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Abstract

Anomaly detection in video is a challenging computer vi-

sion problem. Due to the lack of anomalous events at train-

ing time, anomaly detection requires the design of learn-

ing methods without full supervision. In this paper, we

approach anomalous event detection in video through self-

supervised and multi-task learning at the object level. We

first utilize a pre-trained detector to detect objects. Then,

we train a 3D convolutional neural network to produce dis-

criminative anomaly-specific information by jointly learn-

ing multiple proxy tasks: three self-supervised and one

based on knowledge distillation. The self-supervised tasks

are: (i) discrimination of forward/backward moving ob-

jects (arrow of time), (ii) discrimination of objects in con-

secutive/intermittent frames (motion irregularity) and (iii)
reconstruction of object-specific appearance information.

The knowledge distillation task takes into account both

classification and detection information, generating large

prediction discrepancies between teacher and student mod-

els when anomalies occur. To the best of our knowledge,

we are the first to approach anomalous event detection in

video as a multi-task learning problem, integrating multi-

ple self-supervised and knowledge distillation proxy tasks

in a single architecture. Our lightweight architecture out-

performs the state-of-the-art methods on three benchmarks:

Avenue, ShanghaiTech and UCSD Ped2. Additionally, we

perform an ablation study demonstrating the importance of

integrating self-supervised learning and normality-specific

distillation in a multi-task learning setting.

1. Introduction

In recent years, a growing interest has been dedicated to

the task of detecting anomalous events in video [8, 9, 10,

13, 17, 19, 20, 24, 30, 34, 35, 36, 37, 38, 39, 49, 51, 55, 57,

61, 62, 63]. An anomalous event is commonly defined as an

unfamiliar or unexpected event in a given context. For ex-

ample, a person crossing the road can be viewed as anoma-

lous if the event does not happen on the crosswalk. This

example shows that context plays a key role in the defini-

tion of anomalous events and, consequently, in the problem

formulation. Indeed, the reliance on context, coupled with

the large variety of unexpected events, makes it extremely

difficult to collect anomalous events for training. Hence,

the anomaly detection problem is typically regarded as an

outlier detection task. Then, a normality model is fit on

normal training data, labeling events that deviate from the

model as anomalous. Without being able to employ stan-

dard supervision, researchers have proposed alternative ap-

proaches ranging from distance-based [17, 19, 37, 38, 40,

44, 45, 46, 47, 50, 52, 59] and reconstruction-based strate-

gies [5, 13, 14, 27, 29, 31, 34, 36, 41, 51, 53] to probabilistic

[1, 2, 4, 12, 16, 21, 32, 33, 58] and change detection meth-

ods [7, 18, 28, 35].

In lieu of learning to discriminate directly between nor-

mal and anomalous events, related methods approach a dif-

ferent yet connected task. For example, in the pioneering

work of Liu et al. [27], a neural network learns to predict

future video frames. During inference, an event is labeled

as anomalous if the predicted future frame exhibits a high

reconstruction error. Although the state-of-the-art meth-

ods attain impressive results, addressing anomaly detection

through a single proxy task is suboptimal, since the proxy

task is not well aligned with anomaly detection. For in-

stance, a car stopped in a pedestrian area should be labeled

as an anomaly, yet the car is trivial to reconstruct in a future

frame (since it is standing still). We therefore propose to

perform anomaly detection by training a model jointly on

multiple proxy tasks. Following a series of recent methods

[9, 10, 17, 61], we also employ an object detector, subse-

quently performing anomaly detection at the object level.

However, these recent methods take into account a single

proxy task. Different from [9, 10, 17, 61], we propose a

novel anomaly detection approach that jointly learns a set

of multiple proxy tasks through a single object-centric ar-

chitecture.

As discussed above, we devise an object-centric ap-

proach comprising a 3D convolutional neural network

(CNN) that jointly learns the following proxy tasks: (i)
predicting the arrow of time (discriminating between for-

ward and backward moving objects), (ii) predicting the ir-

regularity of motion (discriminating between objects cap-
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Figure 1. Our anomaly detection framework based on self-supervised and multi-task learning. First, we detect the objects in video with the

help of an object detector (YOLOv3). For each object, we devise three self-supervised tasks (learning the arrow of time, predicting motion

irregularity and predicting the object appearance in the middle box) and a knowledge distillation task (using YOLOv3 and ResNet-50 as

teachers). A 3D convolutional neural network is trained jointly on the four tasks. Models represented with dashed lines are pre-trained.

Best viewed in color.

tured in consecutive frames versus objects captured in inter-

mittent frames), (iii) reconstructing the appearance of ob-

jects (given their appearance in preceding and succeeding

frames), (iv) estimating normality-specific class probabili-

ties by distilling pre-trained classification (ImageNet [43])

and detection (MS COCO [26]) teachers. To jointly address

these self-supervised and knowledge distillation tasks, we

integrate a prediction head for each corresponding task, as

illustrated in Figure 1. To our knowledge, we are the first to

propose a multi-task learning approach that integrates a set

of novel self-supervised and knowledge distillation proxy

tasks in a single object-centric architecture for anomaly de-

tection in video.

We perform comprehensive experiments on three bench-

marks, namely Avenue [29], ShanghaiTech [31] and UCSD

Ped2 [32]. Our approach outperforms the state-of-the-art

methods [7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 23,

24, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 47,

48, 49, 51, 53, 55, 57, 59, 60, 61, 62, 64] on all three data

sets, achieving frame-level AUC scores of 92.8% on Av-

enue, 90.2% on ShanghaiTech and 99.8% on UCSD Ped2.

Additionally, we present empirical evidence confirming that

a jointly optimized model on the proposed proxy tasks out-

performs single models optimized on individual tasks, thus

indicating that modeling anomaly detection through a single

proxy task is suboptimal.

In summary, our contribution is multifold:

• We introduce learning the arrow of time as a proxy task

for anomaly detection.

• We introduce motion irregularity prediction as a proxy

task for anomaly detection.

• We introduce model distillation as a proxy task for

anomaly detection in video.

• We pose anomaly detection in video as a multi-task

learning problem, integrating multiple self-supervised

and knowledge distillation tasks into a single model.

• We conduct experiments showing that our approach at-

tains superior results compared to the state-of-the-art

methods on three benchmarks.
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2. Related Work

While the early works [1, 2, 6, 25, 29, 32, 33, 46, 58] on

video anomaly detection relied heavily on handcrafted ap-

pearance and motion features, the recent literature is abun-

dant in deep learning methods [9, 10, 14, 16, 17, 27, 31, 38,

40, 41, 44, 47, 54, 59, 60]. For instance, Xu et al. [59] pro-

posed the use of stacked denoising auto-encoders to auto-

matically learn both appearance and motion features, which

are further used as input for multiple one-class SVM mod-

els. Hasan et al. [14] diverged from using auto-encoders

simply as feature extractors for subsequent models, leverag-

ing the reconstruction error as an estimator for abnormality.

More recently, Wang et al. [54] proposed a further improve-

ment by combining CNNs with LSTMs, forming a spatio-

temporal auto-encoder able to better account for the tempo-

ral evolution of spatial features. Wang et al. [54] rely on

the assumption that anomalous events will cause significant

discrepancies between future and past frames. Employing

generative networks for video anomaly detection [8, 36, 41]

is another significant line of research that relies on the same

principle, that is, synthesizing future frames will prove to

be significantly more challenging when an anomalous event

occurs than in a normal situation. To this end, Liu et al. [27]

employed a generative model to predict future frames, con-

sidering the reconstruction error as an indicator of abnor-

mality. In another similar framework, Lee et al. [24] pro-

posed to predict the middle frame, considering a bidirec-

tional approach that learns from both past and future frames.

Similar to future frame [8, 27] or middle frame [24] predic-

tion frameworks, we propose a framework that incorporates

middle frame prediction. Different from methods such as

[8, 24, 27, 54], we study middle frame prediction at the ob-

ject level, enabling the accurate localization of anomalies.

Moreover, middle frame prediction is just one of our four

proxy tasks. To our knowledge, we are the first to propose

learning the arrow of time, motion irregularity prediction

and model distillation as proxy tasks for anomaly detection

in video. We note that model distillation has been studied

as a single task for anomaly detection in still images [3].

However, our ablation results show that model distillation

alone is not sufficient for anomaly detection in video.

Aside from the direction relying on reconstruction errors

[14, 27, 29, 31, 34, 36, 41, 51, 53], other recent works, such

as [9, 38], tackle the problem from completely different an-

gles. For example, Ramachandra et al. [38] employed a

Siamese network to learn a metric between spatio-temporal

video patches. In this scenario, the dissimilarity between

patches provides the means to estimate the level of abnor-

mality.

In addition, anomalous event detection approaches can

be divided with respect to the level of analysis. While some

frameworks, such as [27, 33, 40, 41, 47], approach the prob-

lem from a global (frame-level) perspective, methods such

as [7, 11, 21, 19, 28, 29, 31, 32, 44, 46, 64] extract fea-

tures at a local level, e.g. by considering spatio-temporal

cubes. In some cases, the detection of anomalous events

is explored with multi-level frameworks, a recent example

being the work of Lee et al. [24]. Aside from these main-

stream perspectives, Ionescu et al. [17] introduced a novel

object-centric framework, employing a single-shot object

detector on each frame, before applying convolutional auto-

encoders to learn deep unsupervised representations as part

of a one-versus-rest classification approach based on clus-

tering training samples into normality clusters. A few re-

cent works [9, 10, 61] further explored the same line of

research, proposing alternative object-centric frameworks.

Similar to object-centric frameworks such as [9, 10, 17, 61],

we employ an object detector, focusing our analysis on

the detected objects. Unlike [9, 10, 17, 61], we perform

the analysis through a series of proxy self-supervised and

model distillation tasks, proposing a novel anomaly detec-

tion framework based on multi-task learning. Hence, the

only common aspect with the other object-centric methods

[9, 10, 17, 61] is the use of an object detector.

The related methods presented so far follow the main-

stream formulation of anomalous event detection, which

implies that an anomalous event is an unfamiliar event in a

known context. In the mainstream formulation, anomalous

events are not available at training time, as it is considered

too difficult to collect a sufficiently wide variety of anoma-

lous events. Although our study adopts the mainstream for-

mulation, we acknowledge the recent effort of Sultani et

al. [48], which considers anomalous events that do not de-

pend on the context. By eliminating the reliance on con-

text, they are able to collect and use anomalous events at

training. In their formulation, anomalous event detection

becomes equivalent to action recognition in video. We thus

consider the line of research initiated by Sultani et al. [48]

and continued by others [65] less related to our study.

3. Method

3.1. Motivation and Overview

Motivation. Modeling anomalous event detection through

a single proxy task, e.g. future frame prediction [27], is sub-

optimal due to the lack of perfect alignment between the

proxy task and the actual (anomaly detection) task. To re-

duce the non-alignment of the model with respect to the

anomaly detection task, we propose to train the model by

jointly optimizing it on multiple proxy tasks.

Training. Our framework based on self-supervised and

multi-task learning is illustrated in Figure 1. First, we de-

tect the objects in each frame using a pre-trained YOLOv3

[42] detector, obtaining a list of bounding boxes. For each

detected object in the frame i, we create an object-centric

temporal sequence by simply cropping the corresponding

bounding box from frames {i−t, ..., i−1, i, i+1, ...., i+t}
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1× 2× 2 max-pooling 1× 2× 2 max-pooling

3× 3× 3 conv 32 3× 3× 3 conv 64

1× 2× 2 max-pooling 1× 2× 2 max-pooling

3× 3× 3 conv 32 3× 3× 3 conv 64

: ×2× 2 max-pooling : ×2× 2 max-pooling

3× 3× 3 conv 16 3× 3× 3 conv 32

3× 3× 3 conv 16 3× 3× 3 conv 32
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3× 3× 3 conv 32 3× 3× 3 conv 64

3× 3× 3 conv 32 3× 3× 3 conv 64

1× 2× 2 max-pooling 1× 2× 2 max-pooling

3× 3× 3 conv 32 3× 3× 3 conv 64

1× 2× 2 max-pooling 1× 2× 2 max-pooling

3× 3× 3 conv 32 3× 3× 3 conv 64

: ×2× 2 max-pooling : ×2× 2 max-pooling

Table 1. Alternative architectures considered for the 3D CNN in-

cluded in our anomaly detection framework. Global temporal

pooling is denoted by “:”.

(without performing any object tracking), resizing each

cropped image to 64× 64 pixels. For illustration purposes,

we set t = 2 in Figure 1. The resulting object-centric se-

quence is the input of our 3D CNN. Our architecture is

formed of the shared 3D CNN followed by four branches

(prediction heads), one for each proxy task.

Inference. During inference, the anomaly score is com-

puted by averaging the scores predicted for each task. For

the arrow of time and motion irregularity tasks, we take the

probability of the temporal sequence to move backward and

the probability of the temporal sequence to be intermittent.

For the middle frame prediction task, we consider the mean

absolute difference between the ground-truth and the recon-

structed object. The last component of the anomaly score

is the difference between the class probabilities predicted

by YOLOv3 and the corresponding class probabilities pre-

dicted by our knowledge distillation branch. We do not in-

clude ResNet-50 predictions at inference time to preserve

the real-time processing of our framework.

3.2. Neural Architectures

Our architecture is composed of a shared CNN and four

independent prediction heads. The shared CNN uses 3D

convolutions (conv) to model temporal dependencies, while

individual branches use only 2D convolutions. When con-

sidering the proxy tasks one at a time, we observed accu-

rate results using a relatively shallow and narrow neural ar-

chitecture formed of three conv layers. When we moved

to jointly optimizing our model on multiple proxy tasks,

we observed the need to increase the width and depth of

our neural network to accommodate for the increased com-

plexity of the multi-task learning problem. We therefore

employ a set of four neural architectures considering all

possible combinations of shallow, deep, narrow and wide

architectures. These are: shallow+narrow, shallow+wide,

deep+narrow and deep+wide. The detailed configuration of

each 3D CNN architecture is presented in Table 1.

For each network configuration, the spatial size of the

RGB input is 64× 64 pixels. The 3D conv layers use filters

of 3×3×3. Each conv layer is followed by a batch normal-

ization layer and a ReLU activation. Our shallow+narrow

3D CNN is formed of three 3D conv layers and three 3D

max-pooling layers. Its first 3D conv layer is composed of

16 filters and the next two conv layers are composed of 32
filters each. The padding is set to “same” and the stride

is set to 1. We perform only spatial pooling for the first

two 3D max-pooling layers. The pooling size and the stride

are both set to 2. The last 3D max-pooling layer performs

global temporal pooling, keeping the same configuration as

the first two pooling layers at the spatial level. Using tem-

poral pooling only once (in the last pooling layer) enables

us to employ a different temporal size for each proxy task.

In the shallow+wide configuration, we change the 3D CNN

by doubling the number of filters in each conv layer. For

the deep+narrow architecture, we increase the number of

3D conv layers from three to six. Finally, in the deep+wide

configuration, we double the number of layers as well as

the number of filters in each conv layer with respect to the

shallow+narrow model.

In the middle object prediction head, we incorporate a

decoder formed of upsampling and 2D conv layers based

on 3 × 3 filters. The number of upsampling operations is

always equal to the number of max-pooling layers in the

3D CNN. Similarly, the number of 2D conv layers in the

decoder matches the number of 3D conv layers in the 3D

CNN. Each upsampling operation is based on nearest neigh-

bor interpolation, increasing the spatial support by a factor

of 2×. The last conv layer in the decoder has only three

filters in order to reconstruct the RGB input.

The other three prediction heads share the same config-

uration, having a 2D conv layer with 32 filters and a max-

pooling layer with a spatial support of 2× 2. The last layer

is a fully-connected layer with either two units to predict

the arrow of time and motion irregularity or 1080 units to

predict the teachers’ output scores for the 1000 ImageNet

[43] classes and the 80 MS COCO [26] categories.

3.3. Proxy Tasks and Joint Learning

Task 1: Arrow of time. To predict the arrow of time [56] at

the object level, we generate two labeled training samples

from each object-centric sequence. The first sample takes

the frames in their temporal order, namely (i − t, ..., i −
1, i, i + 1, ..., i + t), thus being labeled as forward motion

(class 1). The second sample takes the frames in reversed

order, namely (i+t, ..., i+1, i, i−1, ..., i−t), being labeled

as backward motion (class 2). During inference, we expect

the arrow of time to be harder to predict for objects with
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anomalous motion. Let f be the shared 3D CNN and hT1
be

the arrow of time head. Let X(T1) be a forward or backward

object-centric sequence of size (2 · t+1)×64×64×3. We

use the cross-entropy loss to train the arrow of time head:

LT1

(

X(T1), Y (T1)
)

= −

2
∑

k=1

Y
(T1)
k log

(

Ŷ
(T1)
k

)

, (1)

where Ŷ (T1)=softmax
(

hT1

(

f(X(T1)
))

and Y (T1) is the

one-hot encoding of the ground-truth label for X(T1).

Task 2: Motion irregularity. Assuming that some anoma-

lies can be identified through irregular motion patterns, we

train our model to predict if an object-centric sequence

has consecutive or intermittent frames (some frames being

skipped). To learn motion irregularity, we generate two la-

beled training samples from each object-centric sequence.

The first example captures an object in consecutive frames

from i − t to i + t, the corresponding class being regular

motion (class 1). The intermittent object-centric sequence

is created by retaining the frame i, then gradually adding

t randomly chosen previous frames and t randomly chosen

succeeding frames. The intermittent frames are chosen by

skipping frames using random gaps in the range {1, 2, 3, 4}.

The intermittent object-centric sequence is labeled as irreg-

ular motion (class 2). Let hT2
be the irregular motion head

and X(T2) be a regular or irregular object-centric sequence

of size (2·t+1)×64×64×3. We employ the cross-entropy

loss to train the motion irregularity head:

LT2

(

X(T2), Y (T2)
)

= −

2
∑

k=1

Y
(T2)
k log

(

Ŷ
(T2)
k

)

, (2)

where Ŷ (T2)=softmax
(

hT2

(

f(X(T2)
))

and Y (T2) is the

one-hot encoding of the ground-truth label for X(T2).

Task 3: Middle bounding box prediction. Our 3D CNN

model also learns to reconstruct objects detected in the nor-

mal training videos. From each object-centric sequence, we

select the image samples cropped from frames {i−t, ..., i−
1, i+1, ..., i+t}, forming the input object-centric sequence

X(T3) of size (2 ·t)×64×64×3. The middle image, corre-

sponding to the bounding box in frame i, represents the tar-

get output Y (T3) of size 64×64×3. When we encounter an

anomaly with unusual motion, such as a person running, the

input object-centric sequence of that person will not contain

enough information for the model to accurately reconstruct

the middle bounding box, thus being labeled as anomalous.

Let hT3
be the middle bounding box prediction head. We

use the L1 loss to learn the middle bounding box prediction

task:

LT3

(

X(T3),Y (T3)
)

=
1

h·w ·c

h
∑

j=1

w
∑

k=1

c
∑

l=1

∣

∣

∣
Y

(T3)
jkl −Ŷ

(T3)
jkl

∣

∣

∣
, (3)

where Ŷ (T3)=hT3

(

f
(

X(T3)
))

and h×w× c is the size of

the output, i.e. h = 64, w = 64 and c = 3.

Task 4: Model distillation. On the one hand, our 3D CNN

model learns to predict the features from the last layer (just

before softmax) of a ResNet-50 [15], which is pre-trained

on ImageNet. On the other hand, our 3D CNN model learns

to predict the class probabilities predicted by YOLOv3 [42],

which is pre-trained on MS COCO. During distillation, our

model learns the predictive behavior of the teachers on nor-

mal data. During inference, we expect high prediction dis-

crepancies between our student and the YOLOv3 teacher

when we encounter an object with unusual appearance or

that belongs to an object category not seen during train-

ing. We refrain from using ResNet-50 during inference in

order to save valuable computational time. We note that

YOLOv3 is applied only once on each frame i, the corre-

sponding class probabilities for each detected object being

already available during model distillation. During training,

we still need to pass each object to ResNet-50 to extract the

pre-softmax features. In order to distill the knowledge from

the YOLOv3 and ResNet-50 teachers, our student 3D CNN

model receives the same input as ResNet-50 and learns to

predict the pre-softmax features Y
(T4)

ResNet of ResNet-50 and

the class probabilities Y
(T4)

YOLO predicted by YOLOv3. Let

X(T4) be the input image comprising a detected object and

hT4
be the knowledge distillation head. The model distilla-

tion task is learned by minimizing the L1 loss function:

LT4

(

X(T4), Y (T4)
)

=
1

n

n
∑

j=1

∣

∣

∣
Y

(T4)
j − Ŷ

(T4)
j

∣

∣

∣
, (4)

where Ŷ (T4)=hT4

(

f
(

X(T4)
))

and Y (T4)=Y
(T4)

ResNet ⊕Y
(T4)

YOLO

is the concatenation of the 1000 ResNet-50 pre-softmax fea-

tures and the 80 YOLOv3 class probabilities, resulting in a

vector of n = 1080 components.

Joint loss. Our 3D CNN model is trained by jointly opti-

mizing it on the four proxy tasks described above. Hence,

the model is training using a joint loss function:

Ltotal = LT1
+ LT2

+ LT3
+ λ · LT4

, (5)

where λ ∈ (0, 1] is a weight that regulates the importance

of the knowledge distillation task. We empirically observed

that LT4
has a typically higher magnitude than the other loss

functions, dominating the joint loss without a regularization

term. In our experiments, we fine-tune λ with respect to the

validation values of the joint loss, before ever applying our

framework on the anomaly detection task.

3.4. Inference

During inference, we utilize YOLOv3 to detect objects

in each frame i. For each object, we extract the correspond-

ing object-centric sequence X by cropping the bounding

box from the frames {i − t, ..., i − 1, i, i + 1, ..., i + t}.

We pass each object-centric sequence through our neu-

ral model, obtaining the outputs Ŷ (T1), Ŷ (T2), Ŷ (T3) and

Ŷ (T4), respectively. For the arrow of time proxy task, we
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take the probability of the temporal sequence to move back-

ward as the anomaly score. For the motion irregularity task,

we consider the probability of the gapless test sequence X

to be intermittent as a good abnormality indicator. We inter-

pret the mean absolute error between the reconstructed and

the ground-truth middle object as the anomaly score pro-

vided by the middle bounding box prediction head. For the

knowledge distillation task, we consider the absolute differ-

ence between the class probabilities predicted by YOLOv3

and those predicted by our model. We compute the final

anomaly score of an object as the average of the anomaly

scores given by each prediction head:

score(X) =
1

4

(

Ŷ
(T1)
2 + Ŷ

(T2)
2 +

avg
(∣

∣

∣
Y (T3)−Ŷ (T3)

∣

∣

∣

)

+ avg
(∣

∣

∣
Y

(T4)
YOLO−Ŷ

(T4)
YOLO

∣

∣

∣

))

.

(6)

Next, we reassemble the detected objects in a pixel-level

anomaly map for each frame. Therefore, we can easily lo-

calize the anomalous regions in any given frame. To create

a smooth pixel-level anomaly map, we apply a 3D mean fil-

ter. The anomaly score for a certain frame is given by the

maximum score in the corresponding anomaly map. The fi-

nal frame-level anomaly scores are obtained by applying a

temporal Gaussian filter.

3.5. Object­Level versus Frame­Level Detection

Although performing anomaly detection at the object

level enables the accurate localization of anomalies, the

downside is that the detection failures of YOLOv3 (due to

a limited set of object categories or poor performance) are

translated into false negatives. In order to address this limi-

tation, we can apply our framework at the frame level, elim-

inating YOLOv3 from the pipeline and keeping the other

components in place. By fusing the frame-level and object-

level anomaly scores at a late stage, we can recover some of

the false negatives of our object-centric framework. In our

experiments, we report the results of our framework based

on late fusion, as well as the results at the object level and

at the frame level, respectively.

4. Experiments

4.1. Data Sets

We perform experiments on three benchmark data sets:

Avenue [29], ShanghaiTech [31] and UCSD Ped2 [32].

Each data set has pre-defined training and test sets, anoma-

lous events being included only at test time.

Avenue. The Avenue [29] data set contains 16 training

videos with normal activity and 21 test videos. Examples

of anomalous events in Avenue are related to people run-

ning, throwing objects or walking in the wrong direction.

The resolution of each video is 360× 640 pixels.

ShanghaiTech. ShanghaiTech [31] is one of the largest data

sets for anomaly detection in video. It consists of 330 train-

ing videos and 107 test videos. The training videos contain

only normal events, while the test videos contain normal

and abnormal sequences. Examples of anomalous events

are: robbing, jumping, fighting and riding bikes in pedes-

trian areas. The resolution of each video is 480×856 pixels.

UCSD Ped2. UCSD Ped2 [32] contains 16 training videos

with normal activity and 12 test videos. Examples of abnor-

mal events are bikers, skaters and cars in a pedestrian area.

The resolution of each video is 240× 360 pixels.

4.2. Setup and Implementation Details

Evaluation measures. As our main evaluation metric, we

consider the area under the curve (AUC) computed with

respect to the ground-truth frame-level annotations. The

frame-level AUC metric is the most commonly used metric

in related works [7, 13, 14, 16, 17, 27, 39, 41, 53, 55, 62].

Many related works also report the pixel-level AUC for the

UCSD Ped2 data set. As explained by Ramachandra et

al. [37], the pixel-level AUC is a flawed evaluation metric.

We thus report our performance on UCSD Ped2 in terms of

the region-based detection criterion (RBDC) and the track-

based detection criterion (TBDC). These metrics were re-

cently introduced by Ramachandra et al. [37] to replace the

commonly used pixel-level and frame-level AUC metrics.

Parameter tuning. The first step of our framework is ob-

ject detection based on YOLOv3 [42]. For Avenue and

ShanghaiTech, we keep the detections with a confidence

higher than 0.8. Because UCSD Ped2 has a lower reso-

lution, we set the detection confidence to 0.5. We use the

same confidence threshold during training and inference.

We use the first 85% of the frames in each training video

to train our models on the proxy tasks, keeping the last 15%
to validate the models on each proxy task. We fine-tune

the parameters t and λ on our validation sets, before mak-

ing the transition to anomaly detection. For t, we consid-

ered values in the set {1, 2, 3, 4}. As we obtained optimal

results with t = 3, we use this value throughout all the

anomaly detection experiments. Hence, an object-centric

temporal sequence is a tensor of 7 × 64 × 64 × 3 com-

ponents. We fine-tune the parameter λ controlling the im-

portance of LT4
in Equation (5), considering values in the

set {0.1, 0.2, 0.5, 1.0}. We obtained optimal results with

λ = 0.5 on UCSD Ped2 and λ = 0.2 on Avenue and Shang-

haiTech, respectively. We therefore report anomaly detec-

tion results with these optimal settings.

Each neural network is trained for 30 epochs using the

Adam optimizer [22] with a learning rate of 10−3, keep-

ing the default values for the other parameters of Adam.

We trained the models using mini-batches of 256 samples

for the shallow+narrow architecture, 128 samples for the

deep+narrow and shallow+wide architectures and 64 sam-

ples for the deep+wide architecture, being limited by our

computational resources. For each model, we select the

checkpoint with the lowest validation error on the proxy
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Year Method Avenue
Shanghai UCSD

Tech Ped2

b
ef

o
re

2
0

1
6 Kim et al. [21] - - 69.3

Mehran et al. [33] - - 55.6

Mahadevan et al. [32] - - 82.9

Lu et al. [29] 80.9 - -

Xu et al. [59] - - 90.8

2
0

1
6 Del Giorno et al. [7] 78.3 - -

Hasan et al. [14] 70.2 60.9 90.0

Zhang et al. [64] - - 91.0

2
0

1
7

Hinami et al. [16] - - 92.2

Ionescu et al. [18] 80.6 - 82.2

Luo et al. [31] 81.7 68.0 92.2

Ravanbakhsh et al. [41] - - 93.5

Smeureanu et al. [47] 84.6 - -

Xu et al. [60] - - 90.8

2
0

1
8

Lee et al. [23] 87.2 - 96.5

Liu et al. [27] 85.1 72.8 95.4

Liu et al. [28] 84.4 - 87.5

Ravanbakhsh et al. [40] - - 88.4

Sultani et al. [48] - 76.5 -

2
0

1
9

Gong et al. [13] 83.3 71.2 94.1

Ionescu et al. [17] 90.4 84.9 97.8

Ionescu et al. [19] 88.9 - -

Lee et al. [24] 90.0 76.2 96.6

Nguyen et al. [34] 86.9 - 96.2

Vu et al. [53] 71.5 - 99.2

Wu et al. [57] 86.6 - -

2
0

2
0

Dong et al. [8] 84.9 73.7 95.6

Doshi et al. [9, 10] 86.4 71.6 97.8

Ji et al. [20] 78.3 - 98.1

Lu et al. [30] 85.8 77.9 96.2

Park et al. [36] 88.5 70.5 97.0

Ramachandra et al. [37] 72.0 - 88.3

Ramachandra et al. [38] 87.2 - 94.0

Sun et al. [49] 89.6 74.7 -

Tang et al. [51] 85.1 73.0 96.3

Wang et al. [55] 87.0 79.3 -

Yu et al. [61] 89.6 74.8 97.3

Zaheer et al. [62] - - 98.1

Ours (object level) 91.9 89.3 99.8

Ours (frame level) 86.9 83.5 92.4

Ours (late fusion) 92.8 90.2 99.8

Table 2. Frame-level AUC scores (in %) of the state-of-the-art

methods [7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 27,

28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 47, 48, 49, 51, 53, 55,

57, 59, 60, 61, 62, 64] versus our deep+wide architecture trained

on four proxy tasks at the object level, at the frame level or based

on late fusion. The top two results are shown in red and blue.

tasks to perform anomaly detection.

4.3. Anomaly Detection Results

In Table 2, we present the comparative results of our

object-level, frame-level and late fusion frameworks versus

the state-of-the-art methods, reporting the frame-level AUC

scores (whenever available) on the following three bench-

Figure 2. Frame-level scores and anomaly localization examples

for test video 04 from Avenue. Best viewed in color.

Figure 3. Frame-level scores and anomaly localization examples

for test video 03 0035 from ShanghaiTech. Best viewed in color.

Method AUC RBDC TBDC

Ramachandra et al. [37] 88.3 62.5 80.5

Ramachandra et al. [38] 94.0 74.0 89.3

Ours (object level) 99.8 72.8 91.2

Table 3. Frame-level AUC, RBDC and TBDC scores (in %) of two

state-of-the-art methods [37, 38] versus our object-level frame-

work. The best results are highlighted in red.

mark data sets: Avenue, ShanghaiTech and UCSD Ped2.

Results on Avenue. There are only two methods [17, 24]

that surpass the 90% threshold on Avenue. Our framework

applied at the object level obtains a frame-level AUC of

91.9%, surpassing the state-of-the-art method [17] by 1.5%.

When we apply our framework at the frame level, our per-

formance drops considerably, but the method is still able to

outperform some recent works [8, 9, 20, 30, 37, 51]. When

we fuse the object-level anomaly scores with the frame-

level anomaly scores, our performance improves, reaching

a new state-of-the-art frame-level AUC of 92.8%. In Fig-

ure 2, we illustrate a set of anomaly localization examples

along with the frame-level anomaly scores for test video

04. We observe that our approach correlates well with the

ground-truth frame-level annotations.

Results on ShanghaiTech. On ShanghaiTech, our late fu-

sion method outperforms all previous works, reaching a

new state-of-the-art performance of 90.2%, surpassing the

previous state-of-the-art method [17] by a margin of 5.3%.

Remarkably, we are the first to reach a frame-level AUC

score of over 90% on ShanghaiTech. Aside from [17], our

method surpasses all other state-of-the-art approaches by a

margin of at least 10.9%. In Figure 3, we present some
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Number

3D CNN Level

Avenue UCSD Ped2

of Accuracy MAE
AUC

Accuracy MAE
AUC

Tasks Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

1 shallow+narrow object 84.8 - - - 83.6 98.1 - - - 89.4

1 shallow+narrow object - 91.8 - - 83.4 - 99.3 - - 94.9

1 shallow+narrow object - - 0.0001 - 83.5 - - 0.0001 - 97.1

1 shallow+narrow object - - - 0.0014 73.7 - - - 0.0014 97.1

2 shallow+narrow object 80.5 - 0.0315 - 87.7 98.7 - 0.0408 - 97.0

2 deep+narrow object 82.6 - 0.0428 - 83.7 95.3 - 0.0520 - 97.2

2 shallow+wide object 81.9 - 0.0283 - 83.7 98.9 - 0.0300 - 96.7

2 deep+wide object 82.4 - 0.0383 - 84.2 98.5 - 0.0554 - 97.7

3 shallow+narrow object 79.6 89.6 0.0350 - 89.1 98.0 98.9 0.0400 - 97.5

3 deep+narrow object 89.9 94.4 0.0425 - 91.6 98.8 99.7 0.0501 - 98.6

3 shallow+wide object 87.4 93.3 0.0305 - 90.1 98.8 98.4 0.0385 - 97.5

3 deep+wide object 90.0 95.2 0.0410 - 90.7 98.9 99.3 0.0433 - 98.8

4 shallow+narrow object 81.6 92.2 0.0337 0.3898 89.6 98.7 99.3 0.0565 0.3568 99.1

4 deep+narrow object 89.6 93.7 0.0438 0.3952 91.5 99.1 98.4 0.0499 0.3807 99.0

4 shallow+wide object 82.9 91.0 0.0313 0.3767 89.4 98.8 99.4 0.0604 0.3575 97.8

4 deep+wide object 92.2 95.3 0.0398 0.3709 91.9 99.0 98.7 0.0408 0.3576 99.8

4 deep+wide frame 92.8 96.1 0.0199 0.5608 86.9 99.9 99.6 0.0104 0.4979 92.4

Table 4. Accuracy rates for Task 1 (arrow of time) and Task 2 (motion irregularity), mean absolute errors (MAE) for Task 3 (middle box

prediction) and Task 4 (model distillation), and frame-level AUC scores (in %) for anomaly detection obtained by adding one proxy task

at a time. The best frame-level AUC scores are highlighted in red.

anomaly localization examples along with the frame-level

anomaly scores for test video 03 0035. Our approach cor-

relates well with the ground-truth annotations.

Results on UCSD Ped2. UCSD Ped2 is one of the most

popular video anomaly detection benchmarks, resulting in

23 works reporting frame-level AUC scores of over 90%.

The current state-of-the-art method [53] reports a frame-

level AUC of 99.2%. Nevertheless, our method still man-

ages to surpass all previous works, reaching a new state-of-

the-art frame-level AUC of 99.8% on UCSD Ped2.

Since RBDC and TBDC are part of a very recent eval-

uation protocol, there are only two methods [37, 38] that

we can compare with in Table 3. We outperform the first

method [37] by significant margins in terms of all met-

rics. We also surpass the second method by 1.9% in terms

of TBDC and by 5.8% in terms of frame-level AUC, our

RBDC score being slightly lower. These results show that

our approach can accurately localize anomalies.

4.4. Ablation Study

We perform an ablation study on Avenue and UCSD

Ped2 to assess the benefit of including each proxy task in

our joint multi-task framework. The corresponding results

are presented in Table 4. Along with the anomaly detec-

tion performance, we report the performance levels for each

proxy task on our validation sets. Considering the indi-

vidual tasks, we observe that the arrow of time produces

the highest frame-level AUC (83.6%) on Avenue, likely be-

cause anomalies are caused by unusual actions, e.g. people

running. The most suitable tasks for UCSD Ped2 seem to

be middle bounding box prediction and knowledge distil-

lation, probably because anomalies are caused by objects

with unusual appearance, e.g. bikes or cars. We observe in-

creasingly better anomaly detection results as we gradually

add more proxy tasks in our joint optimization framework.

While increasing the number of proxy tasks, we also aim

to assess the effect of increasing the width and depth of our

neural architecture. We observe performance improvements

as we add more layers and filters to our 3D CNN, especially

when we jointly optimize on three or four tasks. Hence, we

conclude that it is beneficial to increase the learning capac-

ity of the 3D CNN along with the number of proxy tasks.

5. Conclusion

In this work, we have proposed a novel anomaly detec-

tion method based on self-supervised and multi-task learn-

ing, presenting comprehensive results on three benchmarks:

Avenue, ShanghaiTech and UCSD Ped2. To our knowledge,

our method is the first and only to exceed the 90% thresh-

old on all three benchmarks. Additionally, we performed an

ablation study showing the benefits of jointly learning mul-

tiple proxy tasks for anomaly detection in video. In future

work, we will consider exploring additional proxy tasks to

further boost the performance of our multi-task framework.
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