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Abstract

Despite substantial progress in applying neural networks

(NN) to a wide variety of areas, they still largely suffer

from a lack of transparency and interpretability. While re-

cent developments in explainable artificial intelligence at-

tempt to bridge this gap (e.g., by visualizing the correlation

between input pixels and final outputs), these approaches

are limited to explaining low-level relationships, and cru-

cially, do not provide insights on error correction. In this

work, we propose a framework (VRX) to interpret classifi-

cation NNs with intuitive structural visual concepts. Given

a trained classification model, the proposed VRX extracts

relevant class-specific visual concepts and organizes them

using structural concept graphs (SCG) based on pairwise

concept relationships. By means of knowledge distillation,

we show VRX can take a step towards mimicking the rea-

soning process of NNs and provide logical, concept-level

explanations for final model decisions. With extensive ex-

periments, we empirically show VRX can meaningfully an-

swer “why” and “why not” questions about the prediction,

providing easy-to-understand insights about the reasoning

process. We also show that these insights can potentially

provide guidance on improving NN’s performance.

1. Introduction

With the use of machine learning increasing dramati-

cally in recent years in areas ranging from security [3] to

medicine [31], it is critical that these neural network (NN)

models are transparent and explainable as this relates di-

rectly to an end-user’s trust in the algorithm [12, 1]. Con-

sequently, explainable AI (xAI) has emerged as an impor-

tant research topic with substantial progress in the past few

years. Most recent xAI approaches attempt to explain NN

decision reasoning process with visualizations depicting the

correlation between input pixels ( or low-level features) and
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Figure 1. An example result with the proposed VRX. To explain

the prediction (i.e., fire engine and not alternatives like ambu-

lance), VRX provides both visual and structural clues. Colors of

visual concepts (numbered circles) and structural relationships (ar-

rows) represent the positive or negative contribution computed by

VRX to the final decision (see color scale inset). (a): The four de-

tected concepts (1-engine grill, 2-bumper, 3-wheel, 4-ladder) and

their relationships provide a positive contribution (blue) for fire

engine prediction. (b, c): Unlike (a), the top 4 concepts, and their

relationships, for ambulance/school bus are not well matched and

contribute negatively to the decision (green/yellow/red colors).

the final output [40, 23, 42, 37, 30, 35, 18, 4, 32, 29],

with perturbation-based [32, 29] and gradient-based [30, 4]

methods receiving particular attention in the community.

Despite impressive progress, we identify some key limita-

tions of these methods that motivate our work. First, the

resulting explanations are limited to low-level relationships

and are insufficient to provide in-depth reasoning for model

inference. Second, these methods do not have systematic
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processes to verify the reliability of the proposed model ex-

planations [17, 9]. Finally, they do not offer guidance on

how to correct mistakes made by the original model.

We contend that explaining the underlying decision rea-

soning process of the NN is critical to addressing the afore-

mentioned issues. In addition to providing in-depth under-

standing and precise causality of a model’s inference pro-

cess, such a capability can help diagnose errors in the orig-

inal model and improve performance, thereby helping take

a step towards building next-generation human-in-the-loop

AI systems. To take a step towards these goals, we propose

the visual reasoning explanation framework (VRX) with the

following key contributions:

• To understand what an NN pays attention to, given an

input image, we use high-level category-specific visual

concepts and their pairwise relationships to build struc-

tural concepts graphs (SCGs) that help to highlight

spatial relationships between visual concepts. Further-

more, our proposed method can in-principle encode

higher-order relationships between visual concepts.

• To explain an NN’s reasoning process, we propose a

GNN-based graph reasoning network (GRN) frame-

work that comprises a distillation-based knowledge

transfer algorithm between the original NN and the

GRN. With SCGs as input, the GRN helps optimize the

underlying structural relationships between concepts

that are important for the original NN’s final decision,

providing a procedure to explain the original NN.

• Our proposed GRN is designed to answer inter-

pretability questions such as why and why not as

they relate to the original NN’s inference decisions,

helping provide systematic verification techniques to

demonstrate the causality between our explanations

and the model decision. We provide qualitative and

quantitative results to show efficacy and reliability.

• As a useful by-product, in addition to visual reasoning

explanations, our method can help take a step towards

diagnosing reasons for any incorrect predictions and

guide the model towards improved performance.

2. Related Work

In this section, we review existing literature relevant to

our work interpreting convolutional neural networks, graph

neural networks, and knowledge distillation to differentiate

our method from others.

Interpreting neural networks. The substantial recent in-

crease in the practical adoption of deep learning has neces-

sitated the development of explainability and interpretabil-

ity methods for neural networks (NNs), and convolutional

neural networks (CNNs) in particular. One line of work fo-

cuses on pixel-level interpretation [30, 4, 42, 8, 20, 41, 38],

producing attention maps to highlight the relevant image

regions contributing to the final model decision. These

methods can further be categorized into gradient-based and

response-based methods. Response-based approaches use

an additional computational unit to calculate the impor-

tance score of spatial image locations. For example, CAM

[42] utilized an auxiliary fully-connected layer to produce

the spatial attention map and highlight image pixels con-

tributing to the network decision. On the other hand,

gradient-based methods, e.g., Grad-CAM [30], generate

class-specific attention maps based on gradients backpropa-

gated to the last convolutional layer given the model predic-

tion. In addition to pixel-level interpretation, several recent

works proposed to extract more human-intuitive concept-

level explanations for interpreting neural networks [18, 10].

Specifically, Kim et al. [18] proposed TCAV where direc-

tional derivatives are used to quantify the sensitivity of the

network’s prediction with respect to input user-defined con-

cepts. Ghorbani et al. proposed an automatic concept selec-

tion algorithm [10] based on the TCAV scores to produce

meaningful concept-level explanations. While our frame-

work also produces concept explanations automatically, it

goes beyond this and learns explicit inter-concept relation-

ships, producing more insightful interpretations.

Graph Networks. Graph neural networks (GNNs) have

been successfully applied to tasks ranging from node clas-

sification [19, 14, 39], edge classification [26, 13] to graph

classification [11, 5]. Based on “message passing”, power-

ful extensions such as GCNs [19], graph attention network

(GAT) [36], SAGE [14] and k-GNNs [24] have been pro-

posed. Due to their trackable information-communication

properties, GNNs can also be used for reasoning tasks, such

as VQA [34, 25] and scene understanding [22]. In this

work, we adopt the GCN to learn semantic relationships and

interactions between human-interpretable concepts, provid-

ing more thorough explanations.

Knowledge distillation. Knowledge distillation can effec-

tively learn a small student model from a large ensembled

teacher model [16], which finds broad applications in dif-

ferent areas, like model compression [28] and knowledge

transfer [27]. In a similar spirit, in this work, we learn

an easy-to-understand graph reasoning network (GRN) that

produces the same classification decisions as the original

NN model while also learning structural relationships be-

tween concepts to generate in-depth explanations for the

original NN inference decisions.

3. Visual Reasoning Explanation Framework

Our proposed visual reasoning explanation framework

(VRX) to explain the underlying decision reasoning pro-

cess of a given NN is visually summarized in Fig. 2. VRX
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Figure 2. Pipeline for Visual Reasoning Explanation framework. (a) The Visual Concept Extractor (VCE) discovers the class-specific

important visual concepts. (b) In original NN, the representation of the top N concepts is distributed throughout the network (colored discs

and rectangles). (c) Using Visual Concept Graphs that are specific to each image class, our VRX learns the respective contributions from

visual concepts and from their spatial relationships, through distillation, to explain the network’s decision. (d) In this example, the concept

graphs colored according to contributions from concepts and relations towards each class explain why the network decides that this input

is a Jeep and not others.

comprises three main components: a visual concept extrac-

tor (VCE) to identify primitive category-specific visual con-

cepts from the given neural network; a graph reasoning net-

work (GRN) to organize category-specific visual concepts,

represented as structural concept graphs (SCGs), based on

their structural relationships, to mimic the decision of the

original NN with knowledge transfer and distillation; and a

visual decision interpreter (VDI) to visualize the reasoning

process of the neural network given a certain prediction. We

next explain each of these components in detail.

3.1. Visual Concept Extractor

While most existing neural network explanation tech-

niques focus on producing low-level saliency maps, these

results may be suboptimal as they may not be intuitive

for human users to understand. Inspired by the concept-

based explanations (ACE) technique [10], we propose to

use visual concepts to represent an input image given class-

specific knowledge of the trained neural network to help

interpret its underlying decision-making processes.

While ACE [10] is reasonably effective in extracting

class-specific visual concepts, its performance is dependent

on the availability of sufficient image samples for the given

class of interest. As we show in Figure 3 (left), for a class

(ambulance here) with a small number of training images

(50), the ACE concepts mostly fall on the background re-

gion, presenting challenges for a downstream visual expla-

nation. To alleviate this issue, given an image I , we propose

to use top-down gradient attention [30] to first constrain

the relevant regions for concept proposals to the foreground

segments, thereby helping rule out irrelevant background

patterns. Given the class-specific attention map M , we use

a threshold τ to binarize M as M̄ (pixel values lower than

τ set to 0, others set to 1), which is used to generate the

masked image Ī = I × M̄ (× is element-wise multiplica-

tion) for further processing. Specifically, following ACE,

we extract the top-N visual concepts and their mean feature

vectors for each class of interest using the original trained

NN. Fig. 3 demonstrates the importance of the proposed

gradient attention pre-filtering discussed above using top-3

visual concepts for the ambulance class (concepts with the

pre-filtering focus more clearly on the foreground).

3.2. Graph Reasoning Network

3.2.1 Representing Images as SCGs

Given the aforementioned class-specific visual concepts

(see Section 3.1), we represent images using structural con-

cept graphs (SCGs), which, as input to our proposed graph

reasoning network (GRN), helps learn structural relation-

ships between concepts and produce visual explanations for

the original NN. Specifically, given an image, we use multi-

resolution segmentation to obtain image patches (also called

2197



Figure 3. Concept discovery with and without Grad-Cam filter.

concept candidates), as inputs to the original NN to compute

patch features, and then match these features to the mean

concept feature vectors derived above (from Section 3.1).

For each class of interest, we construct an SCG with con-

cepts/patches detected from the input image, based on the

Euclidean distance between patch feature and mean con-

cept feature. Specifically, if the Euclidean distance between

image patch feature and mean concept feature is larger than

a threshold t, we identify this patch as a detected concept.

For undetected concepts, we use dummy node feature rep-

resentation (all feature values equal to a small constant ǫ), to

ensure network dimension consistency. Note that we have

n SCGs generated for the same input image considering all

n classes of interest.

SCG is a fully connected graph (V,E) with bidirectional

edges where each node vi ∈ V represents one relevant vi-

sual concept. Each directed edge edgeji = (vj , vi) ∈ E has

two attributes: 1) a representation of spatial structure rela-

tionship between nodes edgeji, initialized with the normal-

ized image locations [xj , yj , xi, yi] of the two visual con-

cepts it connects and updated in each layer of GRN; 2) a

measure of dependency eji (a trainable scalar) between con-

cepts vi, vj (see Fig. 2 (c) and Fig.5 for an overview). Such

a design helps our framework not only discover human-

interpretable visual concepts contributing to network pre-

diction but also how their underlying interactions (with eji
capturing the dependencies) affect the final decision.

3.2.2 Imitate the Reasoning Process of NN

In addition to learning concept representations and captur-

ing the structural relationship between visual concepts we

also need to ensure the proposed GRN follows the same

reasoning process as the original NN. Since we represent

images as SCGs, this problem comes down to optimiz-

ing the GRN, with SCG inputs, so it gives the same out-

put/prediction as the original NN with image inputs. We

realize this with a distillation-based training strategy.

Specifically, given an input image I and a trained

NN classifier F(·), along with n SCG hypotheses h =
{h1, h2, ...hn} extracted from the input image, we seek to

learn the GRN G for h such that G(h) = F(I), i.e., en-

suring prediction consistency between the GRN and the

original NN. The proposed G(·) comprises two modules:

1) a GNN G is applied for all classes with different class-

specific eji to learn the graph representation of SCGs; 2) an

embedding network E is used to fuse multi-category SCGs

for final class prediction, i.e.:

G(h) = E(G(h)) = F(I) (1)

Fig. 2(b-c) give an overview of the component relation-

ship between the original NN (b) and the proposed GRN

(c), showing how GRN learns the “embedding” for each

hypothesis and through knowledge distillation ensures the

same prediction as the original NN.

We use GraphConv [24] as G’s backbone network and

modify the aggregate weights. For each graph convolutional

layer, we have:

f i
k+1 = W1f

i
k +

∑

j∈N (i)

ecjiW2f
j
k (2)

where f i
k denotes the feature of node vi (representing a

concept) in layer k, W1 and W2 denote the shared linear

transformation parameters for center node vi and neighbor

node vj respectively, N (i) denotes the neighboring node

sets connected to node i, and ecji denotes the aggregation

weight from start node vj to end node vi for a certain class

c, indicating the inter-dependency of concepts i on j. In-

stead of using shared edges for all classes of interest, GRN

learns class-specific ecji, i.e. different aggregation weights

for different classes to capture varying structural relation-

ships between class-specific concepts.

In order to better capture inter-concept relationships, we

concatenate edge features with neighboring node features,

denoted as C(ecjiW2f
j
k , edge

ji
k ), and Equation 2 becomes:

f i
k+1 = W1f

i
k +

∑

j∈N (i)

W3C(e
c
jiW2f

j
k , edge

ji
k ) (3)

With edge
ji
k+1 = W4edge

ji
k , and W3 and W4 denoting one

layer linear transformation for concatenated message fea-

ture and edge feature respectively. Since ecji is a trainable

parameter by design in our G, it helps learn concept inter-

dependency as measured by the overall training objective

(see Fig. 5(b) for a fire engine image example).

The embedding network E concatenates all the feature

vectors output from G and maps it into a n−dimensional

vector with an MLP (n is the number of classes of interest).

The GRN is then trained to imitate the original NN (see

Fig. 4) by minimizing:

Ld = ||σ(G(h))− σ(F(I))||l1 (4)
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Figure 5. (a) Class-specific importance weights eji highlight the

important concept relationships for different classes (b) eji reveals

the information transformation between concepts, which shows

the dependency between concepts: concept 1 and 2 contribute

most information to other concepts, which makes them the 2 most

discriminating concepts for a fire engine.

where σ(·) is a normalization function (see Supplementary

for more implementation details). To imitation robustly, we

randomly mask out one of the detected visual concepts on

the input image. Fig. 4 demonstrates the prediction com-

parison between the learned G and the original NN. {class

name} detect{N} denotes images from category class name

with concept N masked out.

3.3. Visual Decision Interpreter

Once our GRN is trained to be a structural-concept-level

representation of the original neural network, we can then

interpret the original model decisions with our visual de-

cision interpreter (VDI) module. As shown in Fig. 2(c-d),

after feeding an image to both the original NN and the GRN,

we obtain the final prediction y representing the probability

of all class of interest, y = E(G(h)) = E(Cm
i=1(G

i(hi))).
where Gi represents the shared G equipped with class i’s

aggregate weight eiji and Gi(hi) is the graph embedding

for the ith hypothesis SCG composed of the extracted con-

cept node and edge feature representations; C denotes con-

catenation operation. For each interested class c, we have a

class prediction score yc and compute gradients of yc with

respect to the graph embeddings from m hypothesis as:

αi =
∂yc

∂Gi(hi)
, i = 1, ...,m (5)

where αi denotes the contribution weight vector of hypoth-

esis hi. The contribution score si for each hypothesis hi

w.r.t the prediction of yc is computed as the weighted sum

of αi and G(hi):

si = α
T
i G

i(hi), i = 1, ...,m (6)

We then use the contribution score si computed from

Eq. 6 to indicate the positive or negative contribution (con-

tribution score) of each node (concept) or edge (spatial and

dependency conceptual relationship) to the decision made

by the neural network (positive contribution score means

positive contribution and vice versa).

4. Experiments and results

We conduct four different experiments to demonstrate

the effectiveness of our proposed VRX in interpreting the

underlying reasoning logic of neural network’s decision,

guiding network diagnosis and improving the performance

of the original neural network. In our experiments, we use

Xception [6] and GoogLeNet models [33] pre-trained on

the ILSVRC2012 dataset (ImageNet) [7] as the target neu-

ral networks.

4.1. Visual Reasoning Explanation Experiment

Fig. 6 (a-b) shows two examples (one correct and one

incorrect prediction) of how our VRX can help to explain

the decision behind neural networks by performing experi-

ments on GoogLeNet and Xception, respectively.

Given a pre-trained GoogLeNet on ImageNet, we de-

velop a VRX as introduced in Sec. 3 to explain the rea-

soning logic. As shown in Fig. 6 (a), for the input school

bus image, both GoogLeNet and our VRX correctly predict

the input as a school bus, with VRX outputs nearly iden-

tical prediction vector as original GoogLeNet which aligns

with our expectation that our VRX ideally should imitate

the behavior of original NN. We then use our proposed VRX

to compute the contribution score for each concept node

and edge to analyze how the detected human-interpretable

concepts along with their structural relationships contribut-

ing to the network’s decision. In this case, we ask ‘why

school bus?’ (why the original NN predict this image as

a school bus?): from a visual/conceptual perspective, all

detected top 4 important concepts have high positive con-

tribution (blue) to the prediction probability of school bus

(Row 3 of Fig. 6 (a)), indicating the network is able to dis-

cover meaningful visual regions contributive to the correct
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Figure 6. Visual Reasoning Explanation and logic consistency experiment example.

prediction; from a structural perspective, the spatial loca-

tion and relationship between concepts represented by edge

arrows also contribute positively (light or dark blue), mean-

ing the network identifies correct spatial correlations be-

tween detected visual concepts. Similarly, to answer ‘why

not fire engine?’ and ‘why not ambulance?’, VRX identifies

nearly all detected concepts negatively contribute to the cor-

responding prediction class, and all structure relationships

between concepts have negative contributions to the class

prediction as well. Based on the explanation above, VRX

can give a systematically in-depth and easy-to-understand

interpretation of the decision-making logic of GoogLeNet,

from the visual and structural perspectives respectively.

The second example is shown in Fig. 6 (b) for Xception

network. Given an image of a fire engine, both the origi-

nal Xception and our VRX wrongly predict ambulance as

output. To understand why original Xception makes the

incorrect prediction, our VRX is able to provide both vi-

sual and structural clues as well. From Fig. 6 (b) Row 1,

we can see that the detected visual concepts 3 (wheels of

the vehicle) and 4 have negative contribution to the predic-

tion of fire engine class, indicating that the wheel region of

the input image is not consistent with the model’s knowl-

edge of fire engine (with negative contribution). To answer

”why ambulance”, concept 3 and 4 have positive contribu-

tion to ambulance prediction, which explains why the orig-

inal Xception network incorrectly predicts the input image

as an ambulance.

4.2. Logic Consistency between VRX and NN

To verify that the explanation of VRX is logically con-

sistent with the reasoning of Xception, we present two ex-

periments as follows. First, as shown in Fig. 6 (c), for the

wrong prediction example same as Fig. 6 (b), we substi-

tute the flawed fire engine concept 3, which has a negative

contribution (low contribution score), with a good concept

3 (high contribution score) from another fire engine image

and form a new modified image. Then, we use Xception

to re-predict the class of the modified image, it corrects the

Cause of error

Error type total concept structure both

Before correction 119 5 6 108

Substitute with

Random patches 117 5 6 106

Change good concepts 115 5 6 104

VRX guided correction 5 1 2 2

Table 1. VRX model helps correction. Out of 119 images ini-

tially misclassified by Xception, only 5 remain misclassified after

VRX-guided image editing. Over 30% of the samples have miss-

ing concepts and over 95% of them have been correctly explained.

In contrast, 117 and 115 images remain misclassified after sub-

stituting bad concepts with random image patches, or substituting

good concepts with other good concepts from other images from

the same class.

error and predicts the input as a fire engine correctly. To

show a causal relationship between VRX’s explanation and

the reasoning logic of Xception, we perform two additional

contrastive experiments: a) Random substitute: if we sub-

stitute concept 3 with random patches, Xception does not

achieve a correct prediction; b) Substitute good: if we sub-

stitute concepts 1 or 2 with other equivalently good patches

from other images of fire engines, Xception also does not

produce a correct decision. Thus, we conclude that VRX

has correctly diagnosed the cause of Xception’s error (here,

a bad concept 3). Below, we show how this can be used

to further guide improved training of original NN without

manually modifying the image.

For the wrongly predicted class, ambulance, if we delete

a concept patch with a high contribution to ambulance prob-

ability, the prediction of Xception shows a decreased proba-

bility prediction of ambulance class and a higher probability

prediction of fire engine. In total, we applied this experi-

ment to 119 images that were initially wrongly predicted by

Xception (Table. 1). The results show that with the guidance

of VRX (confusing/bad concept detected), most wrong pre-

diction cases can be corrected through learning-based mod-

ifications of the images.
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ture aspects. (a) visual sensitive (b) structure sensitive.

4.3. Interpretation Sensitive of Visual and Structure

We have demonstrated that VRX can help explain why

and why not the model makes the decision, and shows

a causal relationship between VRX’s explanation and the

original NN’s decision. In this section, we focus on the

sensitivity analysis of VRX’s explanation from visual and

structural aspects, respectively. We design two experiments

accordingly: first, when we substitute a relatively good con-

cept (with high positive contribution scores to correspond-

ing class prediction) patch with a relatively bad concept

(with lower positive or even negative contribution score)

patch in an image, we want to see if VRX can capture

the difference and precisely locate the correct modification,

which shows the sensitivity of VRX to visual explanation.

Second, when we move one concept’s location from a rea-

sonable place to an abnormal location, we want to make

sure if VRX can precisely capture the structural abnormal-

ity and produce a corresponding explanation that correctly

matches our modification.

Fig. 7(a) demonstrates two visual sensitivity experiment

examples. In the top row, given an ambulance image with

a correct prediction from a trained Xception (Fig. 7(a) left),

VRX explains that all detected concepts and relative struc-

ture relationship have positive contributions to the predic-

tion of ambulance class. We then substitute the original

good concept 2 with relatively bad concept 2 from another

ambulance image and form a modified ambulance image

(Fig. 7(a) right), to check the sensitivity of our VRX with re-

spect to visual perturbation. From Fig. 7(a), we can see that

after the substitution, the class prediction score from both

VRX and original Xception decrease as expected. While

Error Type 1: Confused visual concepts between classes

Error Type 2: False alarms in concept detection / recognition

Error Type 3: Variance not seen in training

Figure 8. Model diagnosis and improving performance

VRX gives a clear explanation for this performance de-

crease due to: less contributive concept 1 and 2 (nega-

tive contribution to the ambulance prediction), and invariant

structure contributions, which correctly matches our modi-

fication in the original image. This proves the sensitivity

of our VRX to visual perturbations. The second row of

Fig. 7(a) shows an additional example of visual sensitivity

test.

Fig. 7(b) illustrates two structure sensitivity experiments.

Given a fire engine image with a correct prediction from

trained Xception, VRX shows that concept 3 and the struc-

tural relationships of concept 3 to all adjacent concepts are

positively contributive for class prediction. We then move

concept 3 from the original location to an abnormal loca-

tion (we move the wheels from the bottom to the sky) and

form a modified fire engine image (Fig. 7(b) right) to test

the structural sensitivity of our VRX. Similarly, VRX pro-

duces consistent explanation with respect to structure per-

turbation as well, where the spatial relationship importance

score between concept 3 to all adjacent concepts decrease

after the substitution, which demonstrates the good sensitiv-

ity of our VRX to structural information. A second example

in Fig. 7(b) shows similar results.

4.4. Model Diagnosis with VRX

With the explainability of VRX, reasoning results gen-

erated by VRX can be further utilized to guide improving

the performance and generalizability of the original NN.

Fig. 8 shows a 6-class confusion matrix with Xception.

With VRX, the type of error Xception makes can be cat-

egorized as the following:

(1) Confused visual concepts between classes. The top k

concepts of different classes may share certain overlaps. For

instance, most vehicles have concepts related to ’wheels’.

Hence judging only by this concept, the neural network may

confuse one type of vehicle with another. There are existing
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Figure 9. Diagnosis and improvement experiment on iLab-20M.

approaches [21] which can guide the network in growing

its attentive region and alleviating the impact from biases in

training data.

(2) False alarms in concept detection/recognition. To

VRX this usually means one or more patches are incorrectly

labeled, which means either the neural network’s feature ex-

traction can be improved, or the most important visual con-

cepts for specific classes are not discriminative enough.

(3) Variance not seen in training. For instance, the dis-

tribution of viewpoints of a class of interest is biased in the

training set of the NN. When the same object with an un-

seen viewpoint is presented to the NN, it may fail to rec-

ognize it. In these cases, in VRX’s decision reasoning, it

may appear that most of the detected concepts are very close

matches. However, the edge features seem off, suggesting

the structural or spatial relationships between concepts are

the cause for the NN to make incorrect predictions. Aug-

menting the training images with more diversity in view-

points may solve the problem, as the further experiment

shown below with the iLab-20M [2] dataset.

To further demonstrate the capability of NN diagnosis,

we design an experiment on iLab-20M. iLab-20M is an at-

tributed dataset with images of toy vehicles on a turntable

captured with 11 cameras from different viewpoints. We

sampled a subset from iLab-20M with similar identity and

pose: we focus on three classes of vehicles: bus, military,

and tank. In the training set, each class has 1000 images.

We manually introduce biases with the pose of each class:

all buses are with pose 1, all military are with pose 2 and all

tanks are with pose 3 (Fig. 9). We designed an unbiased test

set where each kind of vehicle has all the 3 poses.

We train a Resnet-18 [15] to classify the 3 types of ve-

hicles with the training set and test the accuracy on the test

set (Table. 2). To explain the reasoning logic of the trained

network, we trained a GRN with VRX and explained the

logic of common mistakes made by the Resnet-18 (Details

in supplementary). For most incorrectly classified samples

original setting 1 setting 2

Average accuracy 50 60 50

Table 2. Testing set accuracy comparison for VRX boost original

model performance. All numbers are in %.

in the test set, given the input image (in Fig. 9, the mil-

itary is wrongly predicted as tank), VRX’s interpretation

shows that most of the detected visual concepts had a posi-

tive contribution to the correct class while the structure re-

lationship between concepts contributed mostly negatively,

which leads to the incorrect prediction. To verify the “di-

agnosis”, we designed a follow-up experiment, focusing on

improving performance for the military class. Setting 1: we

add images of additional poses (150 for each of the three

poses) for the military in the training set and test the perfor-

mance on the test set; setting 2: we add the same amount

of images (450) as setting 1 but with images of the same

pose as in the original training set. Table 2 shows that the

accuracy with the augmented training set using setting 1 ob-

tains much higher performance compared to the initial ex-

periment and the follow-up experiment with setting 2 which

does not bring any improvement. This suggests that VRX

can help to diagnose the root cause of mistakes a neural

network made, and potentially provide useful suggestions

to improve the original NN’s performance.

5. Conclusion

We considered the challenging problem of interpreting

the decision process of a neural network for better trans-

parency and explainability. We proposed a visual reasoning

explanation framework (VRX) which can extract category-

specific primitive visual concepts from a given neural net-

work, and imitate the neural network’s decision-making

process. Our experiments showed that the VRX can visu-

alize the reasoning process behind neural network’s predic-

tions at the concept level, which is intuitive for human users.

Furthermore, with the interpretation from VRX, we demon-

strated that it can provide diagnostic analysis and insights

on the neural network, potentially providing guidance on its

performance improvement. We believe that this is a small

but important step forward towards better transparency and

interpretability for deep neural networks.
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