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Abstract

Batch Normalization (BatchNorm) has become the de-

fault component in modern neural networks to stabilize

training. In BatchNorm, centering and scaling operations,

along with mean and variance statistics, are utilized for

feature standardization over the batch dimension. The

batch dependency of BatchNorm enables stable training

and better representation of the network, while inevitably

ignores the representation differences among instances. We

propose to add a simple yet effective feature calibration

scheme into the centering and scaling operations of Batch-

Norm, enhancing the instance-specific representations with

the negligible computational cost. The centering calibra-

tion strengthens informative features and reduces noisy fea-

tures. The scaling calibration restricts the feature inten-

sity to form a more stable feature distribution. Our pro-

posed variant of BatchNorm, namely Representative Batch-

Norm, can be plugged into existing methods to boost the

performance of various tasks such as classification, detec-

tion, and segmentation. The source code is available in

http://mmcheng.net/rbn.

1. Introduction

Convolutional Neural Networks (CNNs) [19, 30, 52]

have boosted the performance of various computer vision

tasks [10, 18, 29, 48] with its powerful representation abil-

ity. While with the growth of structural complexity and

model parameters, CNNs are facing more training difficul-

ties. Batch normalization (BatchNorm) [24] eases the train-

ing difficulty by constraining intermediate features within

the normalized distribution with mini-batch statistical in-

formation. In BatchNorm, the reliance on mini-batch in-

formation is built on the assumption that features gener-

ated from different instances fit into the same distribution

within a channel [24, 65]. However, this assumption can

not always hold on two cases [7, 32, 54, 68]: i) the possible

inconsistency between the mini-batch statistics in training
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Figure 1. Image classification results on the ImageNet dataset.

MobileNet v2 [50] equipped with Representative BatchNorm

achieves smaller training loss and testing error than using Batch-

Norm. Representative BatchNorm enhances the instance-specific

representations and maintains the benefit of the BatchNorm.

and the running statistics in testing; ii) the instances in the

testing set may not always fall into the distribution of the

training set. To avoid the side effects introduced by these

two kinds of inconsistencies, some works [2, 59, 63] utilize

instance-specific statistics instead of mini-batch statistics to

normalize intermediate features. However, due to the lack

of batch information, the training instability makes their

performance inferior to BatchNorm in many cases [37, 55].

Other works utilize mini-batch and instance statistics by

combining multiple normalization techniques [36,37,51] or

introducing attention mechanisms [25,31,32,39]. However,

these methods usually introduce more overheads, making

them not friendly in practical usage. A question has raised,

can we maintain the mini-batch benefits of BatchNorm and

enhance the instance-specific representations with some mi-

nor adjustments? To answer this question, we propose a

simple yet effective feature calibration scheme to calibrate

the feature standardization operation of BatchNorm with a

negligible cost.

BatchNorm is composed of the feature standardization

and affine transformation operation. In this paper, we fo-

cus on the standardization operation composed of feature

centering and scaling operations. During training, based on

mini-batch statistics, the centering operation ensures fea-

tures to have the zero-mean property, and the scaling opera-

tion makes features to have unit-variance. The zero-mean
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and unit-variance property of features cannot always be

maintained during testing due to the statistics inconsistency

and the instance inconsistency. Centering with inappropri-

ate running mean values makes centered features contain

extra noises or lose some informative representations after

activation. When the mean value of testing instance fea-

tures is below the running mean value, as shown in Fig. 2(a),

some representative features are mistakenly removed by the

activation. In contrast, as shown in Fig. 2(b), noises with

small value should be filtered out by the activation are kept

when the mean value of features is greater than the running

mean value. Also, inappropriate running variance causes

the scaling operation to produce scaled features with too

small or too large intensity, as shown in Fig. 2(c) and (d),

resulting in unstable feature distribution among channels.

For example, suppose a scaled feature from one channel is

much larger than the other channels in the same layer dur-

ing testing. The feature in this channel would dominate the

features produced by the next convolutional layer.

To reduce the side effect introduced by some inappro-

priate running statistics while maintaining the benefits of

BatchNorm, we utilize instance-specific statistics to cali-

brate the centering and scaling operations with a negligi-

ble cost. We propose the centering calibration to strengthen

representative features and reduce noisy features by mov-

ing features with instance-specific statistics. The scaling

calibration accordingly scales the intensity of features with

statistics of instances to produce a more stable feature distri-

bution. These two calibrations only introduce three weights

in each channel and require a negligible computational cost.

We propose the Representative Batch Normalization

(RBN) by adding the centering and scaling calibrations

to the BatchNorm, to make the intermediate features nor-

malized by BatchNorm to be more representative. Fig. 1

shows the model equipped with Representative BatchNorm

achieves smaller training loss and testing error than using

BatchNorm. We show that Representative BatchNorm can

replace the BatchNorm in existing methods to boost the per-

formance of various tasks such as classification, detection,

and segmentation with the negligible cost and parameters.

2. Related Work

Various normalization (Norm) techniques [6,22,49] have

been proposed to achieve more effective feature normal-

ization [24, 59, 63] and task specified feature transforma-

tion [8, 12, 69].

Statistics for Normalization. Statistics calculated from

different dimensions and regions are utilized for feature

Normalization. BatchNorm [24] utilized mini-batch statis-

tics to normalize intermediate features and stabilize train-

ing. A larger mini-batch across multiple GPUs is applied in

Synchronized BN [44] to obtain more accurate batch statis-

tics. In contrast, GhostNorm [11] acquired statistics on

small virtual batch to reduce the generalization error. Eval-

Norm [54] re-estimated normalization statistics during eval-

uation. KalmanNorm [60] estimated the statistics of a layer

with its preceding layers. Cross-iteration BatchNorm [67]

obtained statistics from recent iterations. LayerNorm [2],

InstanceNorm [59], and GroupNorm [63] normalized fea-

tures with statistics from the channel, sample, and chan-

nel group dimensions, respectively. Instead of calculating

statistics using all pixels within a dimension, local normal-

ization techniques [41, 47] utilized statistics of neighboring

regions. Normalizing with mini-batch independent statis-

tics can improve the model stability when mini-batch statis-

tics are particularly inaccurate, i.e., training batch size is

too small. However, due to the lack of batch information,

the training instability makes their performance inferior to

BatchNorm in many cases [37, 55].

Combinations of Multiple Dimensional Normalization.

Some works take advantage of statistics from differ-

ent dimensions by combining multiple normalizations.

MixtureNorm [27] disentangled distribution into different

modes via a Gaussian mixture model and independently

normalized features within each mode. ModeNorm [9] ex-

tended normalization statistics to multiple modes to address

the heterogeneous nature of complex datasets. Switch-

Norm series [37, 38, 51] learned to switch among exiting

normalization techniques for different dimensions accord-

ing to the task [37, 51] or samples [38]. In comparison,

our RBN tends to calibrate BN features, which can be re-

garded as a new module in the normalization set used by

the SN. Batch-Channel Norm [46] combined the Batch-

Norm with channel-normalized techniques to eliminate sin-

gularities. The grouping mechanism in GroupNorm is ex-

panded to both channel and batch dimensions by Batch

group Norm [55]. Generalized BatchNorm [68] applied a

variety of alternative statistics and deviation measures for

standardization. Extended BatchNorm [35] computes the

mean and variance along different dimensions to enhance

training stability. However, these multi-normalization com-

bining methods usually require the extra computational cost

to normalize features among different dimensions.

Alternatives of Standardization. Instead of using the

standardization composed of the centering and scaling,

some works utilized standardization alternatives. L1-Norm

was utilized in [20, 62] to replace the commonly used L2-

Norm for scaling operation. Huang et al. [23] proposed

to use the iteratively ZCA whitening to normalize fea-

tures. Filter response Norm [53] only performed the in-

stance specified scaling operation and abandoned the cen-

tering operation. Similarly, Yan et al. [65] performed scal-

ing only in BatchNorm to handle the small batch size train-

ing. Liu et al. [34] searched to combine the normalization
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with activation. Still, our proposed calibration scheme can

be applied to these alternatives of standardization.

Conditional Transformation. Some works modified the

affine transformation conditioned on the task or instance

specified properties [12, 31, 32]. Conditional transforma-

tions after the normalization have been widely used in gen-

erative networks [12, 28, 40, 58], image synthesis [3, 42,

56, 69], visual reasoning [45], meta-learning [4], language-

vision task [8], style transfer [26, 42], and domain adapta-

tion [5, 61]. Some works introduced the attention mech-

anisms to generate the weights for affine transformation

[25,31,32,39], forming a more generalized transformation.

Our work focuses on the calibration of feature standardiza-

tion, thus can cooperate with these conditional transforma-

tion methods.

3. Method

3.1. Revisiting Batch Normalization

We first revisit the formulation of BatchNorm. Batch-

Norm is composed of the feature centering, feature scaling,

and affine transformation operation. Given the input feature

X ∈ R
N×C×H×W , where N , C, H , and W are batch size,

the number of channels, height, width of the input feature,

respectively, the centering, scaling, and affine transforma-

tion can be written as follows [24]:

Centering : Xm = X − E(X),

Scaling : Xs =
Xm

√

Var(X) + ǫ
,

Affine : Y = Xsγ + β.

(1)

E(X) and Var(X) denote the mean and variance, and are

used for centering and scaling. γ and β are learned scale and

bias factors for affine transformation, and ǫ is used to avoid

zero variance. During training, mean and variance values

calculated within the mini-batch are written as follows:

µB =
1

NHW

N
∑

n=1

H
∑

h=1

W
∑

w=1

X(n,c,h,w),

σ2
B =

1

NHW

N
∑

n=1

H
∑

h=1

W
∑

w=1

(

X(n,c,h,w) − µB

)2
.

(2)

The statistics of E(X) and Var(X) are accumulated over

the dataset during training, while keeping fixed during test-

ing. The running mean and variance are obtained by:

E(X) ⇐ mE(X) + (1−m)µB ,

Var(X) ⇐ mVar(X) + (1−m)σ2
B ,

(3)

where m is the accumulation momentum.

The mini-batch statistics µB and σ2
B over the mini-batch

are utilized in BatchNorm to stabilize training, and model

parameters are trained to fit features normalized by batch

statistics. However, the mini-batch and running statistics

cannot be strictly aligned, and the testing instances may not

always fit in the running distribution accumulated during

training. Therefore, the inconsistency between the training

and testing process weakens the role of BatchNorm [66].

However, simply abandon the mini-batch statistics to use

instance statistics hurts the model performance in many

cases [2, 59, 63], as BatchNorm stabilizes the training with

distributions over many training instances. Therefore, we

propose to calibrate the centering and scaling operations

with instance statistics to enhance the instance-specific rep-

resentations and maintain the mini-batch benefits of Batch-

Norm.

3.2. Representative Batch Normalization

We aim to enhance the instance-specific representations

and maintain the benefits of BatchNorm. In this work, we

focus on the feature standardization operation composed of

feature centering and feature scaling. Our proposed Repre-

sentative Batch Normalization, which is equipped with the

simple yet effective feature calibration scheme, strengthens

instance specified features and produces a more stable fea-

ture distribution.

3.2.1 Statistics for Calibration

The statistics of certain instance-specific features are

needed for calibrating the running statistics in BatchNorm.

This paper mainly studies statistics over channel dimen-

sions as the BatchNorm is designed to count statistics over

channels. The channel dimension statistics, the mean µc

and variance σ2
c of feature channels are given as follows:

µc =
1

HW

H
∑

h=1

W
∑

w=1

X(n,c,h,w),

σ2
c =

1

HW

H
∑

h=1

W
∑

w=1

(

X(n,c,h,w) − µc

)2
.

(4)

We also study the effect of statistics over the spatial dimen-

sion in Tab. 3. We will apply these statistics to calibrate the

centering and scaling operations of the BatchNorm layer.

3.2.2 Centering Calibration

The running mean values count the mean statistics of chan-

nels over the training dataset. When ignoring the effect of

the affine transformation, features with larger values than

the running mean are kept after the following activation

layer, and vice versa. However, the running mean value of

channels may not be accurate when the features vary widely.

As shown in Fig. 2, we draw a line on the image and sample
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Figure 2. Representative BatchNorm is composed of centering calibration (CC) and scale calibration (SC). The feature intensity distribu-

tions are sampled from the yellow line of the image. The centering calibration (a) strengths representative features and (b) reduces the

noisy features. The scale calibration in (c) and (d) restricts the feature intensity to form a more stable feature distribution.

feature intensity along this line. In that case, directly cen-

tering features with the running mean value may lose infor-

mative representations (Fig. 2(a)) or introduce extra noises

(Fig. 2(b)). To make the centering operation less rely on the

running mean value, we add a centering calibration scheme

driven by instance statistics.

Formulation of Centering Calibration. The centering

calibration is added before the centering operation of the

original BatchNorm layer. Given input feature X, the cen-

tering calibration of features is written as follows:

Xcm(n,c,h,w) = X(n,c,h,w) + wm ⊙Km, (5)

where wm ∈ R
1×C×1×1 is the learnable weight vector and

Km is the statistics of feature X that can have multiple

shapes, i.e., Km ∈ R
N×C×1×1 or Km ∈ R

N×1×H×W . We

set Km to µc ∈ R
N×C×1×1 by default. ⊙ is the dot prod-

uct operator that broadcast two features to the same shape

and then conduct dot product. For notation simplicity, we

replace ⊙ with · where there is no ambiguity.

Mechanism Proof. The instance-related term wm · Km

in Eqn. (5) introduces the instance specified information.

The learnable weight wm is proposed to calibrate the center-

ing operation by balancing mini-batch and instance-specific

statistics. We show the theoretical proof of the mechanism

of centering calibration. Suppose the running mean of fea-

tures before and after the centering calibration are E(X)
and E(Xcm), respectively. When the Km in Eqn. (5) is set

to µc, the running mean of Km is equal to E(X). There-

fore, according to Eqn. (5), the relation between E(X) and

E(Xcm) can be written as:

E(Xcm) = (1 + wm) · E(X). (6)

According to the centering operation shown in Eqn. (1), the

centered features with/without the centering calibration can

be written as:

Xcal = Xcm − E(Xcm),

Xno = X− E(X).
(7)

The difference between these two centralized features is

written as follows:

Xcal −Xno

= (Xcm − E(Xcm))− (X− E(X))

= X+ wm ·Km − (1 + wm) · E(X)− (X− E(X))

= wm · (Km − E(X)).

(8)

When the absolute value of wm is close to zero, the cen-

tering operation still relies on the running statistics. In

contrast, the importance of instance-specific features grows

when |wm| is larger. There are two cases where features

are strengthened or weakened after the centering calibration

considering the wm · Km. On the condition that wm > 0,

when Km > E(X), the representative features tend to be

activated are strengthened, and vice versa. On the condi-

tion that wm < 0, when Km > E(X), the noisy features

tend to be activated are weakened, and vice versa. We also

visualize in Fig. 2(a) when wm · Km > 0, the feature is

strengthened to represent the whole part of the cat. While

the background feature is weakened to reduce noises above

the cat part when wm ·Km < 0, as shown in Fig. 2(b). Also,

we observe in Fig. 3 that wm in some layers of trained mod-

els are close to zero, showing that our proposed centering

calibration can take advantage of both batch and instance

statistics through training.

3.2.3 Scaling Calibration

Unlike the centering operation that determines the features

to be kept after the activation, the scaling operation only

changes the feature intensity, when ignoring the effect of
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Figure 3. Averaged weight wm in centering calibration among lay-

ers of ResNet-50 model.

0.2

0.0

0.2

0.4                                      
        
wv in scaling calibration

wb in scaling calibration

S.1 S.2 S.3 S.4 S.5

Figure 4. Averaged weights wv , wb in scaling calibration among

layers of ResNet-50 model.

the affine transformation. The scaling operation scales fea-

tures to have unit-variance with the running variance val-

ues. However, scaling features with the inaccurate running

variance causes unstable feature intensity, i.e., features from

certain channels are much larger than those of other chan-

nels. We propose the scaling calibration to calibrate the fea-

ture intensity based on instance statistics.

Formulation of Scaling Calibration. We add the scaling

calibration after the original scaling operations. Given the

input feature Xs, the calibrated feature is written as follows:

Xcs(n,c,h,w) = Xs(n,c,h,w) ·R(wv ⊙Ks + wb), (9)

where wv, wb ∈ R
1×C×1×1 are learnable weight vectors,

and R() is the restricted function, which can be defined with

multiple forms. In this work, we choose to use the Sigmoid

function to suppress extreme values. Similar to Km, Ks is

the statistics of the instance feature Xs that can be set to

multiple values, as shown in Tab. 3.

Mechanism Proof. The restricted function R() along

with the wv and wb in Eqn. (9) suppresses out-of-

distribution features, making the feature distribution more

stable. Since both the scaling operation and scaling cali-

bration would not change the sign of features, and the neg-

ative features will be deactivated after the activation layer,

we only consider the part where features are positive. Ac-

cording to Eqn. (9), the variance of features after the scaling

calibration is written as:

Var(Xcs) = Var (Xs ·R(wv ·Ks + wb)) . (10)

Since the restricted function 0 < R() < 1, there must ex-

ist a τ whose value meets R() < τ < 1. Therefore, the

Var(Xcs) can be relaxed to:

Var(Xcs) < Var(Xsτ) = τ2 Var(Xs). (11)

After the scaling calibration, the feature variance is re-

stricted to be smaller. Weights wv and wb control

the strength and location of the restriction, respectively.

And Fig. 5 shows that channels with a large variance of

feature mean µc are restricted to a smaller variance by the

scaling calibration according to wv and wb. The variance

values of different channels in Fig. 5 are smaller, resulting

in a more stable distribution among channels. Var(Xcs) is

smaller when wv becomes smaller, and wb learns to adjust

the position to be restricted. We observe from Fig. 4 that

wv ≤ 1 in trained models. wv ≤ 1 tends to make fea-

tures fall into the unsaturated region of R(). We visualize

in Fig. 2(c) and (d) that scaling calibration accordingly re-

strict features to avoid overlarge values.

3.2.4 Implementation of Representative BatchNorm

Given the input feature X ∈ R
N×C×H×W , the formulation

of the Representative BatchNorm (RBN) is written as:

Centering Calibration : Xcm = X+ wm ⊙Km,

Centering : Xm = Xcm − E(Xcm),

Scaling : Xs =
Xm

√

Var(Xcm) + ǫ
,

Scaling Calibration : Xcs = Xs ·R(wv ⊙Ks + wb),

Affine : Y = Xcsγ + β.

(12)

To utilize the optimization of BatchNorm in existing deep

learning frameworks, we add the centering and scaling cali-

brations at the beginning and ending of the original normal-

ization layer of BatchNorm, respectively.

4. Experiments

4.1. Implementation Details

In this section, we report the implementation details of

our experiments. We implement our method using the Py-

Torch [43], MindSpore [1], and Jittor [21] frameworks.

On the ImageNet [10] dataset, we follow common set-

tings [13,19,64] to randomly crop images to 224×224 pix-

els from a resized image and utilize the same basic data

argumentation strategies are used in [13, 19, 64] for train-

ing. When training large models such as ResNet [19],

ResNeXt [64], and Res2Net [13], we use the SGD optimizer

to train the model for 100 epochs, and set weight decay to

1e−4, momentum to 0.9, and mini-batch to 256. The learn-

ing rate is initially set to 0.1, and divided by 10 every 30
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ImageNet Norm. top-1 err. top-5 err.

ResNet-50 [19]

IN [59] 28.40 -

GN [63] 24.33 7.30

BN [24] 23.85 7.13

ILM [25] 23.57

SN [36] 23.10 -

BCN [46] 23.09 6.55

IEBN [32] 22.90 -

FRN [53] 22.79 6.43

RBN 22.64 6.54

RBN* 22.40 6.27

ResNet-101 [19]
BN [24] 22.63 6.44

RBN 21.48 5.74

ResNeXt-50 [64]
BN [24] 22.38 6.30

RBN 21.97 6.13

Res2Net-50 [13]
BN [24] 22.01 6.15

RBN 21.16 5.88

MobileNet v2 [50]
BN [24] 28.03 9.19

RBN 26.23 8.37

Table 1. Classification performance of utilizing RBN on multiple

network architectures on the ImageNet dataset. RBN* indicates

set Ks = σc in Eqn. (9) instead of the faster version Ks = µc

used in RBN.

epochs. For the lightweight model MobileNet v2 [50], we

train the model for 200 epochs using a Cosine learning rate

scheduler with 0.05 initial learning rate, 256 mini-batch,

4e−5 weight decay, and 5 epochs warm-up.

To make sure that it is the role of calibration instead of

initialization. We need to make the centering and scaling

calibrations play no role at the beginning of the training.

Therefore, the centering calibration weights wm are all ini-

tialized with zero, and the scaling calibration weights wv ,

wb are initialized with zero and one, respectively. By de-

fault, µc of X and µc of Xs are utilized as Km in Eqn. (5)

and Ks in Eqn. (9), respectively, for the high computational

efficiency.

4.2. Performance Evaluation and Ablation

In this section, we verify the effectiveness of our pro-

posed RBN on various networks. We also conduct ablations

to have a more comprehensive understanding of RBN.

Cooperating with Multiple Networks. As the variant of

the original BatchNorm (BN), our proposed RBN can re-

place BN layers in networks to achieve better classification

performance on the ImageNet dataset, as shown in Tab. 1.

RBN based ResNet-50 surpasses the BN based ResNet-50

with 1.21% on top-1 err. On the deeper model ResNet-

101, the RBN still outperforms BN by 1.15%, showing its

robustness over the convergence difficulty of deeper net-

ImageNet MobileNet v2 ResNet-50

BN 28.03 23.85

BN + Scaling cal. 26.96 23.06

BN + Centering cal. 26.55 22.85

RBN 26.23 22.64

Table 2. Effectiveness ablation (Top-1 err.) of the centering and

scaling calibrations using multiple networks on the ImageNet

dataset.

C cal. - µc µc µc µc µs σc σs

S cal. - µc µs σc σs µc µc µc

Err. 23.85 22.64 22.58 22.40 22.65 22.93 22.76 22.90

Table 3. Ablation (Top-1 err.) of using different statistics for cali-

brations in Eqn. (5) and Eqn. (9) using ResNet-50 on the ImageNet

dataset. C cal. and S cal. represent centering calibration and scal-

ing calibration, respectively.

works. When cooperating with more advanced networks

ResNeXt [64] and Res2Net [13], RBN based models sur-

pass their baselines with 0.41% and 0.85% improvement,

respectively. We also verify the effectiveness of RBN on

the lightweight model. MobileNet v2 [50] equipped with

RBN has an improvement of 1.8% over the baseline.

Comparison with Normalization Methods. We also

compare RBN with existing variants of BatchNorm, as

shown in Tab. 1. GN [63] abandons the batch statistics,

making it worse than BN in the commonly used training

configuration. RBN maintains the benefits of batch depen-

dency, and introduces the instance statistics to improve the

representation ability of the model stably. Also, RBN per-

forms better than other state-of-the-art normalization meth-

ods such as SN [36], BCN [46], ILM [25], IEBN [32], and

FRN [53]. These normalization methods do not involve the

centering and scaling calibrations, thus they can cooperate

with RBN. We will conduct these experiments in our ex-

tended work.

Ablation on Centering and Scaling Calibrations. We

verify the effectiveness of the centering and scaling cali-

brations in Tab. 2. We conduct ablations on the large-scale

ImageNet dataset using the ResNet-50 and the lightweight

model MobileNet v2. On MobileNet v2, the scaling and

centering calibration improve the performance by 1.07%
and 1.48% over the baseline, respectively. On ResNet-50,

the performance gain brought by the scaling and centering

calibration is 0.79% and 1.0% over the baseline, respec-

tively. Combining the scaling and centering calibration, the

performance is further improved. On the large-scale dataset,

the centering calibration plays a slightly more important

role than scaling operation.
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Choice of Instance Statistics. Because the mean value

of channels µc is computationally efficient and achieves

decent performance, we use µc statistics in both Eqn. (5)

and Eqn. (9) by default. We also show in Tab. 3 the ef-

fectiveness of other statistics such as the standard division

of channels σc, the mean and standard division over spa-

tial dimensions, denoted by µs and σs, respectively. Using

µc and σc in centering and scaling calibrations achieves the

best performance with more computational cost than only

using µc. We observe that using µc in centering calibration

is the best choice. Since scaling calibration only restricts

the feature intensity while not changing the amount of in-

formation, scaling with both channel and spatial statistics

results in a similar performance.

Observations. We first study the effect of RBN on dif-

ferent positions in the network. In Tab. 4, we show that

adding the RBN to the early and last stages achieves better

performance than the middle stages. We assume that the

early stages are more dependent on the input instance, and

the last stages are more related to the semantic meanings of

the instance. We also visualize the averaged weight wm in

centering calibration, and the averaged weights wv , wb in

scaling calibration.

As shown in Fig. 3, wm in most layers are close to zero,

indicating that the batch statistics still play an important role

in most layers. The |wm| in the first layer of each stage is

usually larger than other layers. We assume that the res-

olution changing of features makes the batch dependency

unstable, requiring the feature calibration to strengthen fea-

tures and reduce noises. Also, the absolute value wm in the

last stage is larger as this stage has more instance-specific

features. We visualize features before and after the center-

ing calibration in Fig. 6. Some features are strengthened or

weakened after calibration, while features from some chan-

nels remain unchanged as the mini-batch statistics still dom-

inate these channels.

As shown in Fig. 4, |wv| in scaling calibration becomes

larger when the network goes deeper. We assume that

instance-specific semantics in deeper layers may make the

feature distribution unstable, thus requires more feature

scaling calibration. We also visualize the standard devia-

tion statistics of µc in the testing set of channels before and

after the scaling calibration in Fig. 5. The scaling calibra-

tion learns to accordingly restrict feature variance of differ-

ent channels to be closer, making the feature distribution

more stable among channels. Features before and after the

scaling calibration are visualized in Fig. 6. Features after

scaling calibration are restricted to have smaller intensities.

4.3. Generalization to Tasks

Our proposed RBN can replace the BN to boost the rep-

resentation ability of models in many tasks [14–17, 57].

This section verifies the effectiveness of our proposed RBN

CIFAR No S.1 S.2 S.3 S.4 All

ResNet-50-RBN 77.10 78.40 77.70 78.14 79.26 79.99

ResNeXt-29-RBN 79.69 81.21 80.22 80.64 - 82.12

Table 4. Ablation (Top-1 acc.) of applying RBN on different stages

of the network.

0.1
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0.3
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0.5

0.6
                             
                
before scaling cal.

after scaling cal.

Figure 5. The standard deviation of µc in each channel before and

after scaling calibration from layer ‘layer3.2.bn2’ in ResNet-50.

Statistics are calculated in the testing set.

Object det. AP AP50 AP75 APS APM APL

ResNet-50-BN 37.8 58.0 41.3 21.8 41.0 49.3

ResNet-50-RBN 39.3 59.7 42.8 22.7 43.4 51.8

ResNet-101-BN 39.6 59.6 43.1 22.5 43.5 51.6

ResNet-101-RBN 41.5 61.7 45.1 23.7 45.8 54.3

Table 5. Performance of object detection on the COCO validation

set using Faster-RCNN [48] with ×1 lr schedule.

on down-stream tasks such as object detection, instance seg-

mentation, and panoptic segmentation. By default, µc of X

and µc of Xs are utilized as Km in Eq.5 and Ks in Eq.9, re-

spectively, for the high computational efficiency. All mod-

els utilizing RBN and original BN are trained with the same

configuration.

Object Detection. For the object detection task, we ver-

ify the proposed method on the MS COCO [33] dataset us-

ing Faster-RCNN [48] as the baseline. We replace all BN

layers in Faster-RCNN with our proposed RBN. As shown

in Tab. 5, the proposed RBN cooperating with ResNet-50

outperforms its counterpart by 1.5% on average precision

(AP) and 1.7% on AP@IoU=0.5. For ResNet-101, the RBN

based model still outperforms the baseline by 1.9% on AP

and 2.1% on AP@IoU=0.5. The RBN makes objectness

features for object detection more representative, therefore

improve the performance of the Faster-RCNN.

Instance Segmentation. Instance segmentation com-

bines object detection and semantic segmentation. Cor-

rect objectness and accurate segmentation masks are both

needed for this task. We validate instance segmentation

on the MS COCO [33] dataset using Mask-RCNN [18] as
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Figure 6. Visualization of features after calibration in RBN.

the baseline method. As shown in Tab. 6, on ResNet-50

based Mask-RCNN, replacing BN with our proposed RBN

achieves 1.6% and 1.4% better performance on box AP and

mask AP, respectively. Using ResNet-101, the performance

gains brought by RBN are 1.2% on box AP and 1.2% on

mask AP. The RBN consistently improves the representa-

tion ability of models for both box detection and mask seg-

mentation.

Panoptic Segmentation. Panoptic segmentation is gener-

alized from the instance segmentation and semantic seg-

mentation. This task requires to segment all things at the

instance level, and semantically segment all pixels of un-

countable staff. We conduct panoptic segmentation on the

Box AP AP50 AP75 APS APM APL

ResNet-50-BN 38.7 58.6 42.4 22.4 42.0 50.2

ResNet-50-RBN 40.3 60.4 43.9 23.2 44.3 52.7

ResNet-101-BN 40.3 60.0 44.0 23.0 44.1 52.9

ResNet-101-RBN 41.5 61.1 45.4 24.3 45.7 54.3

Mask AP AP50 AP75 APS APM APL

ResNet-50-BN 34.7 55.4 37.1 18.5 37.8 46.7

ResNet-50-RBN 36.1 57.5 38.3 19.4 39.7 48.9

ResNet-101-BN 36.0 57.1 38.4 18.8 39.4 49.2

ResNet-101-RBN 37.2 58.4 39.9 20.5 41.0 50.6

Table 6. Performance of instance segmentation on the COCO val-

idation set using Mask-RCNN [18] with ×1 lr schedule.

APbox APmask SQ RQ PQ

ResNet-50-BN 33.3 31.0 75.6 44.8 36.3

ResNet-50-RBN 35.0 32.3 76.0 45.9 37.2

ResNet-101-BN 35.7 32.9 76.3 46.4 37.8

ResNet-101-RBN 37.7 34.3 76.9 48.1 39.1

Table 7. Performance of panoptic segmentation on the COCO val-

idation set using Panoptic FPN [29] with ×1 lr schedule.

MS COCO [33] dataset using Panoptic FPN [29]. As

shown in Tab. 7, RBN cooperating with ResNet-50 archi-

tecture surpasses the baseline with 1.7% on APbox, 1.3%
on APmask, and 0.9% on panoptic quality (PQ). When co-

operating with ResNet-101, replacing BN with our RBN

achieves 2% on APbox, 1.4% on APmask, and 1.3% on PQ,

higher performance than the baseline. On the deeper net-

work, RBN based model achieve more performance gain

than on the shallow network, indicating that deeper panop-

tic segmentation models may benefit more from the stable

and representative features introduced by RBN.

5. Conclusion

This paper proposes the Representative Batch Normal-

ization (RBN) equipped with a simple yet effective feature

calibration scheme to enhance the instance-specific repre-

sentations and maintain the benefits of BatchNorm. The

centering calibration strengthens informative features and

weakens noisy features. The scaling calibration restricts the

feature intensity to form a more stable feature distribution.

RBN can be plugged into existing methods to boost the per-

formance with negligible cost and parameters.
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