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Abstract

Image virtual try-on replaces the clothes on a person

image with a desired in-shop clothes image. It is chal-

lenging because the person and the in-shop clothes are un-

paired. Existing methods formulate virtual try-on as either

in-painting or cycle consistency. Both of these two formula-

tions encourage the generation networks to reconstruct the

input image in a self-supervised manner. However, exist-

ing methods do not differentiate clothing and non-clothing

regions. A straightforward generation impedes the virtual

try-on quality because of the heavily coupled image con-

tents. In this paper, we propose a Disentangled Cycle-

consistency Try-On Network (DCTON). The DCTON is able

to produce highly-realistic try-on images by disentangling

important components of virtual try-on including clothes

warping, skin synthesis, and image composition. Moreover,

DCTON can be naturally trained in a self-supervised man-

ner following cycle consistency learning. Extensive exper-

iments on challenging benchmarks show that DCTON out-

performs state-of-the-art approaches favorably.

1. Introduction

Virtual try-on of fashion images aims at changing the

clothes of a person with other in-shop clothes. There are

wide applications including costume matching, fashion im-

age editing, and clothes retrieval for e-commerce. Exist-

ing methods mainly focus on a direct try-on based on 2D

images because of the available person images and in-shop

clothes images online. However, these images are unpaired

since the collection of images with multiple models, of

which each model wears different and pixel-wise aligned

clothes is infeasible.

To handle unpaired images, existing methods such

as VITON [15], CP-VTON [35], CP-VTON+ [24], and

*Y. Song is the corresponding author. This work is done when C. Ge is
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com/ChongjianGE/DCTON.

CNN

Input 1 Masked 1

Clothes 1

Reconstruct 1

Supervision

Self-supervised learning
(One-way)

CNN 1

CNN 2

Input 1Clothes 2 Try-on 1 Clothes 1

Cycle consistency
(Vanilla)

Warping

Generation

CNN 1

Cycle consistency
(Ours)

CNN 2

Input 1 Try-on 1Clothes 2 Clothes 1Surface Surface

Warping

Generation

Generation

Generation

Generation

Figure 1. Comparison of virtual try-on pipelines. The inpainting

methods (e.g., CP-VTON [35] and ACGPN [40]) shown in the top

row use one in-shop clothes to replace the same input clothes. The

vanilla CycleGAN [18] shown in the middle row introduces two

in-shop clothes for cycle consistency at the expense of generating

coupled image contents (i.e., clothes, skin, and human poses). In

the last row, we propose DCTON to disentangle virtual try-on as

clothes warping and non-clothes generation, which is built upon

vanilla cycle consistency for self-supervised learning.

ACGPN [40] formulate virtual try-on as an inpainting prob-

lem. They first mask the clothes region of a person im-

age, and then recover the clothes region by using the same

in-shop clothes for self-supervised network training. The

pipeline is shown in the top row of Fig. 1. It is regarded

as a one-way reconstruction from the corrupted input im-

age to its original image. Since these methods only use one

clothes during training (i.e., clothes 1 is matched to input 1),

they are not effective when the person image and the target
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Figure 2. Virtual try-on comparisons. Inpainting based methods (ACGPN [40] and CP-VTON [35]) are not effective to establish an accurate

correspondence in (c) and (d) when the target clothes are significantly different from that in input images. Meanwhile, a heavily coupled

content generation (CA-GAN [18]) brings salient artifacts as shown in (e). Different from existing methods, our DCTON disentangles

virtual try-on as clothes warping, skin synthesis, and image composition in a cycle consistency training configuration. The network is

learned to produce highly-realistic try-on results as shown in (f).

in-shop clothes are significantly visually different. Exam-

ples are shown in Fig. 2(c) and (d), where clothes with long

sleeves will be changed to those with short sleeves. The

arm region is not accurately generated as shown in the first

row. Meanwhile, there are large artifacts on the skirts in

the second row. Besides these observations, these methods

utilize separate modules for virtual try-on such as thin plate

splines (TPS) [9] warping and semantic prediction. Their

performance is limited due to a lack of end-to-end training

for network potential exploitation.

Apart from the above inpainting-based methods, CA-

GAN [18] incorporates cycle consistency for end-to-end

network training. As shown in the middle row of Fig. 1,

CA-GAN substitutes the clothes of an input person image

(i.e., input 1) with an arbitrary target in-shop image (i.e.,

clothes 2). This network design improves correspondence

matching between the person image and arbitrary target

clothes. Nevertheless, it is still challenging to simultane-

ously generate the shape and the texture of clothes, the hu-

man skin, and the non-clothing contents in a cycle gener-

ative adversarial network (GAN). As shown in Fig. 2(e),

artifacts appear around the arms and the logo region. This

indicates a straightforward generation via cycle consistency

training is insufficient for high quality virtual try-on.

In this paper, we address aforementioned limitations by

proposing a disentangled cycle-consistency try-on network

(DCTON). It disentangles virtual try-on into three sub-

modules. The first one is clothes warping module that pre-

serves clothes design (e.g., collar style, sleeve cutting, and

logo). The second one is skin synthesis module for oc-

cluded human body part generation (e.g., the arm of the

blouse and vest in Fig. 2). The third one is image com-

position module for output image generation. During train-

ing, DCTON disentangles these three components from in-

put images to constitute a try-on cycle for self-supervised

learning. Extensive experiments on the benchmark datasets

show that DCTON performs favorably against state-of-the-

art virtual try-on approaches.

2. Related Work

In this section, we review the literature of virtual try-on

and cycle consistency for image generation.

2.1. Virtual Try­on

Studies on virtual try-on derive from fashion editing [28,

14, 48, 23] for efficient clothes substitution. The computer

graphics model [46] and dimensionality reduction tech-

nique [10] are first developed for try-on generation. With

the development of CNNs [32, 33], learning based methods

evolve significantly. These methods can be categorized as

3D-based [12, 27, 25, 41] and 2D-based [18, 15, 35, 40]

methods. Due to the lightweight data collection, 2D meth-

ods suite real-world scenarios and thus become popular.

However, training a 2D-based try-on model is still chal-

lenging due to a lack of paired triplet data [15, 7] (i.e., a

reference person, a target in-shop clothes, and the person

wearing this clothes). Inspired by self-supervised learning,

prior arts address this issue either in a one-way reconstruc-

tion [15, 35, 24, 44, 40, 13] or a vanilla cycle consistency
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generation [18]. For the one-way scheme, methods such

as VITON [15], CP-VTON [35] and CP-VTON+ [24] first

mask the region of both clothes and limbs, and then refill

this region with either the same input clothes or the gen-

erated skin. These methods do not perform well when the

target clothes is significantly different from that in the in-

put images. Also, a lack of end-to-end training limit their

generalization potential.

The cycle consistency structure is employed in CA-

GAN [18] for virtual try-on. By feeding the generator with

shuffled training samples (i.e., the reference person and an

arbitrary clothes), CA-GAN improves clothes characteris-

tics preserving while bringing undesirable artifacts in tex-

ture and body generation. This is because the generation

of both clothes texture and occluded body parts is challeng-

ing for one network. To this end, our DCTON disentangles

virtual try-on as clothes warping, skin synthesis, and image

composition within a cycle consistency framework to pro-

duce highly-realistic try-on images.

2.2. Cycle Consistency for Image Generation

The self-supervised learning of cycle consistency intro-

duces pixel-wise supervision for unpaired image-to-image

generation [2, 20, 34, 45]. In [47], a CycleGAN framework

is proposed for unpaired image synthesis. The DualGAN is

proposed in [43] for image quality improvement. The re-

lationships between different domains are explored in [20]

based on the cycle consistency.

Cycle consistency learning has been applied to many

applications including image style transfer [4, 31], object

tracking [36, 37], and photo enhancement [5, 42]. How-

ever, cycle consistency learning is not effective when han-

dling person image generation [22, 29], pose-guided anima-

tion [3], image restoration [21, 38], and virtual try-on [15].

Inspired by the cycle consistency scheme [47], we refor-

mulate the try-on task as a conditional unpaired image-to-

image generation problem. The try-on result is condition-

ally generated by the images of the reference person and the

target clothes. A straightforward cycle consistency is not

effective for try-on as the generation of both clothes texture

and occluded human parts is challenging. In this work, we

disentangle try-on to several sub-modules for high-quality

results production.

3. Proposed Method

We disentangle virtual try-on as clothes warping, skin

synthesis, and image composition within the cycle consis-

tency framework. Three encoders are utilized for the dis-

entanglement. Fig. 3 shows an overview of our pipeline.

In the following, we first illustrate each component of the

disentanglement in Sec. 3.1. Then, the cycle consistency

training will be presented in Sec. 3.2 to empower networks

for highly-realistic try-on generation.

3.1. Disentangled Virtual Try­on

We use the subscript 1 to illustrate the image contents

related to the input clothes, and subscript 2 to denote the

image contents related to the target clothes. Specifically,

we denote the input image as I1, the in-shop target clothes

image as C2, the skin region of the input image as S1, re-

spectively. On the other hand, the in-shop clothes of the

input image is denoted as C1, the skin region of the output

image is denoted as S2, and the output image is denoted as

I2. These notations will be used to present the process of

disentanglement.

3.1.1 Clothes Warping

There are two sequentially-connected encoder-decoder net-

works and one encoder in the clothes warping module. We

use the Densepose descriptor [1] to extract the human sur-

face representation of the input image I1, which is denoted

as D. Then we send D and C2 into an encoder-decoder net-

work named as MPN (mask prediction network). The MPN

will produce the mask of the clothes region (i.e., M clothes
1 )

and skin region (i.e., M skin
1 ) of the input image, which are

used as the prior guidance for further warping and genera-

tion, respectively. We train MPN with the supervision from

the parsing labels of I1 via the pixel-wise L1 loss on each

corresponding mask region. Note that different from pre-

vious works, we adopt the Densepose descriptor for human

representation since it provides both the key point positions

and semantic parsing results (e.g., body and arm shape),

while vanilla 2D pose estimators can only provide the key

point positions. The semantic parsing results improve our

model to become sensitive around the human shapes for

clothes fitting and characteristics generation.

After obtaining M clothes
1 , we send it together with C2

to the second encoder-decoder network, which is denoted

as STN (spatial transformer network) [17]. The STN will

warp C2 according to the guidance from M clothes
1 . Specif-

ically, STN first produces a transformation matrix T and

guides this matrix via Thin-Plate Spline (TPS) [9] (i.e., T )

to warp the clothes image C2. After obtaining the warped

target clothes C
warp
2 and the skin region M skin

1 , we use an

encoder to extract their pyramid features to further concate-

nate with other encoded features for output generation. The

parameters of STN are kept fixed during the cycle consis-

tency training. We pretrain the STN by only using the in-

shop clothes image C1 and the input image I1. The loss

function of STN can be written as:

La = ||T (C1)− I1 ⊙M clothes
1 ||1, (1)

where M clothes
1 is the mask region of the input image that

is given by the parsing result, and ⊙ is the element wise

multiplication operation.
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Figure 3. The pipeline of our disentangled cycle consistency framework. We show the CNN architecture above where there are clothes

warping, skin synthesis, and image composition modules. The encoded features from these modules are concatenated to decode the output

image. The cycle consistency is shown below where we use two CNNs with the same architecture. We send the output image from one

CNN to another CNN as input to constitute self-supervision for end-to-end learning.

Due to the huge variation of poses in the real-world try-

on scenario, the original transformation matrix T may not

be effective enough to produce stable T during training.

Simply adopting the STN is not capable of dealing with the

large misalignment and deformation, thus bringing artifacts

on the warped clothes C
warp
2 . We further incorporate a reg-

ularization term to robustly produce T . In practice, we first

introduce a homography matrix H to reduce the variations

of T . For the n-th training iteration, we construct an objec-

tive function as:

Rb = ||H × T n−1 − Tn||2, (2)

where T n−1 is from the (n − 1)-th iteration. We can use

SVD [11] to solve the Homogeneous Linear Least Squares

problems as well as optimize H , and use the optimized H

to compute Eq. (2) as a regularization term. As a result, the

whole loss function to pretrain STN can be written as:

LSTN = La +Rb, (3)

where Rb regularizes the transformation matrix T during

STN training. To this end, we have successfully disentan-

gled the clothes warping via a sequential network.

3.1.2 Skin Synthesis

The skin synthesis aims to recover the occluded human

body regions during try-on. We extract the skin region of

the input image (i.e., S1) by using the input surface D. Af-

ter obtaining S1, another encoder branch is exploited to cap-

ture its pyramid feature representations. The encoder we

use contains the same architecture as that in Sec. 3.1.1. The

encoded features of S1 are concatenated with other encoded

features at each feature level to represent the output image

I2 in the CNN feature space.

3.1.3 Image Composition

After obtaining the encoded feature representations of

warped clothes C
warp
2 and skin image S1, we send the in-

put image I1 into an encoder for global image representa-

tion. The encoder structure is the same as the other two en-

coders. We then concatenate the encoded features of C
warp
2 ,

S1, and I1 sequentially and send them into the decoders for

output image I2 generation. To this end, we perform clothes

warping, skin synthesis, and image composition in three in-

dependent modules and fuse their feature representations to

produce the try-on result.

3.2. Cycle Consistency Training

Fig. 3 shows the cycle consistency construction. We gen-

erate a try-on result I2 given an input image I1 with its skin

region S1, target clothes C2, and Densepose descriptor D.

In return, we use the generated try-on results I2, the skin

region brought by the target clothes S2 (i.e., M skin
1 ⊙ I2),

and the target clothes C1 and D as the input to generate
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an inversely predicted input image
←

I1. Note that during the

training process, the designed networks CNN1 and CNN2 in

Fig. 3 share the same architectures. The cycle consistency

will be established by enforcing
←

I1 ≈ I1 to formulate self-

supervision. We further illustrate the loss functions during

the cycle consistency training as follows:

Adversarial Loss. We introduce two discriminators Dp and

Ds during the adversarial loss Ladv computation stage. The

learned generators will synthesize a target try-on image I2,

an inversely predicted input image
←

I1, a target skin image

S2, and an inversely predicted input skin image
←

S1. We

expect the appearance of both
←

I1 and I2 is similar to that of

I1, and the appearance of both
←

S1 and S2 is similar to that

of S1. The loss function can be written as follows:

Ladv =E
I2,
←

I1
[log(Dp(I2) ·Dp(

←

I1))]+

E
S2,
←

S1

[log(Ds(S2) ·Ds(
←

S1))]+

EI1,S1
[log((1−Dp(I1)) · (1−Ds(S1)))],

(4)

where
←

S1 indicates the generated skin of
←

I1.

Cycle Consistency Loss. In addition to the adversarial loss

that ensures similar appearance distributions between the

try-on results and the target images, we propose the cycle

consistency loss to improve the pixel-wise self supervision.

The cycle consistency loss term is based on ℓ1 on the syn-

thesized try-on results and the corresponding skin regions,

respectively. It can be written as follows:

Lcyc =
∣

∣

∣

∣

←

I1 − I1
∣

∣

∣

∣

1
+
∣

∣

∣

∣

←

S1 − S1

∣

∣

∣

∣

1
. (5)

Content Preserving Loss. For the contents within the hu-

man region excluding the skin and clothes regions, we aim

to identically preserve them in the output try-on results. To

this end, we design a content preserving loss term which

measures the similarities between I1 and
←

I1, and I1 and I2
within this region. The loss term can be written as follows:

Lpre =
∣

∣

∣

∣M ⊙ (I2 − I1)
∣

∣

∣

∣

1
+
∣

∣

∣

∣M ⊙ (
←

I1 − I1)
∣

∣

∣

∣

1
, (6)

where M = 1−M skin
1 −M clothes

1 denotes the mask of the

human body excluding the clothes and skin.

Perceptual Loss. We utilize the perceptual loss [30] to

ensure similar CNN feature representations between the

warped clothes. This improves the correspondence accu-

racy during clothes warping. The perceptual loss can be

written as:

Lvgg =
∑

l=1

1

WlHlCl

(
∣

∣

∣

∣φl(C2
wrap −M1

clothes ⊙ I2)
∣

∣

∣

∣

1

+
∣

∣

∣

∣φl(C1
wrap −M2

clothes ⊙
←

I1)
∣

∣

∣

∣

1
),

(7)

where φl denotes the feature of the l-th layer in

VGG19 [19], and Wl, Hl, Cl are the spatial parameters of

the corresponding CNN features.

Objective Function. Our final objective function consists

of all the aforementioned loss terms and can be written as

follows:

Lall = Ladv + λcycLcyc + λvggLvgg + λpreLpre, (8)

where λcyc, λvgg and λpre are the constant scalars balanc-

ing the contributions from these loss terms.

4. Experiments

In this section, we illustrate the benchmark datasets, im-

plementation details, evaluation results, and ablation stud-

ies. The datasets we use are VITON and VITON-HD.

VITON. There are 19k image groups in this dataset. Each

image group contains a frontal view of a model and an in-

shop clothes image. We follow [35] to exclude 2747 invalid

image groups, and thus maintain a training set consisting of

14,221 groups and a testing set consisting of 2,032 groups.

VITON-HD. The images in this dataset are the same to

those of VITON but with a higher resolution of 512×384.

The VTION-HD dataset is more challenging since the re-

sults are in higher resolution where artifacts are more obvi-

ous on the try-on results.

4.1. Implementation Details

Architectures. Our network consists of four independent

encoders, two decoders, and one pre-trained STN network.

The architectures of the encoders and the decoders are from

the Res-Unet [6], and the corresponding discriminators are

from PatchGAN [16]. There are five convolutional layers

with a stride number of 2 and two residual blocks in each

encoder. The decoder in MPN and the decoder used to gen-

erate the try-on results both contain five deconvolutional

layers. The number of filters for the convolutional layers

is 64, 128, 256, 512, 512 in each encoder, and 1536, 2048,

1024, 512, 256 in the final decoder used to output the try-

on results, respectively. The STN is an encoder-decoder

where the encoder consists of 5 convolutional layers with a

stride number of 2. Each convolutional layer is followed by

a max-pooling layer.
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Figure 4. Visual evaluation on the VITON dataset. Compared to existing methods [35, 24, 40, 18], our DCTON is effective to preserve

human body characteristics, and clothes textures, and generate occluded human body parts. These advantages enable DCTON to generate

highly-realistic try-on results.

Training and Testing. We pretrain an STN network with

paired data (i.e., the clothes region of the in-shop clothes

image and the try-on results) by using the objective function

in 3.1. Then, we train DCTON end-to-end with the input of

the model, the segmented skin, the Densepose descriptor,

and the random in-shop clothes. DCTON is trained under

100 epochs. The parameter values of λcyc, λvgg , and λpre

are all set as 10. The initial learning rate is set to be 0.0002

and the model is optimized by the Adam optimizer with

β1 = 0.5 and β2 = 0.999. During testing, we only use

CNN2 shown in Fig. 3 for online inference. The inputs to

the network are the same as those during training.

4.2. Qualitative Evaluations

We compare DCTON to inpainting based one-way re-

construction methods CP-VTON [35], CP-VTON+ [24] and

ACGPN [40], and the vanilla cycle consistency method CA-

GAN [18]. Fig. 4 shows the evaluation results. In the first

row, we aim to indicate the clothes characteristics preserv-

ing ability of these methods. The target in-shop clothes and

the input image clothes are significantly different. Exist-

ing methods do not attend to the target clothes and fit this

clothes to the clothes region of the input image. To this end,

limitations occur around the collar, sleeves, and the clothes

boundaries. These limitations are solved by our DCTON

where the target in-shop clothes are arbitrary during train-

ing. We use various clothes to train DCTON with a high

generalization ability.

In the second row, we aim to show the texture transfer

ability of these methods. There are blur and distortions

in the results generated by CP-VTON and CP-VTON+.

Although these limitations are alleviated in the result of

ACGPN, the whole clothes content is incorrectly gener-

ated. Compared with the vanilla cycle consistency method

CA-GAN, DCTON is able to preserve the subtle embroi-

derer. Moreover, the subtle clothes texture is well preserved

without distortion, due to the accurate clothes warping from

STN.

In the third and last rows, we aim to indicate that whether

existing methods maintain the non-clothes regions. The

one-way inpainting methods are not effective for detail

preservation (i.e., skirts in the third row). Moreover, there

are limitations for these methods when generating occluded

body parts including peculiar upper limbs, necks and hands.

From these examples, we conclude that the one-way in-

painting methods bring blur on human bodies and clothes

boundaries. They are not effective to preserve the tar-

get clothes characteristics (e.g., the collars and sleeves).

This limitation is partially alleviated in CP-VTON+ and

ACGPN. However, without using arbitrary clothes during

training, the incorrect content generation around occluded

human bodies occurs. The CAGAN uses cycle consistency

to attend to clothes characteristics while the subtle textures

are ignored. In comparison, we use disentangled cycle con-

sistency during training. The learned DCTON is able to

generate highly-realistic try-on results. The challenging

factors including clothes textures warping, characteristics

preserving, and occluded human body generation are effec-

tively solved.

Besides evaluations on VITON, we show visual results
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Reference 

Person

Target

Clothes
VITON CP-VTON CP-VTON+ CA-GANACGPN Ours

Figure 5. Visual evaluations on the VITON-HD dataset. Our DCTON is effective to generate try-on results under a higher resolution. The

results of existing methods are upsampled in this figure.

on VITON-HD in Fig. 5. The VITON-HD dataset is more

challenging for virtual try-on because the details are more

obvious and artifacts are more salient. Nevertheless, our

DCTON is effective to generate highly-realistic try-on re-

sults. Compared to existing methods, DCTON preserves

the target clothes characteristics as shown around the collar

regions in the first row. Meanwhile, DCTON is advanta-

geous to generate occluded body parts (i.e., the arm region

in the second row). Overall, our DCTON is effective for

virtual try-on under such resolution where existing methods

do not attempt. The results from existing methods in this

figure are upsampled for a direct view comparison.

4.3. Quantitative Evaluations

We use the Fréchet Inception Distance (FID) [8] and

Structural SIMilarity (SSIM) [39] metrics to measure the

similarity of data distributions between the generated try-

on results and the reference image (i.e., the reference person

image). For a comprehensive comparison, Inception Score

(IS) [26] is also utilized to measure the perceptual quality of

synthesized images. To make the fair comparison, the quan-

titative results generated by different methods are evaluated

under the same configurations.

Table 3 shows the SSIM, IS and FID scores by CA-

GAN [18], VITON [15], CP-VTON [35], CP-VTON+ [24],

and ACGPN [40]. The IS results indicate that our DCTON

outperforms CA-GAN, VITON, CP-VTON, CP-VTON+,

and ACGPN by 0.29, 0.56, 0.26, 0.10, and 0.16, respec-

tively. In the SSIM metric, our DCTON surpasses these

Table 1. The comparison of different methods under IS [26],

SSIM [39] and FID [8] metrics. For IS and SSIM, the higher is

the better. For FID, the lower is the better. DCTON⋆ denotes the

DCTON without the skin synthesis encoder. And we use DCTON⋄

to indicate the DCTON without the regularization term in STN.

Methods Dataset IS [26]↑ SSIM [39]↑ FID [8]↓

CA-GAN [18] VITON 2.56± 0.09 0.74 47.34

VITON [15] VITON 2.29± 0.07 0.74 55.71

CP-VTON [35] VITON 2.59± 0.13 0.72 24.45

CP-VTON+ [24] VITON 2.75± 0.14 0.75 21.04

ACGPN [40] VITON 2.69± 0.12 0.81 16.64

DCTON⋆ VITON 2.81± 0.14 0.74 18.12

DCTON⋄ VITON 2.80± 0.23 0.79 15.70

DCTON VITON 2.85 ± 0.15 0.83 14.82

DCTON VITON-HD 2.84 ± 0.10 0.81 15.55

methods by 0.09, 0.09, 0.11, 0.08, and 0.02, respectively.

The lower FID score usually brings higher quality of the

synthesized images. As such, our DCTON performs favor-

ably against other methods. Note that even in the challeng-

ing VITON-HD dataset, our DCTON also brings consider-

able improvement. These results show the effectiveness and

robustness of our method.

Besides the high-quality visual performance, DCTON

is also advantageous by using less computational resource.

We show the computational costs of ACPGN [40] and DC-

TON in Table 3. Under the same dataset (VITON) and hard-
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Reference 

Person

Target

Clothes

DCTON

(w/o s-e)

DCTON

(w/ s-e)

Reference 

Person

Target

Clothes

DCTON

(w/o s-e)

DCTON

(w/ s-e)

Figure 6. Ablation study on the effect of the skin synthesis encoder.

S-e denotes the skin encoder. Without the prior features guidance

provided by the skin synthesis encoder, DCTON⋆ is not capable

of generating the realistic human skin.

Table 2. User study on the VITON test set. The ratio values indi-

cate the percentages of subjects preferring DCTON.

Methods CA [18] VI [15] CP [35] CP+ [24] AC [40]

DCTON 87.68% 80.32% 85.84% 79.82% 79.29%

Table 3. Time cost and computational complexity analysis.

Methods Dataset Training Time #Params FLOPS FPS

ACGPN [40] VITON ∼ 40h 139M 206G 10

DCTON VITON ∼ 44h 153M 194G 19

ware configurations (8 Nvidia Telsa V100 GPUs), the train-

ing time of DCTON is similar to that of ACGPN. Under

only 1 V100 GPU, the online inference speed of DCTON

is almost twice faster than that of ACPGN. We also analyze

the model parameters and FLOPs in Table 3. DCTON con-

tains more parameters while taking less FLOPs. The nearly

real-time generation speed of DCTON (i.e., 19 FPS on 1

V100 GPU) is suitable for the online cloud service.

4.4. User Study

The quantitative evaluation metrics are not sufficient to

reflect the visual quality of the images as they measure the

overall distributions of two image sets. To further evalu-

ate the performance of existing methods, we conduct a user

study where there are over 50 subjects. To make a fair com-

parison, 200 images from the VITON test set have been ran-

domly selected for each method. A total of 1000 groups of

generated images are provided for the user study on five

comparing methods. The evaluation guidance is to consider

the overall perceptual quality as well as fine-grained texture

details. Each subject is randomly assigned with 100 image

groups to select which result is better. Each image group

contains a reference person, a target clothes, the generated

results from DCTON, and another method for comparison.

The results in Table 2 show that our DCTON achieves both

higher perceptual quality and better texture details.

Reference 

Person

Target

Clothes

DCTON

(w/o R)

DCTON

(w/ R)

Reference 

Person

Target

Clothes

DCTON

(w/o R)

DCTON

(w/ R)

Figure 7. Ablation study on the effect of the proposed regulariza-

tion term in STN. We denote R as the abbreviation of the regular-

ization term. Without the regularization, STN will fail in warping

the detailed textures.

4.5. Ablation Study

We validate two components of DCTON (i.e., the gen-

erating module and warping module) in the ablation study.

We use DCTON⋆ to indicate DCTON without the skin syn-

thesis encoder, and DCTON⋄ to indicate DCTON without

the regularization term in STN. We first assess the effects

of the skin synthesis encoder. Quantitative results in Ta-

ble 3 show that after removing the skin encoder, the perfor-

mance of DCTON⋆ will decrease but is still better than other

methods by a margin. The visual comparison presented in

Fig. 6 shows that DCTON⋆ tends to generate the skin ei-

ther with peculiar colors or blurring. An experiment is also

performed to validate the proposed regularization term in

STN. As shown in Fig. 7, clothes with an obvious logos or

embroiderer are presented as examples. From the first row

in Fig. 7, the STN module without the extra assistance of the

proposed regularization term is prone to output the clothes

with obvious distortion on the clothing texture. The second

row in Fig. 7 shows that the regularization term facilitates

STN to warp the target clothes in a proper manner.

5. Concluding Remarks

Virtual try-on methods typically consist of either a one-

way reconstruction scheme or a vanilla cycle consistency

configuration. However, limitations still exist when these

methods generate photo-realistic try-on results. The one-

way reconstruction scheme hinders existing methods from

sufficient training, while the vanilla cycle consistency meth-

ods lack the texture preservation ability. In this paper, we

proposed DCTON to disentangle virtual try-on as clothes

warping, skin synthesis, and image composition. These

modules are integrated within one framework for end-to-

end cycle consistent training. Extensive experimental re-

sults validate that our DCTON achieves favorable per-

formance compared to state-of-the-art virtual try-on ap-

proaches.
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