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Abstract

Recent advances in label assignment in object detec-

tion mainly seek to independently define positive/negative

training samples for each ground-truth (gt) object. In this

paper, we innovatively revisit the label assignment from a

global perspective and propose to formulate the assign-

ing procedure as an Optimal Transport (OT) problem – a

well-studied topic in Optimization Theory. Concretely, we

define the unit transportation cost between each deman-

der (anchor) and supplier (gt) pair as the weighted sum-

mation of their classification and regression losses. After

formulation, finding the best assignment solution is con-

verted to solve the optimal transport plan at minimal trans-

portation costs, which can be solved via Sinkhorn-Knopp

Iteration. On COCO, a single FCOS-ResNet-50 detector

equipped with Optimal Transport Assignment (OTA) can

reach 40.7% mAP under 1× scheduler, outperforming all

other existing assigning methods. Extensive experiments

conducted on COCO and CrowdHuman further validate the

effectiveness of our proposed OTA, especially its superior-

ity in crowd scenarios. The code is available at https:

//github.com/Megvii-BaseDetection/OTA.

1. Introduction

Current CNN-based object detectors [27, 30, 21, 47, 33,

29, 36] perform a dense prediction manner by predicting

the classification (cls) labels and regression (reg) offsets for

a set of pre-defined anchors1. To train the detector, defining

cls and reg targets for each anchor is a necessary procedure,

which is called label assignment in object detection.

Classical label assigning strategies commonly adopt pre-

defined rules to match the ground-truth (gt) object or back-

ground for each anchor. For example, RetinaNet [21] adopts

Intersection-over-Union (IoU) as its thresholding criterion

*Corresponding author
1For anchor-free detectors like FCOS [38], the feature points can be

viewed as shrunk anchor boxes. Hence in this paper, we collectively refer

to anchor box and anchor point as “anchor”.
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Figure 1. An illustration of ambiguous anchor points in object de-

tection. Red dots show some of the ambiguous anchors in two

sample images. Currently, the assignment of these ambiguous an-

chors is heavily based on hand-crafted rules.

for pos/neg anchors division. Anchor-free detectors like

FCOS [38] treat the anchors within the center/bbox re-

gion of any gt object as the corresponding positives. Such

static strategies ignore a fact that for objects with different

sizes, shapes or occlusion condition, the appropriate posi-

tive/negative (pos/neg) division boundaries may vary.

Motivated by this, many dynamic assignment strategies

have been proposed. ATSS [47] proposes to set the divi-

sion boundary for each gt based on statistical characteris-

tics. Other recent advances [48, 19, 51, 16] suggest that

the predicted confidence scores of each anchor could be a

proper indicator to design dynamic assigning strategies, i.e.,

high confidence anchors can be easily learned by the net-

works and thus be assigned to the related gt, while anchors

with uncertain predictions should be considered as nega-

tives. Those strategies enable the detector to dynamically

choose positive anchors for each individual gt object and

achieve state-of-the-art performance.

However, independently assigning pos/neg samples for

each gt without context could be sub-optimal, just like the

lack of context may lead to improper prediction. When

dealing with ambiguous anchors (i.e., anchors that are qual-

ified as positive samples for multiple gts simultaneously as

seen in Fig. 1.), existing assignment strategies are heav-

ily based on hand-crafted rules (e.g., Min Area [38], Max

IoU [16, 21, 47].). We argue that assigning ambiguous an-
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chors to any gt (or background) may introduce harmful gra-

dients w.r.t. other gts. Hence the assignment for ambiguous

anchors is non-trivial and requires further information be-

yond the local view. Thus a better assigning strategy should

get rid of the convention of pursuing optimal assignment

for each gt independently and turn to the ideology of global

optimum, in other words, finding the global high confidence

assignment for all gts in an image.

DeTR [3] is the first work that attempts to consider label

assignment from global view. It replaces the detection head

with transformer layers [39] and considers one-to-one as-

signment using the Hungarian algorithm that matches only

one query for each gt with global minimum loss. However,

for the CNN based detectors, as the networks often pro-

duce correlated scores to the neighboring regions around

the object, each gt is assigned to many anchors (i.e., one-

to-many), which also benefits to training efficiency. In this

one-to-many manner, it remains intact to assign labels with

a global view.

To achieve the global optimal assigning result under the

one-to-many situation, we propose to formulate label as-

signment as an Optimal Transport (OT) problem – a special

form of Linear Programming (LP) in Optimization Theory.

Specifically, we define each gt as a supplier who supplies

a certain number of labels, and define each anchor as a de-

mander who needs one unit label. If an anchor receives

sufficient amount of positive label from a certain gt, this

anchor becomes one positive anchor for that gt . In this

context, the number of positive labels each gt supplies can

be interpreted as “how many positive anchors that gt needs

for better convergence during the training process”. The

unit transportation cost between each anchor-gt pair is de-

fined as the weighted summation of their pair-wise cls and

reg losses. Furthermore, as being negative should also be

considered for each anchor, we introduce another supplier –

background who supplies negative labels to make up the rest

of labels in need. The cost between background and a cer-

tain anchor is defined as their pair-wise classification loss

only. After formulation, finding the best assignment solu-

tion is converted to solve the optimal transport plan, which

can be quickly and efficiently solved by the off-the-shelf

Sinkhorn-Knopp Iteration [5]. We name such an assigning

strategy as Optimal Transport Assignment (OTA).

Comprehensive experiments are carried out on MS

COCO [22] benchmark, and significant improvements

from OTA demonstrate its advantage. OTA also achieves

the SOTA performance among one-stage detectors on a

crowded pedestrian detection dataset named CrowdHu-

man [35], showing OTA’s generalization ability on different

detection benchmarks.

2. Related Work

2.1. Fixed Label Assignment

Determining which gt (or background) should each an-

chor been assigned to is a necessary procedure before train-

ing object detectors. Anchor-based detectors usually adopt

IoU at a certain threshold as the assigning criterion. For ex-

ample, RPN in Faster R-CNN [33] uses 0.7 and 0.3 as the

positive and negative thresholds, respectively. When train-

ing the R-CNN module, the IoU threshold for pos/neg divi-

sion is changed to 0.5. IoU based label assignment is proved

effective and soon been adopted by many Faster R-CNN’s

variants like [2, 12, 20, 42, 26, 49, 37], as well as many

one-stage detectors like [31, 32, 25, 27, 23, 21].

Recently, anchor-free detectors have drawn much atten-

tion because of their concision and high computational effi-

ciency. Without anchor box, FCOS [38], Foveabox [17] and

their precursors [30, 14, 46] directly assign anchor points

around the center of objects as positive samples, show-

ing promising detection performance. Another stream of

anchor-free detectors [18, 8, 50, 45, 4] view each object as

a single or a set of key-points. They share distinct char-

acteristics from other detectors, hence will not be further

discussed in our paper.

Although detectors mentioned above are different in

many aspects, as for label assignment, they all adopt a

single fixed assigning criterion (e.g., a fixed region of the

center area or IoU threshold) for objects of various sizes,

shapes, and categories, etc, which may lead to sub-optimal

assigning results.

2.2. Dynamic Label Assignment

Many recent works try to make the label assigning

procedure more adaptive, aiming to further improve the

detection performance. Instead of using pre-defined an-

chors, GuidedAnchoring [40] generates anchors based on

an anchor-free mechanism to better fit the distribution of

various objects. MetaAnchor [44] proposes an anchor gen-

eration function to learn dynamic anchors from the arbitrary

customized prior boxes. NoisyAnchors [19] proposes soft-

label and anchor re-weighting mechanisms based on clas-

sification and localization losses. FreeAnchor [48] con-

structs top-k anchor candidates for each gt based on IoU

and then proposes a detection-customized likelihood to per-

form pos/neg division within each candidate set. ATSS [47]

proposes an adaptive sample selection strategy that adopts

mean+std of IoU values from a set of closest anchors for

each gt as a pos/neg threshold. PAA [16] assumes that the

distribution of joint loss for positive and negative samples

follows the Gaussian distribution. Hence it uses GMM to

fit the distribution of positive and negative samples, and

then use the center of positive sample distribution as the

pos/neg division boundary. AutoAssign [51] tackles label
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Figure 2. An illustration of Optimal Transport Assignment. Cost Matrix is composed of the pair-wise cls and reg losses between each

anchor-gt pair. The goal of finding the best label assigning is converted to solve the best transporting plan which transports the labels from

suppliers (i.e. GT and BG) to demanders (i.e. anchors) at a minimal transportation cost via Sinkhorn-Knopp Iteration.

assignment in a fully data-driven manner by automatically

determine the positives/negatives in both spatial and scale

dimensions.

These methods explore the optimal assigning strategy for

individual objects, while failing to consider context infor-

mation from a global perspective. DeTR [3] examines the

idea of global optimal matching. But the Hungarian algo-

rithm they adopted can only work in a one-to-one assign-

ment manner. So far, for the CNN based detectors in one-to-

many scenarios, a global optimal assigning strategy remains

uncharted.

3. Method

In this section, we first revisit the definition of the Op-

timal Transport problem and then demonstrate how we for-

mulate the label assignment in object detection into an OT

problem. We also introduce two advanced designs which

we suggest adopting to make the best use of OTA.

3.1. Optimal Transport

The Optimal Transport (OT) describes the following

problem: supposing there are m suppliers and n demanders

in a certain area. The i-th supplier holds si units of goods

while the j-th demander needs dj units of goods. Transport-

ing cost for each unit of good from supplier i to demander j

is denoted by cij . The goal of OT problem is to find a trans-

portation plan π∗ = {πi,j |i = 1, 2, ...m, j = 1, 2, ...n},

according to which all goods from suppliers can be trans-

ported to demanders at a minimal transportation cost:

min
π

m
∑

i=1

n
∑

j=1

cijπij .

s.t.

m
∑

i=1

πij = dj ,

n
∑

j=1

πij = si,

m
∑

i=1

si =

n
∑

j=1

dj ,

πij ≥ 0, i = 1, 2, ...m, j = 1, 2, ...n.

(1)

This is a linear program which can be solved in polyno-

mial time. In our case, however, the resulting linear pro-

gram is large, involving the square of feature dimensions

with anchors in all scales. We thus address this issue by

a fast iterative solution, named Sinkhorn-Knopp [5] (de-

scribed in Appendix.)

3.2. OT for Label Assignment

In the context of object detection, supposing there are

m gt targets and n anchors (across all FPN [20] levels) for

an input image I , we view each gt as a supplier who holds

k units of positive labels (i.e., si = k, i = 1, 2, ...,m), and

each anchor as a demander who needs one unit of label (i.e.,

dj = 1, j = 1, 2, ..., n). The cost cfg for transporting one
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unit of positive label from gti to anchor aj is defined as the

weighted summation of their cls and reg losses:

c
fg
ij =Lcls(P

cls
j (θ), Gcls

i )+

αLreg(P
box
j (θ), Gbox

i ),
(2)

where θ stands for model‘s parameters. P cls
j and P box

j de-

note predicted cls score and bounding box for aj . Gcls
i

and Gbox
i denote ground truth class and bounding box for

gt i. Lcls and Lreg stand for cross entropy loss and IoU

Loss [46]. One can also replace these two losses with Fo-

cal Loss [21] and GIoU [34]/SmoothL1 Loss [11]. α is the

balanced coefficient.

Besides positive assigning, a large set of anchors are

treated as negative samples during training. As the opti-

mal transportation involves all anchors, we introduce an-

other supplier – background, who only provides negative

labels. In a standard OT problem, the total supply must be

equal to the total demand. We thus set the number of nega-

tive labels that background can supply as n −m × k. The

cost for transporting one unit of negative label from back-

ground to aj is defined as:

c
bg
j = Lcls(P

cls
j (θ),∅), (3)

where ∅ means the background class. Concatenating this

cbg ∈ R
1×n to the last row of cfg ∈ R

m×n, we can get

the complete form of the cost matrix c ∈ R
(m+1)×n. The

supplying vector s should be correspondingly updated as:

si =

{

k, if i ≤ m

n−m× k, if i = m+ 1.
(4)

As we already have the cost matrix c, supplying vector

s ∈ R
m+1 and demanding vector d ∈ R

n, the optimal trans-

portation plan π∗ ∈ R
(m+1)×n can be obtained by solving

this OT problem via the off-the-shelf Sinkhorn-Knopp Iter-

ation [5]. After getting π∗, one can decode the correspond-

ing label assigning solution by assigning each anchor to the

supplier who transports the largest amount of labels to them.

The subsequent processes (e.g., calculating losses based on

assigning result, back-propagation) are exactly the same as

in FCOS [38] and ATSS [47]. Noted that the optimization

process of OT problem only contains some matrix multi-

plications which can be accelerated by GPU devices, hence

OTA only increases the total training time by less than

20% and is totally cost-free in testing phase.

3.3. Advanced Designs

Center Prior. Previous works [47, 16, 48] only select

positive anchors from the center region of objects with lim-

ited areas, called Center Prior. This is because they suffer

from either a large number of ambiguous anchors or poor

Algorithm 1 Optimal Transport Assignment (OTA)

Input:

I is an input image

A is a set of anchors

G is the gt annotations for objects in image I

γ is the regularization intensity in Sinkhorn-Knopp Iter.

T is the number of iterations in Sinkhorn-Knopp Iter.

α is the balanced coefficient in Eq. 2

Output:

π∗ is the optimal assigning plan

1: m← |G|, n← |A|
2: P cls, P box ← Forward(I ,A)

3: si(i = 1, 2, ...,m)← Dynamic k Estimation

4: sm+1 ← n−
∑m

i=1 si
5: dj(j = 1, 2, ..., n)← OnesInit

6: pairwise cls cost: c
ij
cls = FocalLoss(P cls

j , Gcls
i )

7: pairwise reg cost: c
ij
reg = IoULoss(P box

j ,Gbox
i )

8: pairwise Center Prior cost: c
cp
ij ← (Aj , Gbox

i )

9: bg cls cost: c
bg
cls = FocalLoss(P cls

j ,∅)

10: fg cost: cfg = ccls + αcreg + ccp

11: compute final cost matrix c via concatenating c
bg
cls to the

last row of cfg

12: v0, u0 ← OnesInit

13: for t=0 to T do:

14: ut+1, vt+1 ← SinkhornIter(c, ut, vt, s, d)

15: compute optimal assigning plan π∗ according to Eq. ??

16: return π∗

statistics in the subsequent process. Instead of relying on

statistical characteristics, our OTA is based on global op-

timization methodology and thus is naturally resistant to

these two issues. Theoretically, OTA can assign any an-

chor within the region of gts’ boxes as a positive sample.

However, for general detection datasets like COCO, we find

the Center Prior still benefit the training of OTA. Forcing

detectors focus on potential positive areas ( i.e., center ar-

eas) can help stabilize the training process, especially in the

early stage of training, which will lead to a better final per-

formance. Hence, we impose a Center Prior to the cost

matrix. For each gt, we select r2 closest anchors from each

FPN level according to the center distance between anchors

and gts 2. As for anchors not in the r2 closest list, their

corresponding entries in the cost matrix c will be subject

to an additional constant cost to reduce the possibility they

are assigned as positive samples during the training stage.

In Sec. 4, we will demonstrate that although OTA adopts a

certain degree of Center Prior like other works [38, 47, 48]

do, OTA consistently outperforms counterparts by a large

margin when r is set to a large value (i.e., large number of

2For anchor-based methods, the distances are measured between the

geometric center of anchors and gts
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potential positive anchors as well as more ambiguous an-

chors).

Dynamic k Estimation. Intuitively, the appropriate num-

ber of positive anchors for each gt (i.e., si in Sec. 3.1)

should be different and based on many factors like objects’

sizes, scales, and occlusion conditions, etc. As it is hard to

directly model a mapping function from these factors to the

positive anchor’s number, we propose a simple but effective

method to roughly estimate the appropriate number of pos-

itive anchors for each gt based on the IoU values between

predicted bounding boxes and gts. Specifically, for each

gt, we select the top q predictions according to IoU values.

These IoU values are summed up to represent this gt’s esti-

mated number of positive anchors. We name this method as

Dynamic k Estimation. Such an estimation method is based

on the following intuition: The appropriate number of pos-

itive anchors for a certain gt should be positively correlated

with the number of anchors that well-regress this gt. In Sec.

4, we present a detailed comparison between the fixed k and

Dynamic k Estimation strategies.

A toy visualization of OTA is shown in Fig. 2. We also

describe the OTA’s completed procedure including Center

Prior and Dynamic k Estimation in Algorithm 1.

4. Experiments

In this section, we conduct extensive experiments on MS

COCO 2017 [22] which contains about 118k, 5k and 20k
images for train, val, and test-dev sets, respectively. For

ablation studies, we train detectors on train set and report

the performance on val set. Comparisons with other meth-

ods are conducted on test-dev set. We also compare OTA

with other methods on CrowdHuman [35] validation set to

demonstrate the superiority of OTA in crowd scenarios.

4.1. Implementation Details

If not specified, we use ResNet-50 [13] pre-trained on

ImageNet [6] with FPN [20] as our default backbone. Most

of experiments are trained with 90k iterations which is de-

noted as “1×”. The initial learning rate is 0.01 and is de-

cayed by a factor of 10 after 60k and 80k iterations. Mini-

batch size is set to 16. Following the common practice, the

model is trained with SGD [1] on 8 GPUs.

OTA can be adopted in both anchor-based and anchor-

free detectors, the following experiments are mainly con-

ducted on FCOS [38] because of its simplicity. We adopt

Focal Loss and IoU Loss as Lcls and Lreg that make up the

cost matrix. α in Eq. 2 is set to 1.5. For back-propagation,

the regression loss is replaced by GIoU Loss and is re-

weighted by a factor of 2. IoU Branch is first introduced

in YOLOv1 [30] and proved effective in modern one-stage

object detectors by PAA [16]. We also adopt IoU Branch

Method Aux. Branch Center Dyn. k AP AP50 AP75

FCOS

- X 38.3 57.1 41.3

CenterNess X 38.9 57.5 42.0

IoU 38.8 57.7 41.8

IoU X 39.5 57.6 42.9

OTA

(FCOS)

- X 39.2 58.3 42.2

IoU 39.6 58.1 42.5

IoU X 40.3 58.6 43.7

IoU X X 40.7 58.4 44.3

OTA

(RetinaNet)
IoU X X 40.7 58.6 44.1

Table 1. Ablation studies on each components in OTA. “Center”

stands for Center Prior and Center Sampling for OTA and FCOS,

respectively. Dyn.k is the abbreviation of our proposed Dynamic

k Estimation strategy.

as a default component in our experiments. The top q in

Sec. 3.3 is directly set to 20, as we find this set of param-

eter values can consistently yield stable results in various

situations.

4.2. Ablation Studies and Analysis

Effects of Individual Components. We verify the effec-

tiveness of each component in our proposed methods. For

fair comparisons, all detectors’ regression losses are mul-

tiplied by 2, which is known as a useful trick to boost

the AP at high IoU thresholds [28]. As seen in Table 1,

when no auxiliary branch is adopted, OTA outperforms

FCOS by 0.9% AP (39.2% v.s.38.3%). This gap almost re-

mains the same after adding IoU branch to both of them

(39.5% v.s. 40.3% and 38.8% v.s. 39.6% with or with-

out center prior, respectively). Finally, dynamic k pushes

AP to a new state-of-the-art 40.7%. In the whole paper,

we emphasize that OTA can be applied to both anchor-

based and anchor-free detectors. Hence we also adopt

OTA on RetinaNet [21] with only one square anchor per-

location across feature maps. As shown in Table 1, the AP

values of OTA-FCOS and OTA-RetinaNet are exactly the

same, demonstrating OTA’s applicability on both anchor-

based and anchor-free detectors.

Effects of r. The values of radius r for Center Prior serve

to control the number of candidate anchors for each gt. If

adopting a small r, only anchors near objects’ centers could

be assigned as positives, helping the optimization process

focus on regions that are more likely to be informative. As

r increases, the number of candidates also quadratically in-

creases, leading to potential instability in the optimization

process. For example, when r is set to 3, 5 or 7, their

corresponding numbers of candidate anchors are 45, 125
and 2453, respectively. We study behaviors of ATSS [47],

3Total number of potential positive anchors equals to (r2∗FPN Levels).
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ATSS PAA OTA

Figure 3. Visualizations of assigning results. For PAA, the dots

stand for geometric centers of positive anchor boxes. For ATSS

and OTA, the dots stand for positive anchor points. Rectangles

represent the gt bounding boxes. To clearly illustrate the differ-

ences between different assigning strategies, we set r to 5 for all

methods. Only FPN layers with the largest number of positive

anchors are shown for better visualization.

PAA [16], and OTA under different values of r in Table 2.

OTA achieves the best performance (40.7% AP) when r is

set to 5. When r is set to 3 as ATSS and PAA do, OTA also

achieves 40.6% AP, indicating that most potential positive

anchors are near the center of objects on COCO. While r is

set to 7, the performance only slightly drops 0.3%, showing

that OTA is insensitive to the hyper-parameter r.

Ambiguous Anchors Handling. Most existing dynamic

label assigning methods [47, 16, 48] only conduct a small

candidate set for each gt, because a large number of can-

didates brings trouble – when occlusion happens or several

objects are close enough, an anchor may simultaneously be

a qualified candidate for multiple gts. We define such an-

chors as ambiguous anchors. Previous methods mainly han-

dle this ambiguity by introducing hand-crafted rules e.g.,

Min Area [38], Max IoU [47, 16, 21] and Min Loss4. To

illustrate OTA’s superiority on ambiguous handling, We

count the number of ambiguous anchors in ATSS, PAA and

4Assigning ambiguous anchor to the gt with the minimal loss.

Method ATSS [47] PAA [16] OTA

r 3 5 7 3 5 7 3 5 7

Namb. 2.1 15.9 36.3 0.5 0.8 1.2 0.2 0.2 0.3

AP 39.4 38.0 37.2 40.3 40.1 39.5 40.6 40.7 40.4

AP50 57.5 56.7 55.8 58.9 58.4 57.5 58.7 58.4 58.3

AP75 42.7 40.4 39.8 43.4 43.4 42.4 44.1 44.3 43.6
Table 2. Performances of different label assigning strategies under

different number of anchor candidates. Namb. denotes the aver-

age number of ambiguous anchors per-image calculated on COCO

train set.

OTA, and evaluate their corresponding performance under

different r in Table 2. Noted that the optimal assigning plan

in OTA is continuous, hence we define anchor aj as an am-

biguous anchor if maxπ∗

j < 0.9. Table 2 shows that for

ATSS, the number of ambiguous anchors greatly increases

as r varies from 3 to 7. Its performance correspondingly

drops from 39.4% to 37.2%. For PAA, the number of am-

biguous anchors is less sensitive to r, but its performance

still drops 0.8%, indicating that Max IoU adopted by PAA

is not an ideal prior to ambiguous anchors. In OTA, when

multiple gts tend to transport positive labels to the same

anchor, the OT algorithm will automatically resolve their

conflicts based on the principle of minimum global costs.

Hence the number of ambiguous anchor for OTA remains

low and barely increases as r increases from 3 to 7. The

corresponding performance is also stable.

Further, we manually assign the ambiguous anchors

based on hand-crafted rules before performing OTA. In this

case, OTA is only in charge of pos/neg samples division. Ta-

ble 3 shows that such a combination of hand-crafted rules

and OTA decreases the AP by 0.7% and 0.4%, respectively.

Finally, we visualize some assigning results in Fig. 3. Red

arrows and dashed ovals highlight the ambiguous regions

(i.e., overlaps between different fgs or junctions between

fgs and bg). Suffering from the lack of context and global

information, ATSS and PAA perform poorly in such re-

gions, leading to sub-optimal detection performances. Con-

versely, OTA assigns much less positive anchors in such re-

gions, which we believe is a desired behavior.

Method AP AP50 AP75

Min Area [38] f.b. OTA 40.0 57.8 43.6

Max IoU [47] f.b. OTA 40.3 58.1 43.7

Min Loss f.b. OTA 40.3 57.9 43.6

OTA 40.7 58.4 44.3
Table 3. Performance comparisons on ambiguity handling between

OTA and other human-designed strategies on the COCO val set..

f.b. denotes “followed by”.

Effects of k. Before performing Sinkhorn-Knopp Itera-

tion, we need to define how many positive labels can each
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gt supply. This value also represents how many anchors ev-

ery gt needs for better convergence. A naive way is setting

k to a constant value for all gts. We try different values of

k from 1 to 20. As seen in Table 4, among all different val-

ues, k=10 and k=12 achieve the best performances. As k in-

creases from 10 to 20, the possibility that an anchor is suit-

able as a positive sample for two close targets at the same

time also increases, but there is no obvious performance

drop (0.2%) according to Table 4 which proves OTA’s su-

periority in handling potential ambiguity. When k=1, OTA

becomes a one-to-one assigning strategy, the same as in

DeTR. The poor performance tells us that achieving com-

petitive performance via one-to-one assignment under the

1× scheduler remains challenging, unless an auxiliary one-

to-many supervision is added [41].

k AP AP50 AP75 APs APm APl

1 36.5 55.4 38.8 21.4 39.7 46.2

5 39.5 58.1 42.7 23.1 43.0 50.6

8 39.8 58.4 42.9 22.7 43.6 51.5

10 40.3 58.6 43.7 23.4 44.2 52.1

12 40.3 58.6 43.6 23.2 44.2 51.9

15 40.2 58.4 43.6 23.2 44.1 51.9

20 40.1 58.2 43.6 23.5 44.0 52.8

Dyn. k 40.7 58.4 44.3 23.2 45.0 53.6

Table 4. Analysis of different values of k and Dynamic k Estima-

tion strategy on the COCO val set.

Fixing k strategy assumes every gt has the same number

of appropriate positive anchors. However, we believe that

this number for each gt should vary and may be affected by

many factors like objects’ sizes, spatial attitudes, and oc-

clusion conditions, etc. Hence we adopt the Dynamic k Es-

timation proposed in Sec 3.3 and compare its performance

to the fixed k strategy. Results in Table 4 shows that dy-

namic k surpasses the best performance of fixed k by 0.4%

AP, validating our point and the effectiveness of Dynamic k

Estimation strategy.

4.3. Comparison with Stateoftheart Methods.

We compare our final models with other state-of-the-art

one-stage detectors on MS COCO test-dev. Following pre-

vious works [21, 38], we randomly scale the shorter side

of images in the range from 640 to 800. Besides, we dou-

ble the total number of iterations to 180K with the learning

rate change points scaled proportionally. Other settings are

consistent with [21, 38].

As shown in Table 5, our method with ResNet-101-FPN

achieves 45.3% AP, outperforms all other methods with the

same backbone including ATSS (43.6% AP), AutoAssign

(44.5% AP) and PAA (44.6% AP). Noted that for PAA, we

remove the score voting procedure for fair comparisons be-

tween different label assigning strategies. With ResNeXt-

64x4d-101-FPN [43], the performance of OTA can be fur-

ther improved to 47.0% AP. To demonstrate the compati-

bility of our method with other advanced technologies in

object detection, we adopt Deformable Convolutional Net-

works (DCN) [54] to ResNeXt backbones as well as the

last convolution layer in the detection head. This improves

our model’s performance from 47.0% AP to 49.2% AP. Fi-

nally, with the multi-scale testing technique, our best model

achieves 51.5% AP.

4.4. Experiments on CrowdHuman

Object detection in crowded scenarios has raised more

and more attention [24, 15, 9, 10]. Compared to dataset

designed for general object detection like COCO, ambigu-

ity happens more frequently in crowded dataset. Hence to

demonstrate OTA’s advantage on handling ambiguous an-

chors, it is necessary to conduct experiments on a crowded

dataset – Crowdhuman [35]. CrowdHuman contains 15000,

4370, and 5000 images in training, validation, and test set,

respectively, with the average number of persons in an im-

age 22.6. For all experiments, we train the detectors for 30

epochs (i.e., 2.5x) for better convergence. NMS threshold

is set to 0.6. We adopt ResNet-50 [13] as the default back-

bone in our experiments. Other settings are the same as our

experiments on COCO. For evaluation, we follow the stan-

dard Caltech [7] evaluation metric – MR, which stands for

the Log-Average Missing Rate over false positives per im-

age (FPPI) ranging in [10−2, 100]. AP and Recall are also

reported for reference. All evaluation results are reported

on the CrowdHuman val subset.

As shown in Table 6, RetinaNet and FCOS only achieve

58.8% and 55.0% MR respectively, which are far worse

than two stage detectors like Faster R-CNN (with FPN), re-

vealing the dilemma of one-stage detectors in crowd sce-

narios. Starting from FreeAnchor, the performances of one-

stage detectors gradually get improved by the dynamic la-

bel assigning strategies. ATSS achieves 49.5% MR, which

is very close to the performance of Faster R-CNN (48.7%

AP). Recent proposed LLA [10] leverages loss-aware label

assignment, which is similar to OTA and achieves 47.9%

MR. However, our OTA takes a step forward by introducing

global information into the label assignment, boosting MR

to 46.6%. The AP and Recall of OTA also surpass other

existing one-stage detectors by a clear margin.

Although PAA achieves competitive performance with

OTA on COCO, it performs struggling on CrowdHuman.

We conjecture that PAA needs clear pos/neg decision

boundaries to help GMM learn better clusters. But in

crowded scenarios, such clear boundaries may not exist be-

cause potential negative samples usually cover a sufficient

amount of foreground areas, resulting in PAA’s poor per-

formance. Also, PAA performs per-gt’s clustering, which

heavily increases the training time on crowded datasets like

CrowdHuman. Compared to PAA, OTA still shows promis-
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Method Iteration Backbone AP AP50 AP75 APs APm APl

RetinaNet [21] 135k ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

FCOS [38] 180k ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6

NoisyAnchor [19] 180k ResNet-101 41.8 61.1 44.9 23.4 44.9 52.9

FreeAnchor [48] 180k ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8

SAPD [52] 180k ResNet-101 43.5 63.6 46.5 24.9 46.8 54.6

MAL [44] 180k ResNet-101 43.6 61.8 47.1 25.0 46.9 55.8

ATSS [47] 180k ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6

AutoAssign [51] 180k ResNet-101 44.5 64.3 48.4 25.9 47.4 55.0

PAA [16] 180k ResNet-101 44.6 63.3 48.4 26.4 48.5 56.0

OTA (Ours) 180k ResNet-101 45.3 63.5 49.3 26.9 48.8 56.1

FoveaBox [17] 180k ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6

FSAF [53] 180k ResNeXt-64x4d-101 42.9 63.8 46.3 26.6 46.2 52.7

FCOS [38] 180k ResNeXt-64x4d-101 43.2 62.8 46.6 26.5 46.2 53.3

NoisyAnchor [19] 180k ResNeXt-101 44.1 63.8 47.5 26.0 47.4 55.0

FreeAnchor [48] 180k ResNeXt-64x4d-101 44.9 64.3 48.5 26.8 48.3 55.9

SAPD [52] 180k ResNeXt-64x4d-101 45.4 65.6 48.9 27.3 48.7 56.8

ATSS [47] 180k ResNeXt-64x4d-101 45.6 64.6 49.7 28.5 48.9 55.6

MAL [44] 180k ResNeXt101 45.9 65.4 49.7 27.8 49.1 57.8

AutoAssign [51] 180k ResNeXt-64x4d-101 46.5 66.5 50.7 28.3 49.7 56.6

PAA [16] 180k ResNeXt-64x4d-101 46.6 65.6 50.7 28.7 50.5 58.1

OTA (Ours) 180k ResNeXt-64x4d-101 47.0 65.8 51.1 29.2 50.4 57.9

SAPD [52] 180k ResNeXt-64x4d-101-DCN 47.4 67.4 51.1 28.1 50.3 61.5

ATSS [47] 180k ResNeXt-64x4d-101-DCN 47.7 66.5 51.9 29.7 50.8 59.4

AutoAssign [51] 180k ResNeXt-64x4d-101-DCN 48.3 67.4 52.7 29.2 51.0 60.3

PAA [16] 180k ResNeXt-64x4d-101-DCN 48.6 67.5 52.7 29.9 52.2 61.5

OTA (Ours) 180k ResNeXt-64x4d-101-DCN 49.2 67.6 53.5 30.0 52.5 62.3

ATSS [47]∗ 180k ResNeXt-64x4d-101-DCN 50.7 68.9 56.3 33.2 52.9 62.2

PAA [16]∗ 180k ResNeXt-64x4d-101-DCN 51.3 68.8 56.6 34.3 53.5 63.6

OTA (Ours)∗ 180k ResNeXt-64x4d-101-DCN 51.5 68.6 57.1 34.1 53.7 64.1
Table 5. Performance comparison with state-of-the-art one-stage detectors on MS COCO 2017 test-dev set. * indicates the specific form of

multi-scale testing that adopted in ATSS [47].

Method MR AP Recall

Faster R-CNN with FPN [20] 48.7 86.1 90.4

RetinaNet [21] 58.8 81.0 88.2

FCOS [38] 55.0 86.4 94.1

FreeAnchor [48] 51.3 83.9 89.8

ATSS [47] 49.5 87.4 94.2

PAA [16] 52.2 86.0 92.0

LLA [10] 47.9 88.0 94.0

OTA (Ours) 46.6 88.4 95.1
Table 6. Performance comparison on the CrowdHuman validation

set. All experiments are conducted under 2.5x scheduler.

ing results, which demonstrates OTA’s superiority on vari-

ous detection benchmarks.

5. Conclusion

In this paper, we propose Optimal Transport Assignment

(OTA) – an optimization theory based label assigning strat-

egy. OTA formulates the label assigning procedure in object

detection into an Optimal Transport problem, which aims to

transport labels from ground-truth objects and backgrounds

to anchors at minimal transporting costs. To determine the

number of positive labels needed by each gt, we further pro-

pose a simple estimation strategy based on the IoU values

between predicted bounding boxes and each gt. As shown

in experiments, OTA achieves the new SOTA performance

on MS COCO. Because OTA can well-handle the assign-

ment of ambiguous anchors, it also outperforms all other

one-stage detectors on CrowdHuman dataset by a large mar-

gin, demonstrating its strong generalization ability.
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