Privacy Preserving Localization and Mapping from Uncalibrated Cameras

Marcel Geppert¹ Viktor Larsson¹ Pablo Speciale² Johannes L. Schönberger² Marc Pollefeys¹,²
¹ Department of Computer Science, ETH Zurich ² Microsoft

Abstract

Recent works on localization and mapping from privacy preserving line features have made significant progress towards addressing the privacy concerns arising from cloud-based solutions in mixed reality and robotics. The requirement for calibrated cameras is a fundamental limitation for these approaches, which prevents their application in many crowd-sourced mapping scenarios. In this paper, we propose a solution to the uncalibrated privacy preserving localization and mapping problem. Our approach simultaneously recovers the intrinsic and extrinsic calibration of a camera from line-features only. This enables uncalibrated devices to both localize themselves within an existing map as well as contribute to the map, while preserving the privacy of the image contents. Furthermore, we also derive a solution to bootstrapping maps from scratch using only uncalibrated devices. Our approach provides comparable performance to the calibrated scenario and the privacy compromising alternatives based on traditional point features.

1. Introduction

The recent trend towards cloud-based localization and mapping systems for mixed reality and robotics (e.g., Microsoft Azure Spatial Anchors [25], Facebook LiveMaps [1], or Google VPS [48]) is largely driven by the need for scalable solutions to enable multi-device experiences and crowd-sourced mapping. However, as these systems primarily rely on acquiring imagery of the environment, this development has raised significant privacy concerns by the public [27,44,49,62]. Existing works on privacy preserving localization and mapping are based on the concept of lifting traditional point-based features to lines to conceal the appearance of images [10,13,55,57,58].

The fundamental limitation of these existing works is that they assume calibrated cameras, which prevents their applicability in a wide range of scenarios. In practice, the intrinsic calibration of cameras used in mixed reality devices and robots continuously changes over time due to environmental impact such as temperature change or dropping the device. Re-calibration of devices by the manufacturer is typically very costly or technically very challenging using automatic techniques. Sometimes, it can even be desirable to hide the exact calibration parameters of a camera to protect the identity of the device from fingerprinting attacks. Due to these issues, the resulting changes to the calibration parameters can be quite dramatic and negatively influence the accuracy of camera localization and mapping, or even prevent the successful use of the data entirely. Furthermore, in crowd-sourced mapping scenarios from mobile cameras [2,53,54,56], prior focal length estimates are typically quite inaccurate (e.g., due to auto-focus) or completely incorrect due to manual editing of the imagery by the user. Recent interest in crowd-sourced mapping for autonomous driving from dashboard cameras [63] is another application that suffers from challenges to calibrate the cameras. The windshield acts as an additional lens and drastically impacts the effective calibration parameters of the acquired imagery.

In this paper, we propose a principled solution to privacy preserving localization from uncalibrated cameras. Our approach self-calibrates the focal length and jointly estimates the absolute pose of a camera from only privacy preserving line features. Successfully localized cameras can contribute to existing maps in an incremental fashion without any further assumptions. In addition, we present a solution to initializing maps from scratch using only uncalibrated cameras. Our bootstrapping approach requires a subset of consistently aligned lines similar to the work presented by Geppert et al. [13]. This assumption does not impact the amount of
privacy preservation. We demonstrate the efficacy of our approach on a wide range of experiments on localization and the scenario of end-to-end crowd-sourced mapping. Our method achieves comparable performance to the calibrated case and to traditional point-based approaches.

The content in the paper is organized as follows: we first review related methods in the context of our work in Sec. 2 before describing our proposed solution to camera localization with unknown focal length from line features in Sec. 3.1. Sec. 3.2 then describes our approach to initializing maps from uncalibrated cameras, while Sec. 4 experimentally validates the efficacy of our proposed methods.

2. Related Work

In this section, we first review related work on privacy preserving methods in the context of localization and mapping. We then discuss existing approaches to uncalibrated localization and mapping with a particular focus on the absolute pose estimation problem.

2.1. Privacy Preserving Methods

With their work on privacy preserving image-based localization, Speciale et al. [57, 58] were the first to address privacy concerns in the context of localization and mapping. Their main idea is to lift 2D features in images and 3D points in the map to lines in order to conceal the appearance of the original images or the map, respectively. Localizing with 2D lines against a 3D point map unprojects the 2D lines to planes and solves a 3D point-to-plane alignment problem. A 2D points vs. 3D lines localization unprojects the 2D points to lines (rays) and can be seen as a generalized camera relative pose estimation. Note that it is not possible to combine the two approaches, i.e. lifting to lines in both 2D and 3D, since we cannot ensure that the random directions will be consistent between the image and the map. The following works by Geppert et al. [13] and Shibuya et al. [55] leverage the same concepts to tackle the full Structure-from-Motion (SfM) problem. Recently, Dusmanu et al. [10] propose an approach to preserve the privacy of local image features by lifting high-dimensional descriptors to affine subspaces. In our work, we rely on the same lifting-technique as previous approaches, but consider for localization and mapping for uncalibrated cameras.

2.2. Uncalibrated Localization and Mapping

Early methods on SfM for uncalibrated images [4, 12, 41, 46] served as the foundation for later works on mapping systems from unstructured and crowd-sourced imagery [52, 56] exhibiting extremely challenging scenarios for camera self-calibration. In the following years, research focused on scaling these approaches to thousands and millions of images [2, 19, 54] and further robustifying the self-calibration process [20, 21, 35, 39, 53, 60]. The arguably most reliable systems on self-calibrating SfM follow an incremental reconstruction paradigm [2, 19, 46, 53, 54, 56], while later global approaches also demonstrated impressive results [8, 60, 64]. Most recently, Geppert et al. [13] extend on traditional incremental systems [53] to build a privacy-preserving SfM system. The main limitation of their work lies in requiring calibrated images, which is a significant limitation in practice. We overcome this limitation by using a hybrid global-incremental approach, where we use global optimization during map initialization and then incrementally localize cameras into the map. Both the initialization as well as the localization stage are fully self-calibrating.

2.3. Absolute Pose Estimation

Recovering the camera pose w.r.t. a pre-built map is an important problem occurring in many vision applications, e.g., SfM [53], visual localization [50], and SLAM [42]. If the camera’s intrinsic calibration is known, this can be minimally estimated from three point-to-point correspondences [15, 43] (usually referred to as P3P). In the privacy preserving framework from Speciale et al. [58], the absolute pose problem is solved from 2D-line to 3D-point correspondences. While these offer weaker geometric constraints, requiring six correspondences instead of three, Speciale et al. show that it is possible to perform robust visual localization in this setting as well. The solver used in their work is based on the 3Q3 solver from Kukelova et al. [30].

If the intrinsic camera calibration is unknown, it can be estimated jointly with the pose using additional correspondences. If there is no constraints on the intrinsic parameters, the Direct Linear Transform (DLT) [18] can be used to linearly estimate the 3×4 pinhole camera matrix from at least 5.5 point correspondences. If the camera has square-pixels (i.e., zero skew and unit aspect ratio), this can be used to replace one point-correspondence, allowing estimation from 4.5 points. However, this introduces non-linear constraints on the camera matrix and the DLT approach no longer applies. Minimal solvers for this case were first introduced by Triggs [61] and recently improved in Larsson et al. [53].

For most consumer cameras, we further assume a centered principal point. Even if this is not exactly satisfied, small offsets in the principal point can be well compensated with small pose corrections in the x/y-translation. In this case, only the focal length remains to be estimated, and by centering the image coordinates, we can w.l.o.g. assume the calibration matrix to be diagonal, i.e., $K = \text{diag}(f, f, 1)$. The pose estimation problem with unknown focal length was first solved by Bujnak et al. [5] from 4 point correspondences (P4P1). Note that the problem is minimal with 3.5 points, and Josephson and Byröd [23] used this additional

4Here 0.5 means only using one of the two equations available from one of the 2D-3D correspondences.
0.5 point correspondence to estimate one radial distortion parameter (P4Pfr). This solver was later improved in the followup works by Bujnak et al. [6] and Larsson et al. [32].

In [29] Kukelova et al. presented a solver that relies on 5 point correspondences (P5Pf), but offsets the larger sample size by greatly improving the runtime. In addition to estimating focal length, this solver can also estimate up to three distortion parameters. This solver was later extended in Larsson et al. [34] to more general distortion models.

There has also been a series of works on improving upon the original P4Pf solver from Bujnak et al. [5]. Zheng et al. [68] used a similar approach but managed to greatly improve the runtime and stability. Wu [66] presented the first solver that was able to leverage the minimal set of 3.5 points instead 4. Kukelova et al. [30] showed that P4Pf can be formulated as a 3Q3 problem and proposed a very efficient solver for this. Larsson et al. [32] proposed an alternative P3.5Pf solver which avoids the degeneracies in [66]. If the focal length is approximately known (e.g., from EXIF data), Sattler et al. [51] showed that sampling based-approaches can also work very well. The work most related to ours is by Kuang and Åström [28], which considers absolute pose with unknown focal length from combinations of point-to-point, line-to-line, and so-called quiver correspondences. While they do not consider the case of 2D-line-to-3D-point correspondences necessary for the privacy preserving setting, it is possible to adapt their approach to this case. Still, their rotation parameterization degenerates for any 180° rotation and requires additional steps to handle these degeneracies.

The absolute pose problem has also been considered for the case of 2D-line-to-3D-line correspondences, sometimes referred to as Perspective-n-Lines (PnL) in the literature. The first solutions were given by Dhome et al. [9] and Chen [7]. Since then there have been various works which improve the solvers in different aspects. For example, [3] proposed a linear estimator that can use multiple correspondences. This was later improved in [40] which instead solve for the global minimizer of a non-linear cost. Xu et al. [67] investigated the special cases for P3L and provided a complete solution for these. The case of known vertical direction was studied in [36] for perspective cameras, and in [22] for generalized cameras.

3. Method

A localization and mapping pipeline generally consists of multiple building blocks: feature extraction and matching, image pose estimation, point triangulation, and bundle adjustment. To create a new map from scratch, an additional map initialization step is used. In our setup, both the feature extraction and matching part and bundle adjustment are trivial extensions of the standard case. We extract standard SIFT [38] features and simply lift the keypoints to lines. Hereby we usually create randomly oriented lines, but add consistently aligned lines for initialization as explained in Sec. 3.2. For bundle adjustment we replace the standard 2D point-to-point distance with a 2D point-to-line distance. For point triangulation we rely directly on the calibrated method presented in [13], using the already obtained estimates for the focal length and ignoring any additional image distortion. This solution lifts the 2D lines to 3D planes and finds the observed 3D points by intersecting corresponding planes of at least three images. Consequently, we focus our explanations on the remaining building blocks. We detail our new minimal solver for image pose estimation from line features with unknown focal length in Sec. 3.1. We then explain the map initialization technique for this setup in Sec. 3.2.

3.1. Privacy Preserving Localization with Unknown Focal Length

In the privacy preserving framework [13, 58], each 2D keypoint is replaced with a randomly oriented line passing through it. During pose estimation, each 2D line to 3D point correspondence constrains the camera pose as

\[\ell^T (RX + t) = 0 , \]

where \(\ell \) is the homogeneous representation of the 2D line. This, however, assumes that the lines \(\ell \) are given in the normalized image plane requiring known calibration. If the lines are defined in image space, the corresponding equation is instead (disregarding any distortion)

\[\ell^T K (RX + t) = 0 , \]

where \(K \) is the intrinsic calibration matrix. The extra non-linearly introduced by the \(K \) matrix prevents us from using the same 3Q3-based approach as in [13, 58].

Minimal Solver for Absolute Pose. In this section, we present a minimal solver for uncalibrated absolute pose estimation from line-to-point correspondences. We assume square pixels and centered principal point, i.e., only the focal length is unknown, \(K = \text{diag}(f, f, 1) \). This is a common assumption in the literature (see e.g. [5, 29, 32, 34, 68]) that holds for most cameras.

Each 2D-line-to-3D-point correspondence only yields a single constraint and thus we need 7 correspondences to get a minimal problem. Rewriting equation (2) in terms of the camera matrix \(P = K[R t] \in \mathbb{R}^{3 \times 4} \), we obtain

\[\ell^T P \begin{bmatrix} X & 1 \end{bmatrix} = 0 \iff \left([X^T 1] \otimes \ell^T \right) \text{vec}(P) = 0 \]

where \(\otimes \) denotes the Kronecker product. Stacking the constraints from 7 correspondences, we get

\[Ap = 0, \quad \text{where} \quad A = \begin{bmatrix} [X^T 1] \otimes \ell_1^T \\ \vdots \\ [X^T 1] \otimes \ell_7^T \end{bmatrix} \in \mathbb{R}^{7 \times 12} . \]
Note that if we had 11 point correspondences, we could solve linearly for the camera matrix P by finding the nullspace to A. This would be equivalent to DLT [18] for normal pose estimation and does not enforce any constraints on the intrinsic calibration. Instead, we recover a basis for the nullspace $N \in \mathbb{R}^{12 \times 5}$. Any camera matrix which satisfies the 7 correspondences can then be written as some linear combination of these basis vectors, i.e. $p = N(\alpha^2, 1)^T$, where we have fixed the scale by setting the last coefficient to one. To recover the unknown coefficients α, we want to ensure that the first 3x3 block of P corresponds to $\text{diag}(f, f, 1) R$, where R is a rotation matrix. This can be enforced by requiring the three rows to be pairwise orthogonal and that the first two rows have the same norm. These constraints were already used in [6]. However, as pointed out in [32], this introduces spurious complex solutions (where $p_{11}^2 + p_{12}^2 + p_{13}^2 = 0$), increasing the complexity of the solver. To avoid these spurious solutions, the authors proposed to use additional polynomial constraints [32]. We provide these constraints in the supplementary material for completeness. Inserting the nullspace parameterization into these equations yields new equations in α. Using the framework from [31], we create a Gröbner basis solver for these equations. Similar to the P3.5Pf solver [32], the problem has 10 solutions. At runtime, the solver requires linear elimination on a 25×35 matrix followed by solving a 10×10 eigenvalue problem.

3.2. Privacy Preserving Map Initialization

In practice, it is not always possible to extend an existing map, but a new map needs to be created from scratch (e.g., when devices visit a location for the first time). Our proposed initialization scheme extends the approach in Geppert et al. [13] to also work in the uncalibrated setting. As in their work, we require correspondences in four views to estimate relative poses, but we do not require calibrated gravity measurements. While we still need to align features for the initialization there is no constraint on the direction as long as it is used consistently in all views. We detect lines in the images, robustly estimate vanishing points to find a dominant direction in the scene, and then create the lines to intersect both the corresponding keypoint and the vanishing point. In practice, the vertical direction is still often the easiest to detect robustly. We assume the images to be coarsely aligned with gravity (i.e., within 45°) to distinguish between vertical or horizontal vanishing points in scenes with multiple dominant directions.

Our initialization begins by solving a projective 2D-SfM problem that is used to convert a subset of the line correspondences into pairwise 2D-2D point matches. These point matches are then used in an approach similar to nonincremental SfM methods [45, 60] to globally recover the poses for the four images used for initialization. We use a simple heuristic based on the number of feature matches to select the initialization image set. This is detailed in the supplementary material.

Projective 2D-SfM on the Horizon. Similar to Geppert et al. [13], we require a mix of consistently aligned and randomly oriented lines. For simplicity we assume a vertical alignment based on a detected vertical vanishing point. Following [13], we can interpret the vertically aligned lines as 1D-measurements. Note that these vertically aligned lines are projections of vertical lines in 3D, and are generally not vertical in the image. We transform each image’s features into a synthetic, horizontally aligned image, which now also has vertical lines in image space. From this we can extract the 1D measurements as the features’ horizontal position in the image. The goal is now to solve a 2D SfM problem with the 1D measurements. Since the internal calibration of the cameras is unknown, we only aim to recover a projective reconstruction in this step. However, we will show that this is sufficient for our task.

Using RANSAC [11], we estimate the uncalibrated 2D trifocal tensor [47] for the first three images. Factorizing the tensor and triangulating points gives us a projective 2D reconstruction of the first three cameras. We resect the fourth image to this reconstruction using RANSAC, followed by projective bundle adjustment to refine the reconstruction.

To get more meaningful reprojection errors for the 1D cameras we propagate all projections back into the original image and compute the errors along a horizontal line, passing through the image center and orthogonal to the observed vertical direction.

Recovering Image Keypoints. While working in the 2D setup we can triangulate a (2D) point from two images (instead of 3 in the 3D case), but only from aligned features. With the relative 2D poses of 4 images known, we can select correspondences with 2 aligned and 2 randomly oriented lines. We triangulate the point in 2D from the aligned lines, and then project it back to the other 2 images. Propagating the projections back into the original image as be-
fore, we now have a random (measured) line and an aligned (projected) line for the correspondence in those two images. Consequently, the original 2D keypoint position can be recovered by simply intersecting both lines, which it is illustrated in Fig. 2. To obtain more stable keypoint positions, we enforce a minimal angle of 45° between aligned and random lines in images where both types are present.

Triangulating all possible points and projecting them in all images allows us to convert a subset of the line correspondences into pairwise 2D-2D point correspondences. Since we are only interested in the projections, we do not need to upgrade the 2D-projective reconstruction to metric (since the projections are independent of this).

Note that we are only able to recover 2D-points that could be triangulated at a later stage in the reconstruction pipeline. Thus, recovering the keypoint locations does not reveal any additional information compared to a keypoint-less initialization method.

Initialization of Image Rotations and Focal Lengths from Recovered Keypoints. We can now use the previously recovered keypoints to initialize the focal lengths and camera rotations. We estimate pairwise fundamental matrices using RANSAC between all four images used for initialization. While it is possible to recover focal lengths directly from each fundamental matrix [16, 17, 26], this problem is notoriously unstable in two views, partly due to the problem degenerating for intersecting principal axes [24]. Instead, we take an approach similar to Sweeney et al. [60].

For noise-free data, the essential matrix

$$E_{ij}(f_i, f_j) = \text{diag}(f_j, f_j, 1)F_{ij}\text{diag}(f_i, f_i, 1)$$

satisfies

$$\|E_{ij}E_{ij}^T\|^2 - \frac{1}{2}\|E_{ij}\|^4 = 0$$

where f_i and f_j are the focal lengths. Similar to [60], we setup an optimization over the focal lengths, optimizing the pairwise consistency of the focal lengths over all pairs in the image set used for initialization. Specifically, we consider

$$\min_{f_1, \ldots, f_4} \sum_{i,j} \|r_{ij}(f_i, f_j)\|^2$$

where $r_{ij} = \left(\|E_{ij}E_{ij}^T\|^2 - \frac{1}{2}\|E_{ij}\|^4 - 2, \|E_{ij}E_{ij}^T\|^2 - 2\right)$

In [60], they directly minimized the residual from (6). However, we found that the scale-invariant version in (8) worked slightly better (see supplementary material). In our experiments we initialize the focal lengths as the image widths.

Once the focal lengths are recovered, we factorize the essential matrices to recover the relative orientations. We perform rotation averaging by randomly sampling minimum spanning trees (c.f. [14, 45]) to assign each rotation.

Estimation of Translations. Given the focal lengths and the camera rotations, we now aim to estimate the translations. This is performed in a similar style to the upgrade step in Geppert et al. [13], except that the translation is not constrained to be along the detected dominant direction.

Let ℓ_1, \ldots, ℓ_4 be a line correspondence normalized by the estimated focal lengths. If this is an inlier correspondence, it should satisfy

$$[\ell_1^T R_1 \ell_{t1}^T \ell_{t1}] X = 0$$

for some 3D point X. This implies that the 4×4 matrix above is rank-deficient and thus its determinant vanishes. Setting $\ell_t = 0$ and expanding the determinant w.r.t. the translation vectors, we obtain the following

$$[D_{134}\ell_2^T - D_{124}\ell_3^T D_{123}\ell_4^T] \begin{pmatrix} t_2 \\ t_3 \\ t_4 \end{pmatrix} = 0$$

where $D_{ijk} = \det(R_i^T \ell_i R_j^T \ell_j R_k^T \ell_k)$.

Each line correspondence gives us a linear constraint on the translation vectors. Collecting the constraints from at least 8 correspondences into a matrix, we can recover the translations via SVD. In case of more than 8 correspondences, we can solve it as a homogeneous least squares problem.

We wrap the above solver in a RANSAC loop; randomly selecting samples of 8 line correspondences and estimating translations from these. We validate the samples by triangulating the 3D points and measuring the line reprojection error in the images. Note that this step does not rely on the recovered 2D keypoints, but directly uses the original line correspondences.

Finally, we bundle adjust over all inliers in the 4 views to refine their camera parameters by minimizing the line re-projection error in the images.

4. Experiments

4.1. Evaluation of Absolute Pose Solver

In this section, we evaluate our proposed minimal solver for camera resectioning with unknown focal length from line correspondences (Sec. 3.1). For the experiments, we generate synthetic problems by uniformly sampling 2D points in a 2000x2000 image, a field-of-view in the interval [45, 90] degrees, and computing the corresponding focal length in pixels. For each 2D point, we uniformly sample a depth value in the interval [0.1, 100] and back-project it. Next, we sample a random camera pose and apply the inverse transform to the 3D points. We then optionally add Gaussian zero-mean noise to each keypoint. Finally, we replace each keypoint with a random line passing through it.
shows the average number of solutions to see provides a more stable evaluation protocol and setup from Speciale et al. [58] that uses 7 line-to-point correspondences, denoted \(L7Pf \) (Cayley) in Fig. 3, which presents the residuals in the estimated focal length for 1000 instances. This shows that the nullspace-based parameterization presented in Sec. 3.1 provides a more stable estimate. Table 1 shows the average number of solutions and runtime for this experiment. We can see that the solver based on the Cayley parameterization (as in [28]) is significantly slower.

Next, we evaluate the noise-sensitivity of the proposed solvers. We generate instances with varying standard deviation for the keypoint-noise and report the errors in the estimated poses/focal length. For comparison, we also include the results with state-of-the-art point-based solvers: \(P3.5Pf \) (Larsson et al. [31]), \(P4Pf \) (Kukelova et al. [30]) and \(P5Pf \) (Kukelova et al. [29]), applied to the point correspondences. The results are shown in Fig. 4, and we can see that the line-based solvers have similar noise-sensitivity as the point-based pose solvers.

![Figure 3: Numerical Stability](image3.png)

Figure 3: Numerical Stability. The graph shows the distribution of the \(\log_{10} \) focal length errors for noise free data.

4.2. Privacy Preserving Visual Localization

In this section, we evaluate privacy-preserving visual localization and self-calibration using the single-image evaluation protocol and setup from Speciale et al. [58]. They evaluate on 15 datasets captured by a mix of mobile phones and Microsoft HoloLens. We replicate this experiment in the uncalibrated setting, estimating the focal length in addition to the camera pose. We compare both with methods that have access to the ground-truth intrinsic calibration (\(P3P \) and \(L6P \) [58]), as well as point-based solvers that estimate focal length (\(P3.5Pf \) [31], \(P4Pf \) [30] and \(P5Pf \) [29]).

In our experiments, the point-based solvers for unknown focal length performed similarly and we only report the result for \(P4Pf \) [30] (see supplementary material). Fig. 5 shows the cumulative distributions of the rotation and translation errors. The figure shows that the uncalibrated line solver has reasonable performance compared to the corresponding calibrated solver \(L6P \) [58], which uses the ground-truth calibration. For an evaluation on Internet Photo Collection datasets on these four methods, please refer to Fig. 6 to see the performance as box plot graphs, validating again that the uncalibrated case behaves similarly to the correspond-

<table>
<thead>
<tr>
<th>Runtime</th>
<th>Real solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3.5Pf [32]</td>
<td>20.1 µs</td>
</tr>
<tr>
<td>P4Pf [30]</td>
<td>4.2 µs</td>
</tr>
<tr>
<td>P5Pf [29]</td>
<td>1.7 µs</td>
</tr>
<tr>
<td>L7Pf (Cayley) [28]</td>
<td>1513.1 µs</td>
</tr>
<tr>
<td>L7Pf (Nullspace)</td>
<td>23.7 µs</td>
</tr>
</tbody>
</table>

Table 1: Runtime analysis. The table shows the median runtime for the synthetic stability experiment as well as the average number of real solutions. Note that the Cayley parameterization returns duplicate solutions with flipped sign on the focal length which can easily be filtered. For comparison we also show the runtime of the state-of-the-art point-based solvers.

![Figure 4: Noise Sensitivity](image4.png)

Figure 4: Noise Sensitivity. The graphs show the median errors in the rotation (Left) and the focal length (Right) for varying noise levels. The errors in the translation are qualitatively similar and can be found in the supplementary material.

![Figure 5: Cumulative Rotation and Position Errors](image5.png)

Figure 5: Cumulative Rotation and Position Errors. Results for a mix of Mobile Phones and Microsoft HoloLens datasets from [58]. +ref indicates an additional, non-linear refinement.
ing calibrated one. Since there is no ground-truth for these scenes, we compare against COLMAP [53] results.

4.3. Evaluation of Initialization

We evaluate our initialization method (Sec. 3.2) on a collection of Mobile Phone datasets from Speciale et al. [57]. Relative pose estimation from images is generally less stable than absolute pose estimation w.r.t. a point cloud. However, we do not require perfect relative image poses to initialize successfully. It is sufficient, if the initial scene structure is reconstructed well enough such that we can register more images. The additional constraints will stabilize the reconstruction using repeated bundle adjustments. To account for this initial uncertainty, we run the initialization 100 times for each scene and then continue to run the mapping pipeline up to 50 registered images. Fig. 7 shows the recall for different thresholds on the mean image position error of each test. We report tests where we cannot register 50 images as failure cases. The figure shows that the initialization scheme works very well for the scenes Bedroom, Sofa and Stable. For Lobby, only around 50% of the initialization trials are successful. This is caused by the relatively difficult scene with many repetitive structures and plants in the foreground. For the successful trials, the accuracy is still comparable to the other scenes. The camera poses in Gatehouse are generally slightly more noisy, especially along the principal axis direction, likely caused by the dominant planes in the scene. We provide results for the full reconstructions of the presented scenes in the supplementary material. In Sec. 4.4, we evaluate the full SfM pipeline on large crowd-sourced photo collections and show that we are able to initialize even in these challenging conditions with extremely heterogeneous image sets.

4.4. Structure-from-Motion Evaluation

Finally, we evaluate the combination of all components by replicating two of the experiments presented in Geppert et al. [13] for calibrated privacy-preserving SfM. All experiments use a camera model with a single focal length and one radial distortion parameter (which is zero-initialized and refined in the bundle adjustment).

First, we consider the datasets from Strecha et al. [59]. While all images in these datasets were captured with a single camera, we do not enforce this during reconstruction, but allow each camera to have distinct intrinsic parameters. Table 2 shows the results. Compared to [13], we see slightly larger position errors and two additional scenes where not all images could be registered. The castle-P30 scene has one image with correspondences mainly on a flat wall, which leads to a poorly constrained focal length, resulting in the large average errors.

To demonstrate the performance of our method with difficult input data, we use the internet datasets from Wilson and Snavely et al. [64]. As there is no reliable ground-truth available for these datasets, we do not report errors but reconstruction statistics, and compare these to the results with known camera calibrations reported by Geppert et al. [13].

Figure 6: Internet Photo Collection. Localization results after non-linear refinement on three datasets from [37,65]. Comparison are made against a pre-built COLMAP reconstruction, where all the poses are refined together with bundle adjustment as opposed to single-image localization of the shown methods. The performance loss of the uncalibrated $L7Pf$ solver – with more points in the RANSAC loop and parameters to be estimated – is similar to the loss from the traditional $P3P$ method to its privacy-preserving counterpart $L6P$.

Figure 7: Initialization evaluation. The figure shows the cumulative position errors for the initialization evaluation.
Table 2: Camera Pose Accuracy. Evaluation on the Strecha benchmark [59]. The large mean error for castle-P30 was primarily caused by a single outlier pose.

<table>
<thead>
<tr>
<th>Scene</th>
<th>#Images</th>
<th>#Points</th>
<th>Track Length</th>
<th>Rotation (deg)</th>
<th>Position (cm)</th>
<th>Focal Length (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>castle-P19</td>
<td>19</td>
<td>14</td>
<td>4.3k</td>
<td>24.1k</td>
<td>20.3</td>
<td>0.5</td>
</tr>
<tr>
<td>castle-P30</td>
<td>30</td>
<td>28</td>
<td>11.0k</td>
<td>74.8k</td>
<td>169.6</td>
<td>4.5</td>
</tr>
<tr>
<td>entry-P10</td>
<td>10</td>
<td>10</td>
<td>3.6k</td>
<td>22.4k</td>
<td>7.4</td>
<td>0.6</td>
</tr>
<tr>
<td>fountain-P11</td>
<td>11</td>
<td>10</td>
<td>6.8k</td>
<td>38.6k</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Herz-Jesu-P8</td>
<td>8</td>
<td>8</td>
<td>3.4k</td>
<td>17.3k</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Herz-Jesu-P25</td>
<td>25</td>
<td>25</td>
<td>11.1k</td>
<td>86.3k</td>
<td>2.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

While our method usually registers and triangulates slightly fewer images and points, the results are generally comparable. Note that the final results depend on the choice of parameters. We selected the thresholds to obtain clean reconstructions with few outlier images for all scenes. By relaxing some constraints and allowing more spurious image poses, the number of images and points could be increased significantly. We show the reconstructed point cloud based on the Gendarmenmarkt and Tower of London datasets [65] as qualitative results in Fig. 8 and provide the results for the remaining datasets in the supplementary material.

5. Conclusion

With this work, we make another major step towards enabling fully privacy preserving localization and mapping services. Removing the requirement for known calibration enables these services on the majority of devices without tedious and complicated calibration procedures. We present a new minimal solver for privacy preserving camera pose estimation with unknown focal length and demonstrate comparable performance to its classical counterparts. For a full solution to the SfM problem, we also present an initialization method using a hybrid global-incremental optimization approach. Experiments on multiple challenging localization and mapping scenarios underline the practical relevance of our work.

Acknowledgements: Viktor Larsson was supported by an ETH Zurich Postdoctoral Fellowship. We thank the anonymous reviewers for their valuable feedback.

Figure 8: Qualitative result. The figure shows the reconstruction for the Gendarmenmarkt (Top) and Tower of London (Bottom) datasets [65] using our proposed method.
References

1817

