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Abstract

The Remote Embodied Referring Expression (REVERIE)

is a recently raised task that requires an agent to navi-

gate to and localise a referred remote object according to

a high-level language instruction. Different from related

VLN tasks, the key to REVERIE is to conduct goal-oriented

exploration instead of strict instruction-following, due to

the lack of step-by-step navigation guidance. In this paper,

we propose a novel Cross-modality Knowledge Reasoning

(CKR) model to address the unique challenges of this task.

The CKR, based on a transformer-architecture, learns to

generate scene memory tokens and utilise these informa-

tive history clues for exploration. Particularly, a Room-

and-Object Aware Attention (ROAA) mechanism is devised

to explicitly perceive the room- and object-type informa-

tion from both linguistic and visual observations. More-

over, through incorporating commonsense knowledge, we

propose a Knowledge-enabled Entity Relationship Reason-

ing (KERR) module to learn the internal-external correla-

tions among room- and object-entities for agent to make

proper action at each viewpoint. Evaluation on REVERIE

benchmark demonstrates the superiority of the CKR model,

which significantly boosts SPL and REVERIE-success rate

by 64.67% and 46.05%, respectively. Code is available at:

https://github.com/alloldman/CKR.

1. Introduction

The Embodied-AI (E-AI), where embodied agents per-

form various egocentric perception tasks, has attracted a

surge of interest within both computer vision and natural

language processing communities. In recent years, numer-

ous datasets [1, 6, 16] and simulators [5, 26, 49] have been

constructed to provide 3D assets with annotations and simu-

late the agent respectively. These platforms support legions

of tasks including Vision-Language Navigation (VLN) [1],

Embodied Question Answering [6], etc.

*Equal contribution
†Corresponding author (liusi@buaa.edu.cn)

Figure 1. At viewpoint A, our agent with commonsense turns right

into the ‘meeting room’ through perceived ‘chair’ and ‘meeting-

desk’. Then at viewpoint B, it seeks for easy-to-find related ob-

jects (e.g., ‘computer’) at first for efficient exploration, where tar-

get ‘mouse’ is usually around. C is the final viewpoint it arrived.

Most recently, a valuable task named Remote Embod-

ied Visual referring Expression in Real Indoor Environ-

ments (REVERIE) [37] was proposed to further facilitate

the E-AI field. The goal of REVERIE is for a robot in a

photo-realistic 3D indoor environment to navigate closer to

and localise a referred target object according to the given

high-level instruction, which is similar to VLN task. How-

ever, simply utilising approaches in VLN is not capable of

completing REVERIE task satisfactorily, which has been

proved in [37] through extensive experiments.

The REVERIE contains several challenges. Firstly, es-

sentially different from previous VLN tasks (e.g., R2R [1])

that provide step-by-step navigation guidance, REVERIE

towards practicability only annotates high/semantic-level

instructions like ‘Go to the corner of meeting room, bring

me the mouse on the table’, as shown in Fig. 1. This is

more natural and closer to the human needs from a home

assistance function perspective, but it is more challeng-

ing. Therefore, instead of strict instruction-following, the

agent needs to conduct goal-oriented exploration in an un-
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seen environment. Specifically, efficient exploration re-

quires the agent to hold a long-term scene memory and

extract informative memory clues for making a sequence

of proper decisions. Secondly, the goal in REVERIE

can be abstractly expressed as ‘find XXX object in

XXX room’, which requires the cross-modal (vision-and-

language) comprehension ability for the agent to be aware

of the room/object-type at each viewpoint, and mine their

relations with the goal. Thirdly, it is non-trivial to learn

the internal-external correlations among rooms and objects

from limited environments and apply it to the previously-

unseen environments. Thus commonsense knowledge is re-

quired, and an example is shown in Fig. 1. At last, due to

the lack of detailed guidance, how to make the exploration

more efficient, i.e., complete the goal in a shortest trajec-

tory, needs to be properly considered.

In this paper, we make multi-fold innovations to address

the aforementioned challenges. Firstly, we design a Cross-

modality Knowledge Reasoning (CKR) model to perform

the REVERIE task, where the knowledge-enabled visual

and linguistic clues constitute a scene memory token. Then

all the memory tokens ordered by time sequence are fed

into a decoder simultaneously to predict the next action.

The informative clues are effectively extracted from scene

memory tokens for current decision through a learnable

multi-layer attention. Secondly, we propose a Room-and-

Object Aware Attention (ROAA) mechanism to explicitly

recognise rooms and objects from both instruction and vi-

sual input, bridging the cross-modal semantic gap between

them. Thirdly, we bring external commonsense knowledge

into the REVERIE task to improve capability of capturing

the complicated relationships within rooms and objects ob-

tained under the ROAA mechanism. Specifically, we pro-

pose a Knowledge-enabled Entity Relationship Reasoning

(KERR) module to incorporate prior knowledge from Con-

ceptNet [41] for comprehensive room- and object-entity

reasoning. For room-entity reasoning, we explicitly learn

the room-to-room correlations to guide the action decision.

For object-entity reasoning, we perform internal and exter-

nal knowledge graph reasoning complementarily, where the

commonsense knowledge is dynamically learned and ex-

tracted from the external graph to interact with the internal

knowledge at each iteration of graph reasoning. Last but

not least, we devise a Direction-Aware Loss (DAL) to pe-

nalise the actions with more angle deviation from ground

truth path, and a distance-aware policy to make agent prop-

erly consider the moving distance during navigation to fur-

ther improve the efficiency.

Experiments conducted on the REVERIE benchmark

show our CKR model significantly boosts the SPL and

REVERIE-success rate by 64.67% and 46.05% respectively

on val-unseen set. Besides, extensive ablations and qualita-

tive results verify the contribution of each component.

2. Related Work

Vision-Language Navigation. VLN that requires agent to

navigate in a 3D environment following a step-by-step in-

struction has attracted widespread attention since it is an

essential capability for a movable intelligent robot. Numer-

ous methods [47, 48, 19, 7, 12, 10, 46, 36, 17, 20] have been

proposed to address the VLN task. On the basis of Mat-

terport3D [5], the first VLN benchmark R2R [1] was pro-

posed, along with a multi-modal Seq2Seq baseline model.

Then [11] proposed a speaker model to augment data and

score candidate actions. Progress monitor [33] ensures that

the notion of progress toward target is encoded by the agent.

EnvDrop [44] is yet another data augmentation technique,

breaking the limitation of variability of seen environments.

FAST [24] allows the agent to backtrack and balances local-

global signals during exploring. AuxRN [52] introduced

four self-supervised tasks to improve the performance fur-

ther. However, since detailed instruction is provided in

VLN, the agent is required to learn how to strictly follow the

step-by-step command, which is essentially different from

the demand for goal-oriented exploration in REVERIE task.

Vision-Language Reasoning with External Knowledge.

There has been growing interest in combining computer vi-

sion [31, 13, 9, 23, 15, 14, 29, 3, 4] and natural language

processing [8, 45] techniques to perform vision-language

cross-modal tasks [30, 38, 21, 22]. Especially, incorpo-

rating external knowledge for reasoning has drawn great

attention recently [51, 35, 40]. Commonly used knowl-

edge graphs (e.g., ConceptNet [41], DBpedia [2]) represent

concepts and relationships with nodes and edges respec-

tively. With Graph-based Neural Networks (GNN) [42, 43],

knowledge can be represented in structured form, which en-

ables interaction within visual and linguistic features. Text-

KVQA [40] dataset entails the model with GGNN [28] to

perform reasoning on knowledge bases. KE-GAN [35] re-

sorts ConceptNet to calculate knowledge relation loss for

generating reasonable scene parsing results. Thus the com-

monsense and reasoning techniques are intuitively benefi-

cial to the REVERIE especially on unseen environments.

3. Method

3.1. Problem Setup and Overview

Problem Setup. In REVERIE [37], an agent is spawned at

a random viewpoint and given an instruction I = {wi}
L
i=1

at first, where wi is ith word and L is length. For each step

t, the agent observes a panoramic view Ot = {ot,i}
36
i=1,

which consists of 36 divided local views. Each view ot,i =
{vt,i, θt,i, φt,i} contains an image vt,i, a heading angle θt,i
and an elevation angle φt,i. Then the agent needs to take

an action at, i.e., selecting one view vt,k from Nt navigable

views {vt,i}
Nt

i=0, where vt,0 stands for the stop action. Note
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Figure 2. The overall framework of CKR model. ROAA explicitly decomposes and captures the room/object feature from linguistic/visual

observations, containing informative clues for REVERIE. KERR conducts room- and object-entity knowledge reasoning to make proper

decisions at each viewpoint by incorporating the graph-based commonsense knowledge from ConceptNet [41]. Best viewed in color.

that Nt ≤ 36 and is not fixed for each step. The episode

ends when the agent detects an object as the target object

referred in the instruction and returns its bounding box.

Overview. We propose a novel Cross-modality Knowl-

edge Reasoning (CKR) model (see Fig. 2), which is con-

structed based on a transformer encoder-decoder architec-

ture. Specifically, the encoder extracts linguistic features,

and the decoder models the sequential decision process.

Between the encoder and decoder, we propose a Room-

and-Object Aware Attention (ROAA) mechanism to ex-

plicitly learn to decouple room- and object-related features

from both linguistic and visual observations. Then the pro-

posed Knowledge-enabled Entity Relationship Reasoning

(KERR) module incorporates the external knowledge from

ConceptNet [41] and takes visual clues, room-and-object

cross-modal features, etc., to produce the scene memory to-

ken mt at each step t. After that, the decoder takes history

scene memory tokens {m0,m1, . . . ,mt−1} and current to-

ken mt as inputs to produce a hidden state ht for action pre-

diction. Besides, the KERR module also produces a room-

confidence feature F r
t = {ct,i}

Nt

i=0 for each navigable view

{vt,i}
Nt

k=0, where ct,i represents the confidence degree that

moving toward vt,i can arrive at the target room. Further,

the action at is predicted via an attention mechanism: at =
argmaxi(pt,i), where pt,i = softmaxi([vt,i, ct,i]Wah

⊤
t ).

When the agent stops, the referred object is picked from

the panorama via a visual grounding model. Note that our

CKR can be connected to any grounding model such as the

popular MAttNet [50] and ViLBERT [32].

3.2. Room­and­Object Aware Attention

Our ROAA has two branches, focusing on linguistic

(Fig. 2(a)) and visual observations (Fig. 2(b)) separately.

ROAA-Linguistic. Given a natural language instruction,

we aim to focus on the room- and object-related informa-

tion since the task goal can be abstracted into ‘find XXX

object in XXX room’. As shown in Fig. 2(a), each

word wi of the instruction I is first initialised to a token

vector by the GloVe [34] embedding. Then the transformer-

encoder takes the tokens I = {wi}
L
i=1 ∈ R

L×Dw along

with a sequence position embedding as inputs to produce

an encoded representation Î = {ŵi}
L
i=1 ∈ R

L×Dw .

To further decompose Î to room-related Îrt and object-

related Îot linguistic features at each step t, we adopt two

language attention modules, i.e., room- and object-aware

attention. Specifically, the two modules produce Îrt , Î
o
t ∈

R
1×Dw by taking the decoder hidden state ht−1 ∈ R

1×Dh

as input, which is formulated as:

Îrt =
∑

i
αt,iŵi, αt,i = softmaxi(ŵiWrh

⊤

t−1), (1)

Îot =
∑

i
βt,iŵi, βt,i = softmaxi(ŵiWoh

⊤

t−1), (2)

where Wr,Wo ∈ R
Dw×Dh are learnable parameters. Then

Îrt is used to predict the probability distribution of target

room-type P r
I = {pj}

Nr

j=1 = softmax(FC(Îrt )) via a FC

layer, where Nr is the number of room types. Note that Îrt ,

Îot , and P r
I are used in the KERR module.

ROAA-Visual. Except for understanding the goal within

the instruction via ROAA-linguistic, the agent also needs to

recognise the room/object from visual observations. Then

the cross-modal action reasoning can be conducted based on

the perceived and referred room/object during navigation.

As shown in Fig. 2(b), for ith navigable view vt,i at

step t, we adopt a Faster R-CNN [39] pre-trained on

VG [27] to detect Nvt,i (≤ 100) most salient objects form-

ing an object-set Hvt,i
, where |Hvt,i | = Nvt,i

. For ex-

ample, when vt,i is towards a bedroom, Hvt,i
may contain

categories such as bed and wardrobe, etc. Note that each
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Figure 3. Illustration of the KERR module. Best viewed in color.

category is initialised as a vector by its GloVe embedding.

Besides, since the type of a room mostly depends on what

objects are placed in it, we take the corresponding object-set

to directly predict the probability distribution of room-type

through P r
vt,i

= {pj}
Nr

j=1 = softmax(FC(Hvt,i
)). There-

fore, the visual room-aware features P r
vt,i

of each navigable

view vt,i is obtained, which provides room-level informa-

tive clues for further action reasoning.

3.3. Knowledge­enabled Entity Relation Reasoning

Based on the obtained cross-modal room/object clues

from both the linguistic and visual ROAA modules, we pro-

pose a KERR module aiming to model the action reasoning

process. As shown in Fig. 3, the KERR produces three fea-

tures: view-level F v
t , room-level F r

t and object-level F o
t .

The scene memory token mt is constructed by concatena-

tion: mt = [F v
t , F

o
t , Î

r
t , Î

o
t ], and F r

t is directly sent to pre-

dict actions. Specifically, to obtain F v
t , we apply a feature

extractor [18] following [1] to get an image feature v̂t,i for

each navigable view vt,i. Then we adopt ht−1 to generate

F v
t via an attention mechanism:

F v
t =

∑

i
ηt,iv̂t,i, ηt,i = softmaxi(v̂t,iWvh

⊤

t−1), (3)

where Wv is a learnable parameter. F r
t and F o

t are pro-

duced by room- and object-entity reasoning respectively,

which will be introduced in the following.

Knowledge Base Construction. To bring commonsense

into our model, we construct a knowledge base (KB) ac-

cording to the ConceptNet [41]. First, during navigation,

the adopted detector (pre-trained on VG [27]) can distin-

guish 1600 categories {hi}
1600
i=1 , which includes the cate-

gories annotated in REVERIE. Then, for each category hi,

we retrieve the top-K knowledge facts {fi,j}
K
j=1 from Con-

ceptNet, where fi,j = (hi, ri,j , tj), according to their rel-

evance ri,j . Thus the retrieved {tj}
K
j=1 are the most clos-

est categories to each hi in the perspective of semantic and

spatial co-occurrence. Note that we initialise each category

representation via GloVe so that hi, tj ∈ R
1×Dw . There-

fore, we obtain an external knowledge base represented as

a graph GE = (HE , EE), where HE is the label set and

EE is the edge set. Note that NE (the category number of

KB) includes both 1600 categories and retrieved categories.

Besides, HE ∈ R
NE×Dw represents the node feature ma-

trix, and AE ∈ R
NE×NE denotes the weighted adjacency

matrix, where each element AE
i,j is pre-defined as ri,j .

In additional to the external knowledge graph GE , we

further define an internal knowledge graph GI = (HI , EI)
to dynamically learn the domain-specific (in-door environ-

ment) knowledge in accordance with REVERIE datasets.

HI ∈ R
1600×Dw denotes the node feature matrix, which is

initialised via GloVe embedding. AI ∈ R
1600×1600 denotes

the weighted adjacency matrix representing the correlations

among objects. Unlike the pre-defined AE , AI is a learn-

able matrix and initialised from ConceptNet.

Object-Entity Reasoning. In Fig. 3, for each view vt,i,
we take its visual object-set Hvt,i

as the index to sample

from GI to construct a fully connected subgraph GI
vt,i

=

(HI
vt,i

, EI
vt,i

). HI
vt,i

∈ R
Nvt,i

×Dw represents its node fea-

ture matrix, and AI
vt,i

∈ R
Nvt,i

×Nvt,i represents the learn-

able adjacency matrix, which is a sub-matrix of AI .

The object-entity reasoning is achieved iteratively

through two parallel graph reasoning branches, i.e., ex-

ternal knowledge graph reasoning and internal knowledge

graph reasoning, where the external knowledge is learned

and dynamically extracted from GE to enhance the internal

knowledge reasoning. First, the external knowledge reason-

ing is achieved via multi-step graph convolutions:

{
HE(k) = δ(AEHE(k−1)WE(k));

HE(0) = HE ,
(4)

where k denotes the kth step of graph reasoning and δ(·) is

the activation function. WE(k) is a learnable parameter, and

HE(k) is node feature matrix of GE(k) at kth step. Next, for

external knowledge extracting, we take the object-set Hvt,i

as an index to sample a sub node feature matrix H
E(k)
vt,i ∈

R
Nvt,i

×Dw from HE(k). Then, we add H
E(k)
vt,i to H

I(k)
vt,i and
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conduct internal graph reasoning, which is formulated as:




HI(k+1)
vt,i

= δ(AI
vt,i

H̃I(k)
vt,i

W I(k+1));

H̃I(k)
vt,i

= (HI(k)
vt,i

+HE(k)
vt,i

)/2;

HI(0)
vt,i

= HI
vt,i

.

(5)

Particularly, we term H
I(K)
vt,i as the final node feature matrix.

To obtain the final object-level feature F o
t , we first en-

hance the object-related linguistic feature Îot by incorporat-

ing object-level clues from the knowledge base. Specifi-

cally, we compute a relevance score γt,i between Îot and

each category HE
i in external KG to fuse knowledge via

attention mechanism:

Îo
′

t =
∑

i
γt,iH

E
i , γt,i = softmaxi(H

E
i Wf Î

o⊤
t ). (6)

Then, we take knowledge-enhanced Îo
′

t to further attend to

H
I(K)
vt , deriving F o

t via:

F o
t = softmax(Îo

′

t WoH
I(K)
vt

⊤

)HI(K)
vt . (7)

Room-Entity Reasoning. Humans are capable of perceiv-

ing the room-to-room correlation, e.g., it is not a good

choice to step into a toilet when the target is kitchen, in-

stead we may find a path to the kitchen from a dining room.

Therefore, we aim to equip the agent with the same capa-

bility through learning a room-to-room correlation matrix

Ar ∈ R
Nr×Nr , where each element Ar

i,j represents the con-

fidence degree that agent can arrive at jth room-type from

ith room type. Then the confidence score is produced via:

st,i = P r
I A

rP r⊤
vt,i

, (8)

where P r
I is the predicted target room-type from instruction

and P r
vt,i

is the predicted room-type of vt,i. Then st,i is re-

peated to form the confidence feature ct,i ∈ R
1×128 denot-

ing a confidence degree that agent can efficiently arrive at

the target room through selecting vt,i as the next direction.

Note that F r
t = {ct,i}

Nt

i=0.

3.4. Direction­and­Distance Aware Policy

Direction-Aware Loss (DAL). When the agent fails to fol-

low the shortest path to the target during navigation, it is

expected to keep at least moving toward its target. Prior

approaches, however, implicitly assume that candidate ac-

tions (excluding ground truth) are all the same, by applying

a simple cross-entropy loss on each step’s action selection.

In Fig. 4(a), cross-entropy loss Lce = − log pt,a1
is ir-

relevant to pt,a2
and pt,a3

. Since θt,a2
< θt,a3

, choosing

a2 is more likely for agent to hit the target with a shorter

path, compared with a3. Therefore, we propose a direction-

aware loss to penalise the selected action with more angle

deviation to ground truth path, which is formulated as:

Ldir =
∑T

t=1

∑Nt

a=0
f(θt,a)pt,a, f(θ) = (1− cos θ)/2, (9)

Past Path Candidate Action GT Action Unseen Path

Current

𝑓! (logit=2)𝑓" (logit=2.4)

Start
Start

Action 𝑎#
Action 𝑎!

GT Action 𝑎"
Target

Current

𝜃#

𝜃!

Figure 4. (a) At step t, the agent chooses an action at ∈
{a0, a1, a2, a3} according to probability Pt,a. Note that a0 means

stop action, a1 is the ground truth. (b) During inference, the agent

chooses whether to backtrack to f1 or proceed to f2.

where pt,a is the probability of choosing action a. θt,a ∈
[0, π] is the angle between a and the GT action. Specifically,

angle between a0 and any non-stop action is π/2.

Distance-aware search. FAST [24] introduces a search

policy during inference, which can achieve higher SR than

greedy decoding. It records a logit for every candidate’s

viewpoints and proceeds to the viewpoint with largest logit

at each step. However, FAST does not consider the dis-

tance between current and candidate viewpoints when mak-

ing action. Therefore, we propose a distance-aware search

policy based on FAST to make the agent aware of dis-

tance and avoid unnecessary long-distance backtracking

(e.g., prefer f2 instead of f1). Specifically, we leverage

logit′ = logit/dw instead of logit during search, where d
is the distance between current and candidate viewpoint, w
is a hyperparameter controlling the importance of distance

in making action prediction.

3.5. Training Loss

Our training objective is composed of three different

parts: the imitation learning loss, the room-type classifica-

tion loss and the direction-aware loss mentioned before.

Imitation Learning Loss. We leverage the student force

training strategy. At step t, the model predicts the probabil-

ity pt,a for each candidate action a, and the teacher action

ât is the shortest path from the current viewpoint to the des-

tination. Thus the imitation learning loss is defined as:

La =
∑T

t=1
− log pt,ât . (10)

Room Classification Loss. We term r̂ as the GT room-type

of destination and r̂t,i as the GT room-type of each view

vt,i. Thus the room classification loss is defined as:

Lr =
∑T

t=1

(

− log pr̂I +
∑Nvt,i

i=1
− log p

r̂t,i
vt,i

)

. (11)

Overall. The final objective is defined as:

L = λ1La + λ2Lr + λ3Ldir, (12)

where λi(i = 1, 2, 3) is the weighting factor that controls

the relative importance of each term.
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Methods

Val-Seen Val-Unseen Test (Unseen)

Navigation Acc. REVERIE Navigation Acc. REVERIE Navigation Acc. REVERIE

SR↑ OSR↑ TL↓ SPL↑ SR↑ SR↑ OSR↑ TL↓ SPL↑ SR↑ SR↑ OSR↑ TL↓ SPL↑ SR↑

Random 2.74 8.92 11.99 1.91 1.97 1.76 11.93 10.76 1.01 0.96 2.30 8.88 10.34 1.44 1.18

R2R-TF [1] 7.38 10.75 11.19 6.40 4.22 3.21 4.94 11.22 2.80 2.02 3.94 6.40 10.07 3.30 2.32

R2R-SF [1] 29.59 35.70 12.88 24.01 18.97 4.20 8.07 11.07 2.84 2.16 3.99 6.88 10.89 3.09 2.00

RCM [47] 23.33 29.44 10.70 21.82 16.23 9.29 14.23 11.98 6.97 4.89 7.84 11.68 10.60 6.67 3.67

SelfMonitor [33] 41.25 43.29 7.54 39.61 30.07 8.15 11.28 9.07 6.44 4.54 5.80 8.39 9.23 4.53 3.10

FAST-Short [24] 45.12 49.68 13.22 40.18 31.41 10.08 20.48 29.70 6.17 6.24 14.18 23.36 30.69 8.74 7.07

FAST-Lan-Only [24] 8.36 23.61 49.43 3.67 5.97 9.37 29.76 45.03 3.65 5.00 8.15 28.45 46.19 2.88 4.34

REVERIE [37]+FAST 50.53 55.17 16.35 45.50 31.97 14.40 28.20 45.28 7.19 7.84 19.88 30.63 39.05 11.61 11.28

Ours (CKR) 57.27 61.91 12.16 53.57 39.07 19.14 31.44 26.26 11.84 11.45 22.00 30.40 22.46 14.25 11.60

Table 1. Main Comparisons. Our CKR model significantly boosts the performance in terms of all the key metrics on all sets.

4. Experiments

4.1. Experimental Setup

Dataset. We conduct training and evaluation process on the

REVERIE benchmark [37], which is built upon the Matter-

port3D simulator [1]. The dataset is split into training, vali-

dation and testing set. The training set consists of 59 scenes

and 10,466 instructions over 2,353 objects. The validation-

seen set (val-seen) contains 53 scenes, 1,371 instructions

and 428 objects. The validation-unseen set (val-unseen) has

10 unseen scenes, 3,753 instructions and 525 objects that do

not appear in the training set. The test set consists of 6,292

instructions involving 834 objects in 16 different scenes.

Evaluation Metrics. We adopt the same metrics used

in [37] to evaluate models. Specifically, REVERIE Suc-

cess Rate (RSR) is the key metric, where the success is

achieved when the agent stops within 3 meters to the target

and localises the correct object. Besides, four evaluation

metrics commonly used in VLN are applied to evaluate the

navigation performance: Success Rate (SR), Success rate

weighted by trajectory Path Length (SPL), Oracle Success

Rate (OSR) and Trajectory Length (TL), where SPL is the

primary measure of navigation performance.

Implementation Details. Channel dimensions of features

are set to Dw = 300 and Dh = 512. Our training process

consists of two parts: 1) The CKR model. 2) The visual

grounding model, where ViLBERT [32] is adopted. For

the first part, we leverage the Adam optimizer [25] with

weight decay 5e-4, batch size 100, learning rate 1e-4 and

set λ1 = 1, λ2 = 1, λ3 = 5. We adopt student force strat-

egy, which takes 10 GPU-hours to get our best model. For

the second part, we fine tune ViLBERT on REVERIE by

feeding instructions and RoI features at the end viewpoint.

We set batch size to 60, learning rate to 2e-5 and train for

8 GPU-hours. When testing, the object with the highest

matching score is predicted as the target.

4.2. Comparison with State­of­the­Art Methods

In this section, we compare our CKR model to the previ-

ous state-of-the-art methods on the REVERIE benchmark.

We follow [37] to adopt previous state-of-the-art VLN ap-

proaches and apply visual grounding models on the end

viewpoint during inference to complete REVERIE prob-

lem. The results are shown in Tab. 1, where we mainly

compare to the RCM [47], SelfMonitor [33], FAST [24],

and REVERIE [37]. Note that all methods employ MAt-

tNet [50] fine tuned on REVERIE dataset as visual ground-

ing approach.

In Tab. 1, the best SR and RSR performance of previ-

ous VLN+Grounding baselines on val-unseen is 10.08%
and 6.24% respectively, which is quite poor and verifies

the VLN methods can not achieve REVERIE well. The

REVERIE [37] with a navigator-pointer method and FAST

search strategy further improves the performance to 14.40%
and 7.84%. Moreover, our CKR model improves all the

metrics. Specifically, we improve [SR, SPL, RSR] on val-

seen, val-unseen and test by [13.33%, 17.74%, 22.21%],

[32.92%, 64.67%, 46.05%] and [10.66%, 22.74%, 2.84%].

The performance gain on val-unseen is more obvious than

val-seen, which benefits from the prior knowledge and rea-

soning process.

4.3. Ablation Experiments

We examine the contribution of each component via ex-

tensive experiments, which are shown in Tab. 2, Tab. 3

and Tab. 4. Note that ‘Base-Net’ in Tab. 2 denotes the

transformer-based framework without any proposed mod-

ules. More ablations are in supplementary material.

ROAA Mechanism. In Tab. 2, compared with ‘Base-Net’,

‘#1’ with ROAA mechanism lifts SPL from 52.29%, 7.30%
to 53.78%, 8.11% on val-seen and val-unseen. The Top-5

accuracy of room-type prediction in ROAA-linguistic and

-visual are shown in Tab. 4b, which also confirms its effec-

tiveness. These results demonstrate that explicitly decou-

pling room/object clues benefits the navigation. Further, the

visualisation results about ROAA during navigation are in-

troduced in Sec. 4.4, which gives more insights.

Room-Entity Reasoning. In Tab. 2, comparing to ‘#1’,

‘#2’ confirms the effectiveness of room-entity reasoning by

promoting SR from 17.92% to 18.26%. Besides, in ‘#3’,

combining object-entity reasoning can improve SR even

further (19.11%). It illustrates that the two knowledge rea-

soning mechanisms are complementary.

Object-Entity Reasoning. In Tab. 2, comparing ‘#3’ to
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Name ROAA
Room-Entity Object-Entity Dir- Dis- Val-Seen Val-Unseen

Reasoning Reasoning Aware Aware SR↑ OSR↑ TL↓ SPL↑ RSR↑ SR↑ OSR↑ TL↓ SPL↑ RSR↑

Base-Net 56.22 62.40 13.98 52.29 37.74 16.13 29.11 43.87 7.30 9.65

#1 X 58.47 65.43 14.03 53.78 39.21 17.92 30.13 36.26 8.11 10.96

#2 X X 59.52 65.07 14.88 54.34 39.63 18.26 28.74 41.50 8.27 11.64

#3 X X X 65.00 72.94 15.97 58.41 44.13 19.11 40.81 51.64 8.29 12.92

#4 X X X X 57.27 61.49 15.77 53.14 38.72 19.91 33.97 37.09 10.56 12.07

#5 X X X X X 57.28 61.91 12.16 53.57 39.07 19.14 31.44 26.26 11.84 11.45

Table 2. Ablations. The performance is gradually improved with the continuous addition of proposed modules, especially on val-unseen.

Step1 Step2
Val-Seen Val-Unseen

SR↑ SPL↑ RSR↑ SR↑ SPL↑ RSR↑

– – 56.57 53.02 38.17 11.62 6.77 6.32

–

1 58.40 53.51 40.21 11.87 7.51 6.42

3 54.04 51.68 36.46 12.16 8.76 6.65

1 1 56.71 53.10 39.08 13.89 7.93 7.92

3 3 57.34 54.07 39.19 13.94 9.80 8.72

(a) Object-Entity Reasoning: Step1 and Step2 represents the iteration

number of internal and external KG reasoning. The performance gain

is obvious by conducting graph-based reasoning multi-step .

top-K
Val-Seen Val-Unseen

SR↑ TL↓ SPL↑ RSR↑ SR↑ TL↓ SPL↑ RSR↑

0 57.98 11.69 54.74 37.94 12.41 15.70 8.17 8.12

5 58.05 11.96 54.17 37.98 15.17 16.21 10.68 9.93

10 59.66 11.53 56.38 39.04 13.92 16.10 10.10 9.11

15 60.01 11.86 56.03 39.26 13.55 14.90 9.76 8.87

(b) External Knowledge Capacity: On val-seen, the performance gain via in-

troducing external knowledge is not obvious. On val-unseen, bring knowledge

prior improves SPL by 30% when top-K=5. However, importing too much extra

knowledge that also includes noise will cause performance degradation.

Table 3. Ablations. We mainly focus on the key metrics for each ablation setting. Note that, for simplicity, the results within this table are

obtained via greedy decoding during inference instead of FAST search.

Methods Val-Seen Val-Unseen

[37]+MAttNet [50] 31.97 7.84

CKR+MAttNet [50] 37.82 11.08

CKR+ViLBERT [32] 39.07 11.45

(a)

Room Acc.

Random 16.1%

Linguistic 97.4%

Visual 53.3%

(b)

Table 4. (a) RSR performance under different visual grounding

methods. (b) Room prediction accuracy of ROAA on val-unseen.

‘#2’, we observe that applying the object-entity reasoning

effectively improves the performance. Besides, we explore

the contribution of the internal KG reasoning and exter-

nal KG reasoning more deeply, which is shown in Tab. 3a.

On val-unseen, applying external KG reasoning boosts SPL

from 6.77% to 7.51%, and conducting multi-step (e.g., 3

steps) graph reasoning can further improve SPL to 8.76%. It

indicates this mechanism can effectively extract informative

hierarchical clues from external KG. Moreover, by conduct-

ing multi-step internal KG reasoning to learn the domain-

specific (in-door environment) knowledge, the performance

is further improved to SPL=9.80%.

External Knowledge Capacity. We investigate how does

the capacity of external knowledge affect the performance

by varying top-K, which is shown in Tab. 3b. Note that

top-K=0 represents ignoring external knowledge. On val-

seen, the prior knowledge has little impact on performance.

On val-unseen, the agent relies on the prior knowledge to

perform better. Through setting top-K=5, SPL rises from

8.17% to 10.68%. However, continuously increasing the

external knowledge (e.g., top-K=10), the performance will

not increase correspondingly (SPL=10.10%). It means that

the external knowledge is in general-level and may con-

tain noise that is not useful for this specific in-door domain,

which also confirms the internal KG reasoning is important.

Direction-Aware Loss (DAL). In Tab. 2, compared with

‘#3’, ‘#4’ achieves improvement on val-unseen by import-

ing DAL (SR from 19.11% to 19.91%, SPL from 8.29% to

10.56%). TL is also reduced from 51.64 to 37.09 meters.

Distance-aware Policy. On val-unseen in Tab. 2, ‘#5’ sig-

nificantly drops TL from 37.09 to 26.26 meters through util-

ising distance-aware policy. Though SR also decreases, the

decline (from 19.91% to 19.14%) is smaller than that of TL,

leading to a 1.28% SPL improvement.

Visual Grounding Methods. Tab. 4a shows the influence

of different grounding methods. Comparing [37], our CKR

equipped with the same MAttNet performs much better. By

further utilising BERT-based approach [32], RSR raises to

39.07% on val-seen. But the performance gap (11.08% to

11.45%) between two methods on val-unseen is relatively

small. It indicates the main improvement comes from the

proposed CKR model instead of better grounding method.

4.4. Qualitative Analysis

We visualise the navigation and reasoning process, etc.,

to illustrate more insights about our model.

Navigation Visualisation. To give a more intuitive view of

how our model works during navigation, we visualise sev-

eral examples in Fig. 6 and Fig. 7, where the panorama at

each step (i.e., viewpoint) is shown. The predicted/ground-

truth room-type in each navigable view and the correspond-

ing detected objects are shown simultaneously.

At step 1 in Fig. 6, the agent detects a hallway near a

kitchen as instructed, and directs to that hallway. The agent

fails to find the described phone and explores around at step

2. Then it decides to get back to the kitchen. At step 3,

the agent finds an entryway which is closely connected to
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Figure 5. Learned room-to-room correlation matrix.

Category
Most relevant categories

ConceptNet Learned

can she, jar, person, containers ... bathroom, table, trash can ...

shadow sunset, background, cloud bed, shoe, dog

post column, poster, page, log wall, bed, shoe, dog

cross pedestrian bathroom

bars beam, beer chandelier, chair

fan pitcher mound, crowd, heater ... chandelier, pillow, couch ...

Table 5. Illustration of the difference between general-level com-

monsense and domain-specific learned knowledge.

hallway in commonsense and directs to that entryway. At

step 4, the agent detects a phone and decides to stop. During

this process, the room-type is predicted successfully, and

the agent acts reasonably for a goal-oriented exploration.

In Fig. 7(a), the agent recognises bedroom and hallway

for direction. Considering goal is to go to a bathroom, and

it is usually in a bedroom. Thus the agent chooses to ex-

plore bedroom first. In Fig. 7(b), the agent notices itself

already in the living-room as instructed and detects related

objects (e.g., trees). Thus it decides to stop. The agent

makes proper decisions based on the observations.

Room-Entity Reasoning. We visualise the learned room-

to-room correlation matrix in Fig. 5, which demonstrates

the relationships among different rooms are effectively

learned in the room-entity reasoning process. For example,

the bedroom-to-toilet confidence is relative high since most

toilets are near the bedroom.

Object-Entity Reasoning. To examine the necessity of ap-

plying internal KG reasoning to conduct domain-specific

knowledge reasoning, we visualise the top-10 relevant cat-

egories in ConceptNet and the learned model (in Tab. 5).

For example, the ‘can’ category is related to ‘she’ and ‘per-

son’ in general, which is not useful for the REVERIE task.

However, after training in REVERIE with internal KG rea-

soning, it is related to ‘bathroom’ and ‘table’, which shows

the in-door domain knowledge is effectively learned.

5. Conclusion

In this paper, we propose a novel Cross-modality Knowl-

edge Reasoning (CKR) model for the recently raised

REVERIE task, where multi-innovations are introduced to

address the unique challenges. We design a Room-and-

Figure 6. Visualisation of the agent behaviours on a trajectory.

Figure 7. Visualisation of the agent behaviours on two viewpoints.

Object Aware Attention (ROAA) mechanism to decompose

room/object clues from linguistic/visual observations. We

propose a Knowledge-enabled Entity Relationship Reason-

ing (KERR) module to conduct room/object-entity reason-

ing for action decision. KERR applies graph-based knowl-

edge reasoning to capture the internal-external correlations

in terms of semantic/co-occurrences among rooms/objects,

where commonsense is incorporated. Extensive experi-

ments demonstrate the superiority of our proposed methods.

We believe this work will benefit and give insights to the

following approaches in REVERIE and E-AI communities.
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