
Cross Modal Focal Loss for RGBD Face Anti-Spoofing

Anjith George and Sébastien Marcel
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Abstract

Automatic methods for detecting presentation attacks are

essential to ensure the reliable use of facial recognition

technology. Most of the methods available in the litera-

ture for presentation attack detection (PAD) fails in gen-

eralizing to unseen attacks. In recent years, multi-channel

methods have been proposed to improve the robustness of

PAD systems. Often, only a limited amount of data is avail-

able for additional channels, which limits the effectiveness

of these methods. In this work, we present a new framework

for PAD that uses RGB and depth channels together with a

novel loss function. The new architecture uses complemen-

tary information from the two modalities while reducing the

impact of overfitting. Essentially, a cross-modal focal loss

function is proposed to modulate the loss contribution of

each channel as a function of the confidence of individual

channels. Extensive evaluations in two publicly available

datasets demonstrate the effectiveness of the proposed ap-

proach.

1. Introduction

While face recognition technology has become a ubiqui-

tous method for biometric authentication, the vulnerability

to presentation attacks (also known as “spoofing attacks”)

is a major concern when used in secure scenarios [10], [13].

These attacks can be either impersonation or obfuscation at-

tacks. Impersonation attacks attempt to gain access by mas-

querading as someone else and obfuscation attacks attempt

to evade face recognition systems. While many methods

have been suggested in the literature to address this prob-

lem, most of these methods fail in generalizing to unseen

attacks [11]. In a practical scenario, it is not possible to an-

ticipate all the types of attacks at the time of training a PAD

model. Moreover, a PAD system is expected to detect new

types of sophisticated attacks. It is therefore important to

have unseen attack robustness in PAD models.

The majority of the literature deals with the detection

of these attacks with RGB cameras. Over the years, many

Figure 1. The proposed framework for PAD. A two stream- multi-

head architecture is used following a late fusion strategy. Heads

corresponding to individual channels are supervised by the pro-

posed cross-modal focal loss (CMFL), while the joint model is

supervised by binary cross entropy (BCE).

feature-based methods have been proposed using color, tex-

ture, motion, liveliness cues, histogram features [8], local

binary pattern [26], [9] and motion patterns [4] for perform-

ing PAD. Recently several CNN based methods have also

been proposed including 3D-CNN [14], part-based mod-

els [23] and so on. Some works have shown that using

auxiliary information in the form of binary or depth super-

vision improves performance [5, 15]. In depth supervision,

the model is trained to regress the depth map of the face

as an auxiliary supervision. However, most of these meth-

ods have been designed specifically for 2D attacks and the

performance of these methods against challenging 3D and

partial attacks is poor [25]. Moreover, these methods suffer

from poor unseen attack robustness.

The performance of RGB only models deteriorates with

sophisticated attacks such as 3D masks and partial attacks.

Due to the limitations of visible spectrum alone, several

multi-channel methods have been proposed in literature

such as [31], [13], [32], [12], [3], [7], [6], [16–19] for face
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PAD. Essentially, it becomes more difficult to fool a multi-

channel PAD system as it captures complementary informa-

tion from different channels. Deceiving different channels

at the same time requires considerable effort. Multi-channel

methods have proven to be effective, but this comes at the

expense of customized and expensive hardware. This could

make these systems difficult to deploy widely, even if they

are robust. A variety of channels are available for PAD, e.g.,

RGB, depth, thermal, NIR spectra, SWIR spectra, ultravi-

olet, light field imagery, etc. Out of these various modal-

ities, we find that RGB-D devices are commercially avail-

able and are quite affordable, making it possible to deploy

them in real-world scenarios. The Intel RealSense family of

devices, Microsoft Kinect, and the OpenCV AI Kit (OAK-

D) [1] are examples of standard devices that do not require

any additional effort to obtain multi-channel images. Due

to the wide availability of these channels in an integrated

package, we choose RGB and Depth as the two channels to

be used in this work. However, the proposed framework can

be trivially extended to any combinations of channels.

Even when using multiple channels, the models tend to

overfit to attacks seen in the training set. While the mod-

els could perform perfectly in attacks seen in the training

set, degradation in performance is often observed when con-

fronted with unseen attacks in real-world scenarios. This is

a common phenomenon with most of the machine learning

algorithms, and this problem is aggravated in case of a lim-

ited amount of training data. The models, in the lack of

strong priors, could overfit to the statistical biases of spe-

cific datasets it was trained on and could fail in generalizing

to unseen samples. Multi-channel methods also suffer from

an increased possibility of overfitting as they increase the

number of parameters due to the extra channels.

In this work, we address this issue in two different direc-

tions. First, we use a multi-head architecture, which follows

a late fusion strategy to combine different channels of in-

formation. Instead of joining the representations into a joint

final node, we keep three different heads separately for the

individual branches and the joint branch, this can be viewed

as a form of architectural regularization. The proposed ar-

chitecture can be found in Fig. 1. This enables us a way to

supervise individual channels together with the joint repre-

sentation, ensuring robust representation would be learned

in individual as well as joint branches. Secondly, we pro-

pose a cross-modal focal loss function to supervise the in-

dividual channels that modulate the loss function factoring

in the confidence of the channels present.

The main contributions of this work are listed below:

• A frame-level RGB-D face PAD method is proposed

which operates on synchronously captured RGB-D

samples.

• A new loss function called cross-modal focal loss

(CMFL ) is proposed, which can be used to supervise

individual channels in a multi-stream architecture.

• Though the model is trained for a multi-channel sce-

nario, it can also be deployed with individual channels

by just using the score from the head corresponding to

the available channel.

• We show the efficacy of the proposed framework in

two publicly available datasets consisting of a wide va-

riety of challenging unseen attacks.

Additionally, the source code and protocols to reproduce

the results are available publicly*.

2. Proposed approach

Different stages of the proposed PAD framework are de-

scribed in this section.

2.1. Preprocessing

The PAD pipeline acts on the cropped facial images. For

the RGB image, the preprocessing stage consists of face de-

tection and landmark localization using the MTCNN [33]

framework, followed by alignment. The detected face is

aligned by making the eye centers horizontal followed by

resizing them to a resolution of 224 × 224. For the depth

image, a normalization method using the median absolute

deviation (MAD) [28] is used to normalize the face image

to an 8-bit range. The raw images from RGB and depth

channels are already spatially registered so that the same

transformation can be used to align the face in the depth

image.

2.2. Network Architecture

From the prevailing literature, it has been observed that

multi-channel methods are robust against a wide range of

attacks [16–19]. Broadly, there are four different strategies

to fuse the information from multiple channels, they are 1)

early fusion, meaning the channels are stacked at the input

level (for example, MC-PixBiS [19]). The second strategy

is late fusion, meaning the representations from different

networks are combined at a later stage similar to feature fu-

sion (for example MCCNN [18]), a third strategy is score

level fusion where individual networks are trained sepa-

rately for different channels and score level fusion is per-

formed on the scalar scores from each channel. A fourth

strategy is a hybrid approach where information from mul-

tiple levels is combined as in [29].

Though multiple channels can perform well with a wide

variety of attacks, they tend to overfit to known attacks

when all channels are used together and trained as a binary

*Source code: https://gitlab.idiap.ch/bob/bob.

paper.cross_modal_focal_loss_cvpr2021
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classifier. To avoid this, we propose a multi-head architec-

ture that follows a late fusion strategy. The architecture of

the proposed network is shown in Fig. 1. Essentially, the

architecture consists of a two-stream network with sepa-

rate branches for the component (RGB and Depth) chan-

nels. The embeddings from the two channels are combined

to form the third branch. Fully connected layers are added

to each of these branches to form the final classification

head. These three heads are jointly supervised by a loss

function which forces the network to learn discriminative

information from individual channels as well as the joint

representation, reducing the possibility of overfitting. The

multi-head structure also makes it possible to perform scor-

ing even when a channel is missing at test time, meaning

that we can do scoring with RGB branch alone (just us-

ing the score from the RGB head) even if the network was

trained on RGB-D.

The branches are comprised of the first eight blocks (fol-

lowing the DeepPixBiS architecture [15]) from DenseNet

architecture (densenet161) proposed by Huang et al. [20].

In the DenseNet architecture, each layer is connected to

every other layer, reducing the vanishing gradient problem

while reducing the number of parameters. We used pre-

trained weights from the Image Net dataset to initialize the

individual branches. The number of input channels for the

RGB and depth channels has been modified to 3 and 1 for

the RGB and depth channels, respectively. For the depth

branch, the mean values of three-channel weights are used

to initialize the weights of the modified convolutional ker-

nels in the first layer. In each branch, a global average pool-

ing (GAP) layer is added after the dense layers to obtain a

384-dimensional embedding. The RGB and depth embed-

dings are concatenated to form the joint embedding layer.

A fully connected layer, followed by a sigmoid activation

is added on top of each of these embeddings to form the

different heads in the framework. At training time, each of

these heads is supervised by a separate loss function. At test

time, the score from the RGB-D branch is used as the PAD

score.

2.3. Cross Modal Focal Loss function (CMFL )

Having individual heads make it possible to train a multi-

channel model with the capability to handle missing chan-

nels at test time. Now, one naive way to supervise this net-

work would be to supervise the individual branches with

binary cross-entropy (BCE).

However, the usage of BCE for individual channels may

not be ideal. The issue is illustrated as follows; we can con-

sider different channels as different views of the same sam-

ple, and for some attacks, it may not be possible to distin-

guish it just from one view. It is possible that the images

of some attacks would look perfectly like bonafide sam-

ples when viewed in just one channel. For example, facial
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Figure 2. The loss curve for the proposed loss function (γ = 3),

the variable q represents the probability of correct classification

from the other branch in the two-stream network. It can be seen

that the loss curve converges to cross entropy loss when q = 0.

The loss contribution reduces as the value of q → 1.

makeup when viewed in depth channel would look exactly

like the depth map of a bonafide sample. The naive way

of supervising the depth branch with BCE in such cases

might lead to overfitting. However, in the same scenario,

discriminating makeup would be more obvious in RGB and

joint representations. From this example, it can be seen that

supervising the individual branches separately might not re-

sult in robust decision boundaries. One way to approach this

issue is to use the prediction probabilities from the current

branch and the other branch to change the loss contributions

of samples in each branch. We propose a cross-modal fo-

cal loss function to supervise the individual channels, which

modulates the loss function based on the confidence of the

current and alternate channel present.

For each branch, the samples which could be classified

correctly should be well separated in the score space. At the

same time, we encourage the individual branches to produce

unsure scores when there is not enough discriminatory in-

formation, rather than overfitting to some statistical bias in

the training data. However, this applies only when the other

branch can confidently classify the sample correctly.

More formally, consider a binary classification problem

where the samples are multi-channel i.e., each sample is a

pair of images or features that capture different views with

complementary information. Now assume that the classifi-

cation problem cannot be done with a single channel alone

(or is a very hard problem). Combining the features from

both the channels and using a learning strategy using the

joint features could provide a solution for this. However,

this could lead to overfitting and cannot handle missing

channels at test time.

If we use BCE on individual branches, the loss will pe-

nalize heavily the samples which cannot be classified with

the information available with the specific channel. In such
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a scenario, the model might start to overfit to the biases in

the dataset to minimize the loss function, resulting in an

over-fitted model.

To avoid this, we propose cross-modal focal loss

(CMFL) to supervise the individual channels. The core idea

is that, when one of the channels can correctly classify a

sample correctly with high confidence, then the loss contri-

bution of the sample in the other branch can be reduced. If

a channel can correctly classify a sample confidently, then

we don’t want the other branch to penalize the model more.

CMFL forces each branch to learn robust representations

for individual channels, which can then be utilized with the

joint branch, effectively acting as an auxiliary loss function.

The idea of relaxing the loss contribution of samples cor-

rectly classified is similar to the Focal Loss [24] used in ob-

ject detection problems. In Focal Loss, a modulating factor

is used to reduce the loss contributed by samples that are

correctly classified with high confidence. We use this idea

by modulating the loss factoring in the confidence of the

sample in the current and the alternate branch.

Consider the expression for cross-entropy (CE) in a bi-

nary classification problem:

CE(p, y) =

{

− log(p) if y = 1

− log(1− p) if y = 0
(1)

where y ∈ {0, 1} denotes the class label (y:0 attack, y:1

bonafide) and p ∈ [0, 1] is the probability of the class. We

follow a similar notation pt as in [24], which is the proba-

bility of the target class:

pt =

{

p if y = 1

1− p otherwise,
(2)

and write CE(p, y) = CE(pt) = − log(pt).
In the α-balanced form CE loss can be written as (fol-

lowing [24]):

CE(pt) = −αt log(pt). (3)

The standard α-balanced focal loss (FL) [24] adds a

modulating factor (1− pt)
γ to the cross entropy loss, with a

tunable focusing parameter γ ≥ 0, making the loss formu-

lation as:

FL(pt) = −αt(1− pt)
γ log(pt). (4)

Consider the two-stream multi-branch multi-head model

in Fig. 3. Xp and Xq denotes the image inputs from differ-

ent modalities, and Ep, Eq , and Er denotes the correspond-

ing embeddings for the individual and joint representations.

In each branch, after the embedding layer, a fully connected

layer (followed by a sigmoid layer) is present which pro-

vides classification probability. The variables p, q and r

denote these probabilities.

Figure 3. Diagram of the two-stream multi-head model, show-

ing the embeddings and probabilities from individual and joint

branches. This can be extended to multiple heads as well.

The proposed Cross Modal Loss Function (CMFL) is

given as follows:

CMFLpt, qt = −αt(1− w(pt, qt))
γ log(pt) (5)

The function w(pt, qt), depends on the probabilities

given by the channels from two individual branches. This

modulating factor should increase as the probability of the

other branch increases, and at the same time should be able

to prevent very confident mistakes. Hence for this study, we

use the harmonic mean of both the branches weighted by

the probability of the other branch. This reduces the loss

contribution when the other branch is giving confident pre-

dictions. And the expression for this function is given as:

w(pt, qt) = qt
2ptqt
pt + qt

(6)

Note that the function w is assymetric, i.e., the expres-

sion for w(qt, pt) is:

w(qt, pt) = pt
2ptqt
pt + qt

(7)

meaning the weight function depends on the probability of

the other branch. The loss curve is shown in Fig. 2. Now we

use the proposed loss function as auxiliary supervision,and

the overall loss function to minimize is given as:

L = (1− λ)LCE(rt) + λ(LCMFLpt,qt
+ LCMFLqt,pt

) (8)

We have set the value of λ non-optimally as 0.5 for this

study. The loss curve for the cross-entropy and the proposed

loss is shown in Fig. 2. When the probability of the other

branch is zero, then the loss is equivalent to standard cross-

entropy. The loss contribution is reduced when the other

branch is able to correctly classify the sample. ie, when an

attack example is misclassified by network CNNp, the net-

work CNNp is penalized unless model CNNq can classify

the attack sample with high confidence. As the w(p, q) → 1
the modulating factor goes to zero, meaning if one channel
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is able to classify it perfectly, then the other branch is less

penalized. Also, the focussing parameter γ can be adapted

to change the behaviour of the loss curve. We used an em-

pirically obtained value of γ = 3 in all our experiments.

Without the loss of generality, the proposed approach

could be useful in training models where there are compo-

nent channels of information with incomplete information

for the task at hand. As shown in Fig. 3, the framework can

be adapted to any multi-channel setting, without any restric-

tions of the network architectures CNNp and CNNq . The

channels used could be different modalities (such as RGB-

depth, audio-video, spatio-temporal, image-text) or differ-

ent types of information coming from the same source of

data (such as images and optical flow coming from a video

sample).

3. Experiments and Results

3.1. Datasets used

We have used two publicly available datasets for the ex-

periments, namely WMCA and HQ-WMCA , which contains

a wide variety of 2D, 3D, and partial attacks.

WMCA dataset: The Wide Multi-Channel presentation

Attack (WMCA ) [18] database contains a wide variety

of 2D and 3D presentation attacks, with a total of 1679

video samples from 72 subjects. Multiple channels col-

lected synchronously, namely color, depth, infrared, and

thermal channels, collected using two consumer-grade de-

vices, Intel® RealSense™SR300 (for color, depth and in-

frared), and Seek Thermal CompactPRO (for the thermal

channel) is available with this database. Though four differ-

ent channels are available in this database, in this work, we

focus on the RGB and depth data obtained from the Intel®

RealSense™SR300 device.

HQ-WMCA dataset: The High-Quality Wide Multi-

Channel Attack (HQ-WMCA ) [19, 27] dataset consists of

2904 short multi-channel video recordings of both bonafide

and presentation attacks. This database again consists of a

wide variety of attacks including both obfuscation and im-

personation attacks. Specifically, the attacks considered are

print, replay, rigid mask, paper mask, flexible mask, man-

nequin, glasses, makeup, tattoo, and wig (Fig. 4). The

database consists of recordings from 51 different subjects,

with several channels including color, depth, thermal, in-

frared (spectra), and short-wave infrared (spectra). In this

work, we consider the RGB channel captured with Basler

acA1921-150uc camera and depth image captured with In-

tel RealSense D415.

3.2. Protocols

Since both of the datasets contains a wide variety of at-

tacks, we have created leave-one-out (LOO) attack proto-

cols individually for both of the datasets. Specifically, one

attack is left out in the train and development set and the

evaluation set consists of bonafide and the attack which was

left out in the train and development set. This constitutes the

unseen attack protocols or zero-shot attack protocols. The

performance of the PAD methods in these protocols gives

a more realistic estimate of their robustness against unseen

attacks in real-world scenarios. Further, for cross-dataset

experiments, we have created grandtest protocols in both of

the datasets which consist of attacks distributed in the train,

development, and test sets (with disjoint identities across

folds).

3.3. Implementation details

We performed data augmentation during the training

phase with random horizontal flips with a probability of 0.5.

The combined loss function is minimized with Adam Opti-

mizer [22]. A learning rate of 1 × 10−4 was used with a

weight decay parameter of 1× 10−5. We used a mini-batch

size of 64, and the network was trained for 25 epochs on a

GPU grid. During the evaluation of the model, the scores

from the RGB-D head was used to calculate the final PAD

score. The proposed architecture has about 6.39M parame-

ters and about 9.16 GFLOPS. The architecture and the train-

ing framework were implemented using the PyTorch [30]

library.

3.4. Metrics

For the evaluation of the algorithms, we have used the

ISO/IEC 30107-3 metrics [21], Attack Presentation Clas-

sification Error Rate (APCER), and Bonafide Presentation

Classification Error Rate (BPCER) along with the Average

Classification Error Rate (ACER) in the eval set. We com-

pute the threshold in the dev set for a BPCER value of 1%.

ACER =
APCER+BPCER

2
. (9)

For cross-database testing, Half Total Error Rate (HTER) is

adopted following the convention in [17], which computes

the average of False Rejection Rate (FRR) and the False

Acceptance Rate (FAR). HTER is computed in the eval set

using the threshold computed in the dev set using the equal

error rate criterion (EER).

3.5. Baseline methods

For a fair comparison with state of the art, we have im-

plemented 3 different multi-channel PAD approaches from

literature for the RGB-D channels. Besides, we also intro-

duce the proposed multi-head architecture supervised with

BCE alone, as another baseline for comparison. The base-

lines implemented are listed below.

MC-PixBiS: This is a CNN based system [15], extended

to multi-channel scenario as described in [19] trained using

both binary and pixel-wise binary loss function. This model
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4. Attacks present in HQ-WMCA dataset: (a) Print, (b) Replay, (c) Rigid mask, (d) Paper mask, (e) Flexible mask, (f) Mannequin,

(g) Glasses, (h) Makeup, (i) Tattoo and (j) Wig. Image taken from [19].

uses RGB and depth channels stacked together at the input

level.

MCCNN-OCCL-GMM: This model is the multi-channel

CNN system proposed to learn one class model using the

one class contrastive loss (OCCL) and Gaussian mixture

model as reported in [17]. The model was adapted to ac-

cept RGB-D channels as the input.

MC-ResNetDLAS: This is the reimplementation of the ar-

chitecture from [29], which won the first prize in the

‘CASIA-SURF’ challenge, extending it to RGB-D chan-

nels, based on the open-source implementation [2]. We

used the initialization from the best-pretrained model as

suggested in [29] followed by retraining in the current pro-

tocols using RGB-D channels.

RGBD-MH-BCE: This uses the newly proposed multi-head

architecture shown in Fig.1, where all the branches are su-

pervised by binary cross-entropy (BCE). In essence, this is

equivalent to setting the value of γ = 0, in the expression

for the cross-modal loss function. This is shown as a base-

line to showcase the improvement by the new multi-head

architecture alone and to contrast with the performance

change with the new loss function.

Proposed: This is our final proposed framework, it uses the

multi-head architecture we proposed as shown in Fig.1, to-

gether with the newly proposed loss function. More specifi-

cally, the individual channel branches are supervised by the

newly proposed cross-modal focal loss function (CMFL ).

3.6. Experiments

We have conducted experiments in both WMCA and HQ-

WMCA datasets, specifically the leave-one-out protocols to

evaluate the robustness against unseen attacks. The results

are described in the following sections.

Results in WMCA dataset: The performance of the

proposed system and baselines in the LOO protocols of

WMCA are shown in Table 1. It can be seen that

the baselines MCCNN-OCCL-GMM and MC-ResNetDLAS

performs poorly in the challenging unseen attack scenar-

ios. Among baselines, the MC-PixBiS model achieves the

best performance with an average ACER of 10.5 ± 16.7%.

The model with the new architecture, RGBD-MH-BCE

achieves reasonable performance as compared to the base-

lines. However, the proposed method, with the new CMFL

loss achieves the best mean accuracy. Also, comparing with

RGBD-MH-BCE, the proposed loss function shows a clear

improvement in performance achieving an average ACER

of 7.6± 11.2%.

Results in HQ-WMCA dataset: The HQ-WMCA dataset

is consists of more challenging attacks as compared to

WMCA . Specifically, there are different types of facial

tattoos and partial attacks which occupy only a part of

the face. These attacks are much harder to detect when

they are not seen in the training set, as they appear very

similar to bonafide samples. The experimental results in

HQ-WMCA are tabulated in Table 2. Similar, to WMCA

database, the baselines MCCNN-OCCL-GMM and MC-

ResNetDLAS does not perform well in the LOO proto-

cols of HQ-WMCA database. In addition, the MC-PixBiS

method, which achieved reasonable performance in WMCA

performs poorly HQ-WMCA dataset. This could be due to

the challenging nature of the attacks in the database. It

can be seen that the new multi-head architecture proposed,

RGBD-MH-BCE, already improves the results as compared

to all the baselines with an average ACER of 13.3 ± 16.5.

Further, with the addition of the CMFL loss, the ACER fur-

ther improves to 11.6 ± 14.8%. The results indicate that

the proposed architecture already improves the performance

in challenging attacks, and the proposed loss further im-

proves the results achieving state of the art results in the

HQ-WMCA dataset.

To summarize, the newly proposed multi-head architec-

ture itself improves the performance over other baselines.

The addition of the CMFL loss further improves the perfor-

mance in both WMCA and HQ-WMCA datasets.

3.7. Ablation studies

To further analyze the performance, we conduct various

ablation studies using the proposed approach. We carry out

these experiments in the HQ-WMCA dataset as it contains

more challenging attacks.

Effect of γ: First, we conduct experiments with different

values of γ, we report the mean (value) of all the attacks

in the HQ-WMCA dataset for this comparison. The results

with different values of γ are shown in Table. 3. It can be
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