fig 3 (a), we plot the results of different settings.

PM w/o GM represents using PM without gradient modi-

fication, and DG represents differentiable gate again. Ob-

viously, PM can achieve the best performance during the

search of sub-networks. λ does not have strong impacts on

the results, but if λ is too large, it may hinder the pruning

process.

There is an ongoing debate on whether finetuning is use-

ful when pruning neural networks [38]. Our results (Tab. 3)

show that finetuning is necessary to achieve ideal perfor-

mance on computation efficient models. The margin be-

tween finetuning and training from scratch is clear, demon-

strating that both sub-network architecture and pre-trained

weights are essential.

5. Conclusion

In this paper, we studied how to simultaneously achieve

low loss value and high accuracy when searching for sub-

networks. By using an episodic memory module and re-

sampling techniques, we are able to train a performance pre-

diction network in-place during pruning, which also saves

computational resources. By utilizing information from

the classification loss and performance maximization, our

method is able to find good sub-networks during pruning.

Extensive experiments on CIFAR-10 and ImageNet demon-

strate that our method achieves state-of-the-art results.
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Bautista, Shih-Yu Sun, Carlos Guestrin, and Joshua M.

Susskind. Addressing the loss-metric mismatch with adap-

tive loss alignment. In Proceedings of the 36th International

Conference on Machine Learning, ICML, 2019. 1

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017. 1

[22] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. In Proceedings of

the European conference on computer vision (ECCV), pages

304–320, 2018. 2

[23] Roxana Istrate, Florian Scheidegger, Giovanni Mariani,

Dimitrios Nikolopoulos, Constantine Bekas, and Adelmo

Cristiano Innocenza Malossi. Tapas: Train-less accuracy

predictor for architecture search. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages

3927–3934, 2019. 2

[24] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016. 3

[25] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy

Bengio. Predicting the generalization gap in deep networks

with margin distributions. In International Conference on

Learning Representations, 2019. 2

[26] Minsoo Kang and Bohyung Han. Operation-aware soft chan-

nel pruning using differentiable masks. International Con-

ference on Machine Learning, 2020. 2, 7

9278



[27] Ehud D Karnin. A simple procedure for pruning back-

propagation trained neural networks. IEEE transactions on

neural networks, 1(2):239–242, 1990. 2

[28] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck

Choe. Plug-in, trainable gate for streamlining arbitrary neu-

ral networks. In Proceedings of the AAAI Conference on Ar-

tificial Intelligence, 2020. 1, 2

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[30] Vijay R Konda and John N Tsitsiklis. Actor-critic algo-

rithms. In Advances in neural information processing sys-

tems, pages 1008–1014. Citeseer, 2000. 5

[31] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 5

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 1

[33] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 2

[34] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. ICLR,

2017. 1, 2, 7

[35] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,

and Radu Timofte. Group sparsity: The hinge between fil-

ter pruning and decomposition for network compression. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 8018–8027, 2020. 7

[36] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,

Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:

Filter pruning using high-rank feature map. The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. 6, 7

[37] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3296–3305, 2019. 1, 2, 7

[38] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

In International Conference on Learning Representations,

2019. 8

[39] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on

computer vision (ECCV), pages 116–131, 2018. 5, 6

[40] Zelda Mariet and Suvrit Sra. Diversity networks: neural

network compression using determinantal point processes.

arXiv preprint arXiv:1511.05077, 2015. 2

[41] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.

Variational dropout sparsifies deep neural networks. In Pro-

ceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 2498–2507. JMLR. org, 2017. 2

[42] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 11264–11272,

2019. 7

[43] Ari S Morcos, Haonan Yu, Michela Paganini, and Yuan-

dong Tian. One ticket to win them all: generalizing lottery

ticket initializations across datasets and optimizers. NeurIPS,

2019. 2

[44] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu

Wang, and Huazhong Yang. Dsa: More efficient budgeted

pruning via differentiable sparsity allocation. European Con-

ference on Computer Vision, 2020. 7

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems, pages

8024–8035, 2019. 6

[46] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou

Huang. Collaborative channel pruning for deep networks.

In International Conference on Machine Learning, pages

5113–5122, 2019. 6, 7

[47] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1

[49] Megvii Research. Shufflenetv2+. https://github.

com/megvii-model/ShuffleNet-Series/tree/

master/ShuffleNetV2%2B. 5, 6

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 5, 6, 7

[51] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014. 1

[52] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[53] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier

Bousquet, and Ilya Tolstikhin. Predicting neural network

accuracy from weights. arXiv preprint arXiv:2002.11448,

2020. 2

[54] Andreas S Weigend, David E Rumelhart, and Bernardo A

Huberman. Generalization by weight-elimination with ap-

plication to forecasting. In Advances in neural information

processing systems, pages 875–882, 1991. 2

[55] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. In International Conference

on Learning Representations, 2018. 7

9279



[56] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam

Klivans, and Qiang Liu. Good subnetworks provably exist:

Pruning via greedy forward selection. International Confer-

ence on Machine Learning, 2020. 7

[57] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: Global filter pruning method for

accelerating deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems, pages

2130–2141, 2019. 1, 2, 7

[58] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018. 1, 2, 6, 7

9280


