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Abstract

Recent works on localization and mapping from privacy

preserving line features have made significant progress to-

wards addressing the privacy concerns arising from cloud-

based solutions in mixed reality and robotics. The require-

ment for calibrated cameras is a fundamental limitation for

these approaches, which prevents their application in many

crowd-sourced mapping scenarios. In this paper, we pro-

pose a solution to the uncalibrated privacy preserving lo-

calization and mapping problem. Our approach simulta-

neously recovers the intrinsic and extrinsic calibration of a

camera from line-features only. This enables uncalibrated

devices to both localize themselves within an existing map

as well as contribute to the map, while preserving the pri-

vacy of the image contents. Furthermore, we also derive a

solution to bootstrapping maps from scratch using only un-

calibrated devices. Our approach provides comparable per-

formance to the calibrated scenario and the privacy com-

promising alternatives based on traditional point features.

1. Introduction

The recent trend towards cloud-based localization

and mapping systems for mixed reality and robotics

(e.g., Microsoft Azure Spatial Anchors [25], Facebook

LiveMaps [1], or Google VPS [48]) is largely driven by

the need for scalable solutions to enable multi-device ex-

periences and crowd-sourced mapping. However, as these

systems primarily rely on acquiring imagery of the environ-

ment, this development has raised significant privacy con-

cerns by the public [27, 44, 49, 62]. Existing works on pri-

vacy preserving localization and mapping are based on the

concept of lifting traditional point-based features to lines to

conceal the appearance of images [10, 13, 55, 57, 58].

The fundamental limitation of these existing works is

that they assume calibrated cameras, which prevents their

applicability in a wide range of scenarios. In practice, the

intrinsic calibration of cameras used in mixed reality de-

vices and robots continuously changes over time due to en-

vironmental impact such as temperature change or dropping

𝒇
Figure 1: Our method jointly estimates absolute pose and focal

length of uncalibrated cameras from privacy preserving line fea-

tures. We also present a solution for bootstrapping maps from

scratch using four views.

the device. Re-calibration of devices by the manufacturer is

typically very costly or technically very challenging using

automatic techniques. Sometimes, it can even be desirable

to hide the exact calibration parameters of a camera to pro-

tect the identity of the device from fingerprinting attacks.

Due to these issues, the resulting changes to the calibra-

tion parameters can be quite dramatic and negatively influ-

ence the accuracy of camera localization and mapping, or

even prevent the successful use of the data entirely. Fur-

thermore, in crowd-sourced mapping scenarios from mobile

cameras [2,53,54,56], prior focal length estimates are typi-

cally quite inaccurate (e.g., due to auto-focus) or completely

incorrect due to manual editing of the imagery by the user.

Recent interest in crowd-sourced mapping for autonomous

driving from dashboard cameras [63] is another application

that suffers from challenges to calibrate the cameras. The

windshield acts as an additional lens and drastically impacts

the effective calibration parameters of the acquired imagery.

In this paper, we propose a principled solution to privacy

preserving localization from uncalibrated cameras. Our ap-

proach self-calibrates the focal length and jointly estimates

the absolute pose of a camera from only privacy preserving

line features. Successfully localized cameras can contribute

to existing maps in an incremental fashion without any fur-

ther assumptions. In addition, we present a solution to ini-

tializing maps from scratch from only uncalibrated cameras.

Our boostrapping approach requires a subset of consistently

aligned lines similar to the work presented by Geppert et

al. [13]. This assumption does not impact the amount of
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privacy preservation. We demonstrate the efficacy of our ap-

proach on a wide range of experiments on localization and

the scenario of end-to-end crowd-sourced mapping. Our

method achieves comparable performance to the calibrated

case and to traditional point-based approaches.

The content in the paper is organized as follows: we

first review related methods in the context of our work in

Sec. 2 before describing our proposed solution to camera

localization with unknown focal length from line features in

Sec. 3.1. Sec. 3.2 then describes our approach to initializing

maps from uncalibrated cameras, while Sec. 4 experimen-

tally validates the efficacy of our proposed methods.

2. Related Work

In this section, we first review related work on privacy

preserving methods in the context of localization and map-

ping. We then discuss existing approaches to uncalibrated

localization and mapping with a particular focus on the ab-

solute pose estimation problem.

2.1. Privacy Preserving Methods

With their work on privacy preserving image-based lo-

calization, Speciale et al. [57, 58] were the first to address

privacy concerns in the context of localization and map-

ping. Their main idea is to lift 2D features in images and

3D points in the map to lines in order to conceal the ap-

pearance of the original images or the map, respectively.

Localizing with 2D lines against a 3D point map unprojects

the 2D lines to planes and solves a 3D point-to-plane align-

ment problem. A 2D points vs. 3D lines localization un-

projects the 2D points to lines (rays) and can be seen as a

generalized camera relative pose estimation. Note that it is

not possible to combine the two approaches, i.e. lifting to

lines in both 2D and 3D, since we cannot ensure that the

random directions will be consistent between the image and

the map. The following works by Geppert et al. [13] and

Shibuya et al. [55] leverage the same concepts to tackle the

full Structure-from-Motion (SfM) problem. Recently, Dus-

manu et al. [10] propose an approach to preserve the privacy

of local image features by lifting high-dimensional descrip-

tors to affine subspaces. In our work, we rely on the same

lifting-technique as previous approaches, but consider for

localization and mapping for uncalibrated cameras.

2.2. Uncalibrated Localization and Mapping

Early methods on SfM for uncalibrated images [4,12,41,

46] served as the foundation for later works on mapping sys-

tems from unstructured and crowd-sourced imagery [52,56]

exhibiting extremely challenging scenarios for camera self-

calibration. In the following years, research focused on

scaling these approaches to thousands and millions of im-

ages [2, 19, 54] and further robustifying the self-calibration

process [20, 21, 35, 39, 53, 60]. The arguably most reli-

able systems on self-calibrating SfM follow an incremen-

tal reconstruction paradigm [2, 19, 46, 53, 54, 56], while

later global approaches also demonstrated impressive re-

sults [8, 60, 64]. Most recently, Geppert et al. [13] extend

on traditional incremental systems [53] to build a privacy-

preserving SfM system. The main limitation of their work

lies in requiring calibrated images, which is a significant

limitation in practice. We overcome this limitation by using

a hybrid global-incremental approach, where we use global

optimization during map initialization and then incremen-

tally localize cameras into the map. Both the initialization

as well as the localization stage are fully self-calibrating.

2.3. Absolute Pose Estimation

Recovering the camera pose w.r.t. a pre-built map is an

important problem occurring in many vision applications,

e.g., SfM [53], visual localization [50], and SLAM [42].

If the camera’s intrinsic calibration is known, this can be

minimally estimated from three point-to-point correspon-

dences [15, 43] (usually referred to as P3P). In the privacy

preserving framework from Speciale et al. [58], the absolute

pose problem is solved from 2D-line to 3D-point correspon-

dences. While these offer weaker geometric constraints, re-

quiring six correspondences instead of three, Speciale et al.

show that it is possible to perform robust visual localization

in this setting as well. The solver used in their work is based

on the 3Q3 solver from Kukelova et al. [30].

If the intrinsic camera calibration is unknown, it can be

estimated jointly with the pose using additional correspon-

dences. If there is no constraints on the intrinsic parameters,

the Direct Linear Transform (DLT) [18] can be used to lin-

early estimate the 3× 4 pinhole camera matrix from at least

5.5 point correspondences.1 If the camera has square-pixels

(i.e., zero skew and unit aspect ratio), this can be used to re-

place one point-correspondence, allowing estimation from

4.5 points. However, this introduces non-linear constraints

on the camera matrix and the DLT approach no longer ap-

plies. Minimal solvers for this case were first introduced by

Triggs [61] and recently improved in Larsson et al. [33].

For most consumer cameras, we further assume a cen-

tered principal point. Even if this is not exactly satisfied,

small offsets in the principal point can be well compensated

with small pose corrections in the x/y-translation. In this

case, only the focal length remains to be estimated, and by

centering the image coordinates, we can w.l.o.g. assume the

calibration matrix to be diagonal, i.e., K = diag (f, f, 1).
The pose estimation problem with unknown focal length

was first solved by Bujnak et al. [5] from 4 point correspon-

dences (P4Pf). Note that the problem is minimal with 3.5

points, and Josephson and Byröd [23] used this additional

1Here 0.5 means only using one of the two equations available from

one of the 2D-3D correspondences.
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0.5 point correspondence to estimate one radial distortion

parameter (P4Pfr). This solver was later improved in the

followup works by Bujnak et al. [6] and Larsson et al. [32].

In [29] Kukelova et al. presented a solver that relies on 5

point correspondences (P5Pf), but offsets the larger sam-

ple size by greatly improving the runtime. In addition to

estimating focal length, this solver can also estimate up to

three distortion parameters. This solver was later extended

in Larsson et al. [34] to more general distortion models.

There has also been a series of works on improving upon

the original P4Pf solver from Bujnak et al. [5]. Zheng et

al. [68] used a similar approach but managed to greatly im-

prove the runtime and stability. Wu [66] presented the first

solver that was able to leverage the minimal set of 3.5 points

instead 4. Kukelova et al. [30] showed that P4Pf can be for-

mulated as a 3Q3 problem and proposed a very efficient

solver for this. Larsson et al. [32] proposed an alternative

P3.5Pf solver which avoids the degeneracies in [66]. If the

focal length is approximately known (e.g., from EXIF data),

Sattler et al. [51] showed that sampling based-approaches

can also work very well. The work most related to ours is by

Kuang and Åström [28], which considers absolute pose with

unknown focal length from combinations of point-to-point,

line-to-line, and so-called quiver correspondences. While

they do not consider the case of 2D-line-to-3D-point corre-

spondences necessary for the privacy preserving setting, it

is possible to adapt their approach to this case. Still, their

rotation parameterization degenerates for any 180◦ rotation

and requires additional steps to handle these degeneracies.

The absolute pose problem has also been considered for

the case of 2D-line-to-3D-line correspondences, sometimes

referred to as Perspective-n-Lines (PnL) in the literature.

The first solutions were given by Dhome et al. [9] and

Chen [7]. Since then there have been various works which

improve the solvers in different aspects. For example, [3]

proposed a linear estimator that can use multiple correspon-

dences. This was later improved in [40] which instead solve

for the global minimizer of a non-linear cost. Xu et al. [67]

investigated the special cases for P3L and provided a com-

plete solution for these. The case of known vertical direc-

tion was studied in [36] for perspective cameras, and in [22]

for generalized cameras.

3. Method

A localization and mapping pipeline generally consists

of multiple building blocks: feature extraction and match-

ing, image pose estimation, point triangulation, and bundle

adjustment. To create a new map from scratch, an addi-

tional map initialization step is used. In our setup, both

the feature extraction and matching part and bundle adjust-

ment are trivial extensions of the standard case. We extract

standard SIFT [38] features and simply lift the keypoints to

lines. Hereby we usually create randomly oriented lines, but

add consistently aligned lines for initialization as explained

in Sec. 3.2. For bundle adjustment we replace the standard

2D point-to-point distance with a 2D point-to-line distance.

For point triangulation we rely directly on the calibrated

method presented in [13], using the already obtained esti-

mates for the focal length and ignoring any additional image

distortion. This solution lifts the 2D lines to 3D planes and

finds the observed 3D points by intersecting corresponding

planes of at least three images. Consequently, we focus our

explanations on the remaining building blocks. We detail

our new minimal solver for image pose estimation from line

features with unknown focal length in Sec. 3.1. We then ex-

plain explain the map initialization technique for this setup

in Sec. 3.2.

3.1. Privacy Preserving Localization with Unknown
Focal Length

In the privacy preserving framework [13, 58], each 2D

keypoint is replaced with a randomly oriented line passing

through it. During pose estimation, each 2D line to 3D point

correspondence constrains the camera pose as

ℓT (RX + t) = 0 , (1)

where ℓ is the homogeneous representation of the 2D line.

This, however, assumes that the lines ℓ are given in the nor-

malized image plane requiring known calibration. If the

lines are defined in image space, the corresponding equa-

tion is instead (disregarding any distortion)

ℓTK(RX + t) = 0 , (2)

where K is the intrinsic calibration matrix. The extra non-

linearly introduced by the K matrix prevents us from using

the same 3Q3-based approach as in [13, 58].

Minimal Solver for Absolute Pose. In this section, we

present a minimal solver for uncalibrated absolute pose es-

timation from line-to-point correspondences. We assume

square pixels and centered principal point, i.e., only the fo-

cal length is unknown, K = diag (f, f, 1). This is a com-

mon assumption in the literature (see e.g. [5, 29,32, 34, 68])

that holds for most cameras.

Each 2D-line-to-3D-point correspondence only yields a

single constraint and thus we need 7 correspondences to get

a minimal problem. Rewriting equation (2) in terms of the

camera matrix P = K[R t] ∈ R
3×4, we obtain

ℓTP

[

X

1

]

= 0 =⇒
(

[

XT 1
]

⊗ ℓT
)

vec(P ) = 0 (3)

where ⊗ denotes the Kronecker product. Stacking the con-

straints from 7 correspondences, we get

Ap = 0, where A =







[

XT

1 1
]

⊗ ℓT1
...

[

XT

7 1
]

⊗ ℓT7






∈ R

7×12
. (4)
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Note that if we had 11 point correspondences, we could

solve linearly for the camera matrix P by finding the

nullspace to A. This would be equivalent to DLT [18]

for normal pose estimation and does not enforce any con-

straints on the intrinsic calibration. Instead, we recover a

basis for the nullspace N ∈ R
12×5. Any camera matrix

which satisfies the 7 correspondences can then be written

as some linear combination of these basis vectors, i.e. p =

N
(

αT , 1
)T

, where we have fixed the scale by setting the

last coefficient to one. To recover the unknown coefficients

α, we want to ensure that the first 3x3 block of P cor-

responds to diag (f, f, 1)R, where R is a rotation matrix.

This can be enforced by requiring the three rows to be pair-

wise orthogonal and that the first two rows have the same

norm. These constraints were already used in [6]. How-

ever, as pointed out in [32], this introduces spurious com-

plex solutions (where p2
11

+ p2
12

+ p2
13

= 0), increasing

the complexity of the solver. To avoid these spurious so-

lutions, the authors proposed to use additional polynomial

constraints [32]. We provide these constraints in the supple-

mentary material for completeness. Inserting the nullspace

parameterization into these equations yields new equations

in α. Using the framework from [31], we create a Gröbner

basis solver for these equations. Similar to the P3.5Pf

solver [32], the problem has 10 solutions. At runtime, the

solver requires linear elimination on a 25 × 35 matrix fol-

lowed by solving a 10× 10 eigenvalue problem.

3.2. Privacy Preserving Map Initialization

In practice, it is not always possible to extend an existing

map, but a new map needs to be created from scratch (e.g.,

when devices visit a location for the first time). Our pro-

posed initialization scheme extends the approach in Gep-

pert et al. [13] to also work in the uncalibrated setting. As in

their work, we require correspondences in four views to es-

timate relative poses, but we do not require calibrated grav-

ity measurements. While we still need to align features for

the initialization there is no constraint on the direction as

long as it is used consistently in all views. We detect lines

in the images, robustly estimate vanishing points to find a

dominant direction in the scene, and then create the lines

to intersect both the corresponding keypoint and the van-

ishing point. In practice, the vertical direction is still of-

ten the easiest to detect robustly. We assume the images

to be coarsely aligned with gravity (i.e., within 45◦) to dis-

tinguish between vertical or horizontal vanishing points in

scenes with multiple dominant directions.

Our initialization begins by solving a projective 2D-SfM

problem that is used to convert a subset of the line cor-

respondences into pairwise 2D-2D point matches. These

point matches are then used in an approach similar to non-

incremental SfM methods [45, 60] to globally recover the

poses for the four images used for initialization. We use

Figure 2: Initialization. We solve a projective 2D-SfM problem

with consistently aligned lines. Points in the projective reconstruc-

tion project onto aligned lines in the images. Intersecting random

lines with the aligned projections allow us to recover the 2D key

points for a subset of the original line correspondences.

a simple heuristic based on the number of feature matches

to select the initialization image set. This is detailed in the

supplementary material.

Projective 2D-SfM on the Horizon. Similar to Geppert et

al. [13], we require a mix of consistently aligned and ran-

domly oriented lines. For simplicity we assume a vertical

alignment based on a detected vertical vanishing point. Fol-

lowing [13], we can interpret the vertically aligned lines as

1D-measurements. Note that these vertically aligned lines

are projections of vertical lines in 3D, and are generally not

vertical in the image. We transform each image’s features

into a synthetic, horizontally aligned image, which now also

has vertical lines in image space. From this we can extract

the 1D measurements as the features’ horizontal position in

the image. The goal is now to solve a 2D SfM problem with

the 1D measurements. Since the internal calibration of the

cameras is unknown, we only aim to recover a projective

reconstruction in this step. However, we will show that this

is sufficient for our task.

Using RANSAC [11], we estimate the uncalibrated 2D

trifocal tensor [47] for the first three images. Factorizing the

tensor and triangulating points gives us a projective 2D re-

construction of the first three cameras. We resect the fourth

image to this reconstruction using RANSAC, followed by

projective bundle adjustment to refine the reconstruction.

To get more meaningful reprojection errors for the 1D

cameras we propagate all projections back into the original

image and compute the errors along a horizontal line, pass-

ing through the image center and orthogonal to the observed

vertical direction.

Recovering Image Keypoints. While working in the 2D

setup we can triangulate a (2D) point from two images (in-

stead of 3 in the 3D case), but only from aligned features.

With the relative 2D poses of 4 images known, we can se-

lect correspondences with 2 aligned and 2 randomly ori-

ented lines. We triangulate the point in 2D from the aligned

lines, and then project it back to the other 2 images. Prop-

agating the projections back into the original image as be-
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fore, we now have a random (measured) line and an aligned

(projected) line for the correspondence in those two images.

Consequently, the original 2D keypoint position can be re-

covered by simply intersecting both lines, which it is illus-

trated in Fig. 2. To obtain more stable keypoint positions,

we enforce a minimal angle of 45◦ between aligned and

random lines in images where both types are present.

Triangulating all possible points and projecting them in

all images allows us to convert a subset of the line cor-

respondences into pairwise 2D-2D point correspondences.

Since we are only interested in the projections, we do not

need to upgrade the 2D-projective reconstruction to metric

(since the projections are independent of this).

Note that we are only able to recover 2D-points that

could be triangulated at a later stage in the reconstruction

pipeline. Thus, recovering the keypoint locations does not

reveal any additional information compared to a keypoint-

less initialization method.

Initialization of Image Rotations and Focal Lengths

from Recovered Keypoints. We can now use the previ-

ously recovered keypoints to initialize the focal lengths and

camera rotations. We estimate pairwise fundamental matri-

ces using RANSAC between all four images used for initial-

ization. While it is possible to recover focal lengths directly

from each fundamental matrix [16, 17, 26], this problem is

notoriously unstable in two views, partly due to the problem

degenerating for intersecting principal axes [24]. Instead,

we take an approach similar to Sweeney et al. [60].

For noise-free data, the essential matrix

Eij(fi, fj) = diag(fj , fj , 1)Fijdiag(fi, fi, 1) (5)

satisfies

‖EijE
T
ij‖

2 −
1

2
‖Eij‖

4 = 0 (6)

where fi and fj are the focal lengths. Similar to [60], we

setup an optimization over the focal lengths, optimizing the

pairwise consistency of the focal lengths over all pairs in the

image set used for initialization. Specifically, we consider

min
f1,...,f4

∑

i,j

‖rij(fi, fj)‖
2 (7)

where rij =

(

‖EijE
T
ij‖

2

‖Eij‖4
−

1

2
,

‖Eij‖
4

‖EijET
ij‖

2
− 2

)

(8)

In [60], they directly minimized the residual from (6). How-

ever, we found that the scale-invariant version in (8) worked

slightly better (see supplementary material). In our experi-

ments we initialize the focal lengths as the image widths.

Once the focal lengths are recovered, we factorize the es-

sential matrices to recover the relative orientations. We per-

form rotation averaging by randomly sampling minimum

spanning trees (c.f . [14, 45]) to assign each rotation.

Estimation of Translations. Given the focal lengths and

the camera rotations, we now aim to estimate the transla-

tions. This is performed in a similar style to the upgrade

step in Geppert et al. [13], except that the translation is not

constrained to be along the detected dominant direction.

Let ℓ1, . . . , ℓ4 be a line correspondence normalized by

the estimated focal lengths. If this is an inlier correspon-

dence, it should satisfy







ℓT
1
R1 ℓT

1
t1

...
...

ℓT
4
R4 ℓT

4
t4







(

X

1

)

= 0 (9)

for some 3D point X . This implies that the 4 × 4 matrix

above is rank-deficient and thus it’s determinant vanishes.

Setting t1 = 0 and expanding the determinant w.r.t. the

other translation vectors, we obtain the following

[

D134ℓ
T
2

−D124ℓ
T
3

D123ℓ
T
4

]





t2
t3
t4



 = 0 (10)

where Dijk = det
(

RT
i ℓi RT

j ℓj RT
k ℓk

)

. (11)

Each line correspondence gives us a linear constraint on the

translation vectors. Collecting the constraints from at least

8 correspondences into a matrix, we can recover the trans-

lations via SVD. In case of more than 8 correspondences,

we can solve it as a homogeneous least squares problem.

We wrap the above solver in a RANSAC loop; randomly

selecting samples of 8 line correspondences and estimating

translations from these. We validate the samples by trian-

gulating the 3D points and measuring the line reprojection

error in the images. Note that this step does not rely on the

recovered 2D keypoints, but directly uses the original line

correspondences.

Finally, we bundle adjust over all inliers in the 4 views

to refine their camera parameters by minimizing the line re-

projection error in the images.

4. Experiments

4.1. Evaluation of Absolute Pose Solver

In this section, we evaluate our proposed minimal solver

for camera resectioning with unknown focal length from

line correspondences (Sec. 3.1). For the experiments, we

generate synthetic problems by uniformly sampling 2D

points in a 2000x2000 image, a field-of-view in the inter-

val [45,90] degrees, and computing the corresponding focal

length in pixels. For each 2D point, we uniformly sample

a depth value in the interval [0.1, 100] and back-project it.

Next, we sample a random camera pose and apply the in-

verse transform to the 3D points. We then optionally add

Gaussian zero-mean noise to each keypoint. Finally, we re-

place each keypoint with a random line passing through it.
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Runtime Real solutions

P3.5Pf [32] 20.1 µs 4.4 / 10

P4Pf [30] 4.2 µs 3.9 / 8

P5Pf [29] 1.7 µs 2.2 / 4

L7Pf (Cayley) [28] 1513.1 µs 8.5 / 20

L7Pf (Nullspace) 23.7 µs 4.2 / 10

Table 1: Runtime analysis. The table shows the median runtime

for the synthetic stability experiment as well as the average number

of real solutions. Note that the Cayley parameterization returns

duplicate solutions with flipped sign on the focal length which can

easily be filtered. For comparison we also show the runtime of the

state-of-the-art point-based solvers.

First, we evaluate the numerical stability of the solver on

noise-free instances. We compare with a modified version

of the solver from Kuang and Åstrom [28] that uses 7 line-

to-point correspondences, denoted L7Pf (Cayley) in Fig. 3,

which presents the residuals in the estimated focal length

for 1000 instances. This shows that the nullspace-based pa-

rameterization presented in Sec. 3.1 provides a more stable

estimate. Table 1 shows the average number of solutions

and runtime for this experiment. We can see that the solver

based on the Cayley parameterization (as in [28]) is signifi-

cantly slower.

Next, we evaluate the noise-sensitivity of the proposed

solvers. We generate instances with varying standard de-

viation for the keypoint-noise and report the errors in the

estimated poses/focal length. For comparison, we also in-

clude the results with state-of-the-art point-based solvers:

P3.5Pf (Larsson et al. [31]), P4Pf (Kukelova et al. [30])

and P5Pf (Kukelova et al. [29]), applied to the point corre-

spondences. The results are shown in Fig. 4, and we can see

that the line-based solvers have similar noise-sensitivity as

the point-based pose solvers.

−15 −10 −5 0 5
0

0.1

0.2

0.3

Focal length error (log
10

px)

L7Pf (Nullspace)

L7Pf (Cayley)

Figure 3: Numerical Stability. The graph shows the distribution

of the log
10

focal length errors for noise free data.

4.2. Privacy Preserving Visual Localization

In this section, we evaluate privacy-preserving visual lo-

calization and self-calibration using the single-image eval-

uation protocol and setup from Speciale et al. [58]. They
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Figure 4: Noise Sensitivity. The graphs show the median errors

in the rotation (Left) and the focal length (Right) for varying noise

levels. The errors in the translation are qualitatively similar and

can be found in the supplementary material.
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Figure 5: Cumulative Rotation and Position Errors. Results for a

mix of Mobile Phones and Microsoft HoloLens datasets from [58].

+ref indicates an additional, non-linear refinement.

evaluate on 15 datasets captured by a mix of mobile phones

and Microsoft HoloLens. We replicate this experiment in

the uncalibrated setting, estimating the focal length in ad-

dition to the camera pose. We compare both with meth-

ods that have access to the ground-truth intrinsic calibration

(P3P and L6P [58]), as well as point-based solvers that esti-

mate focal length (P3.5Pf [31], P4Pf [30] and P5Pf [29]).

In our experiments, the point-based solvers for unknown fo-

cal length performed similarly and we only report the result

for P4Pf [30] (see supplementary material). Fig. 5 shows

the cumulative distributions of the rotation and translation

errors. The figure shows that the uncalibrated line solver

has reasonable performance compared to the correspond-

ing calibrated solver L6P [58], which uses the ground-truth

calibration. For an evaluation on Internet Photo Collection

datasets on these four methods, please refer to Fig. 6 to see

the performance as box plot graphs, validating again that

the uncalibrated case behaves similarly to the correspond-
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Figure 6: Internet Photo Collection. Localization results after non-linear refinement on three datasets from [37,65]. Comparison are made

against a pre-built COLMAP reconstruction, where all the poses are refined together with bundle adjustment as opposed to single-image

localization of the shown methods. The performance loss of the uncalibrated L7Pf solver – with more points in the RANSAC loop and

parameters to be estimated – is similar to the loss from the traditional P3P method to its privacy-preserving counterpart L6P.

ing calibrated one. Since there is no ground-truth for these

scenes, we compare against COLMAP [53] results.

4.3. Evaluation of Initialization

We evaluate our initialization method (Sec. 3.2) on a col-

lection of Mobile Phone datasets from Speciale et al. [57].

Relative pose estimation from images is generally less sta-

ble than absolute pose estimation w.r.t. a point cloud. How-

ever, we do not require perfect relative image poses to ini-

tialize successfully. It is sufficient, if the initial scene struc-

ture is reconstructed well enough such that we can register

more images. The additional constraints will stabilize the

reconstruction using repeated bundle adjustments. To ac-

count for this initial uncertainty, we run the initialization

100 times for each scene and then continue to run the map-

ping pipeline up to 50 registered images. Fig. 7 shows the

recall for different thresholds on the mean image position

error of each test. We report tests where we cannot regis-

ter 50 images as failure cases. The figure shows that the

initialization scheme works very well for the scenes Bed-

room, Sofa and Stable. For Lobby, only around 50% of the

initialization trials are successful. This is caused by the rel-

atively difficult scene with many repetitive structures and

plants in the foreground. For the successful trials, the ac-

curacy is still comparable to the other scenes. The camera

poses in Gatehouse are generally slightly more noisy, es-

pecially along the principal axis direction, likely caused by

the dominant planes in the scene. We provide results for

the full reconstructions of the presented scenes in the sup-

plementary material. In Sec. 4.4, we evaluate the full SfM

pipeline on large crowd-sourced photo collections and show

that we are able to initialize even in these challenging con-

ditions with extremely heterogeneous image sets.
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Figure 7: Initialization evaluation. The figure shows the cumu-

lative position errors for the initialization evaluation.

4.4. StructurefromMotion Evaluation

Finally, we evaluate the combination of all compo-

nents by replicating two of the experiments presented in

Geppert et al. [13] for calibrated privacy-preserving SfM.

All experiments use a camera model with a single focal

length and one radial distortion parameter (which is zero-

initialized and refined in the bundle adjustment).

First, we consider the datasets from Strecha et al. [59].

While all images in these datasets were captured with a

single camera, we do not enforce this during reconstruc-

tion, but allow each camera to have distinct intrinsic param-

eters. Table 2 shows the results. Compared to [13], we

see slightly larger position errors and two additional scenes

where not all images could be registered. The castle-P30

scene has one image with correspondences mainly on a flat

wall, which leads to a poorly constrained focal length, re-

sulting in the large average errors.

To demonstrate the performance of our method with dif-

ficult input data, we use the internet datasets from Wilson

and Snavely et al. [64]. As there is no reliable ground-truth

available for these datasets, we do not report errors but re-

construction statistics, and compare these to the results with

known camera calibrations reported by Geppert et al. [13].
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#Images #Points Track

Length

Rotation (deg) Position (cm) Focal Length (%)

Scene Total Reg. 3D 2D Mean Std. Median Mean Std. Median Mean Std. Median

castle-P19 19 14 4.3k 24.1k 5.6 0.7 0.1 0.7 20.3 24.3 9.5 0.5 0.5 0.4

castle-P30 30 28 11.0k 74.8k 6.8 1.7 5.7 0.6 169.6 690.9 9.2 4.5 18.7 0.2

entry-P10 10 10 3.6k 22.4k 6.2 0.5 0.1 0.5 7.4 3.4 7.2 0.6 0.3 0.7

fountain-P11 11 10 6.8k 38.6k 5.7 0.4 0.0 0.4 0.8 0.3 0.7 0.3 0.2 0.3

Herz-Jesu-P8 8 8 3.4k 17.3k 5.2 0.5 0.0 0.5 1.4 0.7 1.5 0.2 0.1 0.2

Herz-Jesu-P25 25 25 11.1k 86.3k 7.8 0.4 0.1 0.4 2.8 2.0 2.6 0.4 0.2 0.4

Table 2: Camera Pose Accuracy. Evaluation on the Strecha benchmark [59]. The large mean error for castle-P30 was primarily caused by

a single outlier pose.

#Registered

Images

Mean

Track Length

Median Point

Reproj. Error (px)

Median Line

Reproj. Error (px)#Points #Observations

Scene #Images [13] Ours [13] Ours [13] Ours [13] Ours [13] Ours [13] Ours

Alamo 2915 750 711 79k 84k 1730k 1722k 21.9 20.5 0.66 0.68 0.52 0.32

Gendarmenmarkt 1463 810 773 83k 77k 958k 853k 11.5 11.0 0.88 0.85 0.34 0.34

Madrid Metropolis 1344 377 365 43k 34k 447k 399k 10.4 11.7 1.13 0.70 0.40 0.29

Tower of London 1576 608 502 93k 87k 1122k 1008k 12.0 11.6 0.54 0.63 0.23 0.28

Table 3: Structure-from-Motion on Internet Photo Collections. The table shows reconstruction statistics for some of the 1D SfM datasets

from Wilson and Snavely [64] compared to the calibrated privacy preserving reconstruction from [13]. #Observations is the number of 2D

features that observe a 3D point. Note that the point reprojection error is only given as a reference and is not available to the algorithm.

While our method usually registers and triangulates slightly

fewer images and points, the results are generally compa-

rable. Note that the final results depend on the choice of

parameters. We selected the thresholds to obtain clean re-

constructions with few outlier images for all scenes. By re-

laxing some constraints and allowing more spurious image

poses, the number of images and points could be increased

significantly. We show the reconstructed point cloud based

on the Gendarmenmarkt and Tower of London datasets [65]

as qualitative results in Fig. 8 and provide the results for the

remaining datasets in the supplementary material.

5. Conclusion

With this work, we make another major step towards

enabling fully privacy preserving localization and mapping

services. Removing the requirement for known calibration

enables these services on the majority of devices without te-

dious and complicated calibration procedures. We present a

new minimal solver for privacy preserving camera pose es-

timation with unknown focal length and demonstrate com-

parable performance to its classical counterparts. For a full

solution to the SfM problem, we also present an initializa-

tion method using a hybrid global-incremental optimization

approach. Experiments on multiple challenging localization

and mapping scenarios underline the practical relevance of

our work.

Acknowledgements: Viktor Larsson was supported by an

ETH Zurich Postdoctoral Fellowship. We thank the anony-

mous reviewers for their valuable feedback.

Figure 8: Qualitative result. The figure shows the reconstruc-

tion for the Gendarmenmarkt (Top) and Tower of London (Bottom)

datasets [65] using our proposed method.
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