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Abstract

In this paper, we propose a conditional early exiting

framework for efficient video recognition. While existing

works focus on selecting a subset of salient frames to re-

duce the computation costs, we propose to use a simple

sampling strategy combined with conditional early exiting

to enable efficient recognition. Our model automatically

learns to process fewer frames for simpler videos and more

frames for complex ones. To achieve this, we employ a cas-

cade of gating modules to automatically determine the ear-

liest point in processing where an inference is sufficiently

reliable. We generate on-the-fly supervision signals to the

gates to provide a dynamic trade-off between accuracy and

computational cost. Our proposed model outperforms com-

peting methods on three large-scale video benchmarks. In

particular, on ActivityNet1.3 and mini-kinetics, we outper-

form the state-of-the-art efficient video recognition methods

with 1.3× and 2.1× less GFLOPs, respectively. Addition-

ally, our method sets a new state of the art for efficient video

understanding on the HVU benchmark.

1. Introduction

With the massive growth in the generation of video con-

tent comes an increasing demand for efficient and scal-

able action or event recognition in videos. The astound-

ing performance of deep neural networks for action recog-

nition [5, 43, 58, 12, 42, 56] are obtained by densely ap-

plying 2D [56, 31, 58, 13] or 3D [40, 5, 18, 12] models

over video frames. Despite demonstrating top-notch perfor-

mance in recognizing complex and corner case actions, the

high data volumes, compute demands, and latency require-

ments, limit the application of the state-of-the-art video

recognition models on resource-constrained devices.

Extensive studies have been conducted to remedy this

issue by designing efficient and light-weight architec-

tures [35, 11, 43, 36, 53, 59, 42, 28, 31, 10]. These models

have a static computational graph and treat all the videos
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Figure 1: Efficient video recognition by early exiting.

Our proposed method adjusts the amount of computation

to the difficulty of the input, allowing for significant reduc-

tion of computational costs. Videos are adopted from [21,

22, 23].

equally regardless of how complex or easy they are for

recognition and hence yield sub-optimal results. A large

body of research has been focusing on selecting a subset of

salient frames to efficiently process the video conditioned

on the input [55, 52, 57, 8, 15, 29]. Current methods for

frame selection rely on learning a policy function to de-

termine what action should be taken on the selected frame

(e.g. process by a heavy recognition model [51], process

at a specific spatial resolution [33], etc.). Most of these

methods either rely on the assumption that salient frames

for the sampler network are also salient for the recognition

network [29, 15] or require carefully selected reward func-

tions in case of using policy gradient methods [55, 52, 49].

Moreover, the sampler network may create an additional

computational overhead to the model.

An alternative promising direction to reduce the com-

putational complexity of analyzing video content is condi-

tional compute using early exiting. Early exiting has re-

cently been explored for image classification tasks by in-

serting a cascade of intermediate classifiers throughout the

network [30, 39, 54, 24]. In this line of work, the model

adjusts the amount of computation to the difficulty of the
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input and allows for significant reduction of computational

requirements. Inspired by that, we design an efficient video

recognition model that performs automatic early exiting by

adjusting the computational budget on a per-video basis.

Our motivation is that a few frames are sufficient for classi-

fying “easy” samples, and only some “hard” samples need

temporally detailed information (see Figure 1).

In this paper, we propose FrameExit, a conditional early

exiting framework with learned gating units that decide to

stop the computation when an inference is sufficiently reli-

able. FrameExit has T classifiers accompanied by their as-

sociated gates that are attached at different time steps to al-

low early exiting. The gates are learned in a self-supervised

fashion to control the trade-off between model accuracy and

total computation costs. We use the recognition loss as a

proxy to generate on-the-fly pseudo-labels to train the gates.

Additionally, our early exiting mechanism combined

with a simple, deterministic sampling strategy obviates

the need for complex sampling policy functions and yet

achieves excellent recognition performance. Finally, we

propose an accumulated feature pooling module to generate

video representations that enable more reliable predictions

by the model. Our contributions are as follows:

• We propose a method that employs a simple, determin-

istic frame sampling strategy, combined with an accu-

mulated feature pooling module to obtain accurate ac-

tion recognition results.

• We propose a conditional early exiting framework for

efficient video recognition. We use a cascade of gating

modules to determine when to stop further processing

of the video. The gates adapt the amount of computa-

tion to the difficulty of an input video, leading to sig-

nificant reductions in computational costs.

• We show state-of-the-art performance on three large-

scale datasets. In all cases, we greatly improve the in-

ference efficiency at a better or comparable recognition

accuracy. In particular, on the HVU [7] dataset, we re-

port 5× reduction in computation costs while improv-

ing the recognition accuracy upon the state-of-the-art

methods.

2. Related work

Efficient Video Recognition: There are two lines of ap-

proaches for efficient video recognition. The first focuses

on proposing new lightweight video architectures. This can

be obtained by decomposing 3D filters into separate 2D

spatial and 1D temporal filters [43, 36, 53], extending ef-

ficient 2D architectures to their 3D counterparts [42, 28],

using shifting operations [31, 9], or exploring neural archi-

tecture search for videos [35, 11]. Our method is agnostic to

the network architecture and can be complementary to these

types of methods.

The second line of works focus on saving compute

by selecting salient frames/clips using a policy function

parametrized with a neural network (CNN or RNN). This

is commonly done by training agents to find which frame

to observe next [55, 52, 57, 8], ranking frames based on

saliency [29], gating frames [25], skipping RNN states [4],

or by using audio to select relevant frames [15, 29]. LiteE-

val [51] proposes binary gates for selecting coarse or fine

features. At each time step, LiteEval computes coarse fea-

tures with a lightweight CNN to determine whether to ex-

amine the current frame more carefully using a heavy CNN.

Meng et al. [33] propose to adaptively select the input reso-

lution, on a per-frame basis to further balance the accuracy

vs compute. However, using policy networks in these meth-

ods may come with additional memory and compute over-

head. Moreover, optimization is sub-optimal if policy and

recognition networks are not trained jointly [29, 15], or re-

quires carefully selected reward functions if policy gradient

methods are used [52, 55, 49]. In contrast, our method relies

on a single recognition network and does not require com-

plex RL optimization for frame sampling. We formulate

the problem in the early-exiting framework and show that a

simple sampling strategy, if combined with a proper exiting

function, leads to excellent recognition performance.

Conditional compute via early exiting: Conditional com-

putation in neural networks aims to dynamically allocate

the components of the model (e.g. layers, sub-networks,

etc.) on a per-input basis. ConvNet-AIG [45], SkipNet

[48], and BlockDrop [50] exploit the robustness of Resid-

ual Networks (ResNets) to layer dropping and activate or

deactivate full residual blocks conditioned on the input, to

save compute. GaterNet [6], dynamic channel pruned net-

works [16], batch-shaped channel-gated networks [2], and

Conditional channel gated networks for continual learning

[1] perform gating in a more fine-grained fashion by turn-

ing individual channels of a layer on or off conditioned on

the input. Other works focus on adaptive spatial attention

for faster inference [14, 46, 47]. Concurrent to our work,

AdaFuse [34] dynamically fuses channels from current and

history feature maps to reduce the computation. A major

research direction in conditional compute is early exiting.

Prior works have mainly used early exiting for image clas-

sification. To adapt computational costs to the difficulty

of the input, Deeply-Supervised Nets [30] and BranchyNet

[39] propose architectures that are composed of a cascade

of intermediate classifiers. This allows simpler examples to

exit early via an intermediate classifier while more difficult

samples proceed deeper in the network for more accurate

predictions. Multi-scale dense networks [24] and adaptive

resolution networks [54] focus on spatial redundancy of in-

put samples and use a multi-scale dense connection archi-
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Figure 2: The overview of FrameExit. Given a video, at each time step t, we sample a frame from the video using

the deterministic policy function π. Each frame is independently represented by the feature extraction network Φ and is

aggregated to features of previous time steps using the accumulated feature pooling module (for t > 1). The gating modules

(gt) are trained to allow the network to automatically determine the earliest exiting point based on the inferred complexity of

the input video. The architecture of the gating module is illustrated in the bottom right corner of the figure. Note that g1 only

receives z1 as input. The video is adopted from [22].

tecture for early exiting.

Our model draws inspiration from these works, but rather

than having intermediate classifiers operating on interme-

diate network features, we focus on early exiting over the

temporal dimension for video recognition.

3. FrameExit

Given a set of videos and their labels {vi,yi}
D
i=1, we aim

to classify each video by processing the minimum number

of frames. Figure 2 illustrates the overall architecture of our

proposed model. Our model consists of i) a frame sampling

policy π, ii) a feature extraction network Φ, iii) an accu-

mulated feature pooling module, and iv) T classifiers ft and

their associated exiting gates gt, where T is the number of

input frames. Given an input video, we extract a partial clip

x1:t by sampling t frames, one at a time, from the video

based on the sampling policy π:

x1:t = [x1:t−1;xt], xt = vπ(t), (1)

where x1:t−1 denotes a partial clip of length t − 1 and

xt is a single video frame. We use the feature extraction

network Φ to generate independent representation for each

frame xt. These representations are then aggregated using

the accumulated feature pooling module. The resulting clip

level representation, zt, is then passed to the classifier ft and

its associated early exiting gate gt.

Starting from a single-frame clip, we incrementally add

more temporal details at each time step until one of the gates

predicts the halt signal. Each gate gt : (zt−1, zt) → {0, 1}
is a binary function indicating whether the network has

reached a desired confidence level to exit. A gate receives

the aggregated features zt and zt−1 as input. This allows

the gate to make a more informed decisions by consider-

ing the agreement between temporal features. For example,

a highly confident incorrect exiting prediction solely based

on the current frame representation zt could potentially be

mitigated if there is a significant disagreement with the rep-

resentation zt−1. Note that the first gating module in the

network only receives z1 as input. In the end, the final video

label will be predicted as:

y = ft(zt), where t = argmin
t

{t | gt = 1} (2)

where t is the earliest frame that meets the gating condi-

tion. Note that if none of the gates predict the halt signal,

the last classifier will classify the example. In the following

sections, we describe our choice for frame sampling policy,

accumulated feature pooling module, and our gates for early

exiting.

Frame Sampling Policy. We sample T frames, one at a

time, using the policy function π(t). While in most exist-

ing works π is parameterized with a light-weight network

and is trained using policy gradient methods [37] or Gum-

bel reparametrization [32], we use a simple, deterministic,

and parameter-free function and show that it performs as

well as sophisticated frame selection models. Our sampling

315610



function π follows a coarse-to-fine principle for sampling

in temporal dimension. It starts sampling from a coarse

temporal scale and gradually samples more frames to add

finer details to the temporal structure. Specifically, we sam-

ple the first frames from the middle, beginning, and end of

the video, respectively, and then repeatedly sample frames

from the halves (check Appendix for more details). Com-

pared to sampling sequentially in time, this strategy allows

the model to have access to a broader time horizon at each

timestamp while mimicking the behaviour of RL-based ap-

proaches that jumps forward and backward to seek future

informative frames and re-examine past information.

Feature extraction network. Our feature extraction

network Φ(xi; θΦ) is a 2D image representation model,

parametrized by θΦ, that extracts features for input frame

xi. We use ResNet-50 [19], EfficientNet-b3 [38], and X3D-

S [11] in our experiments.

Accumulated Feature Pooling. This step aims to create

a representation for the entire clip x1:t. A major design

criteria for our accumulated feature pooling module is ef-

ficiency. To limit the computation costs to only the newly

sampled frame, the clip representation is incrementally up-

dated. Specifically, given the sampled frame xt and features

zt−1, we represent a video clip as:

zt = Ψ(zt−1,Φ(xi; θΦ)), (3)

where Ψ is a temporal aggregation function that can be

implemented by statistical pooling methods such as aver-

age/max pooling, LSTM [20, 17], or self-attention [44].

Early Exiting. While processing the entire frames of a

video is computationally expensive, processing a single

frame may also restrict the network’s ability to recognize an

action. Our conditional early exiting model has T classifiers

accompanied by their associated early exiting gates that are

attached at different time steps to allow early exiting. Each

classifier ft receives the clip representation zt as input and

makes a prediction about the label of the video. During

training, we optimize the parameters of the feature extrac-

tor network and the classifiers using the following loss func-

tion:

Lcls =
1

T

t=T
∑

t=0

ℓcls(ft(zt; θf ),y) (4)

In our experiments, we use the standard cross-entropy

loss for single-label video datasets and binary cross-entropy

loss for the multi-label video datasets.

We parameterize each exiting gate gt as a multi-layer

perceptron, predicting whether the partially observed clip

x1:t is sufficient to accurately classify the entire video.

The gates have a very light design to avoid any signifi-

cant computational overhead. As mentioned earlier, each

gate gt(zt−1, zt) → {0, 1} receives as input the aggregated

representations zt and zt−1 (See Figure 2 - bottom right).

Each of these representations are first passed to two lay-

ers of MLP with 64 neurons independently (shared weights

between the two streams). The resulting features are then

concatenated and linearly projected and fed to a sigmoid

function. Note that g1 only receives z1 as input.

During training, gates may naturally learn to postpone

exiting so that the last classifier always generates the model

output because that may tend to maximize accuracy at the

expense of additional processing. However, this sort of

training largely defeats the purpose of the early exiting ar-

chitecture. To overcome this problem we regularize the

gates such that they are enforced to early exit. The parame-

ters of the gates θg are learned in a self-supervised way by

minimizing the binary cross-entropy between the predicted

gating output and pseudo labels y
g
t :

Lgate =
1

T

t=T
∑

t=0

BCE(gt(zt−1, zt; θg),y
g

t ), (5)

We define the pseudo labels for the gate gt based on the

classification loss:

y
g
t =

{

1 ℓcls(ft(zt),y) ≤ ǫt

0 else
(6)

where ǫt determines the minimum loss required to exit

through ft. A label 1 indicates the exiting signal while label

0 indicates that the network should proceed with processing

further frames. Using this loss, we enforce the gate gt to

exit when the classifier ft generates a sufficiently reliable

prediction with a low loss. Provided that the early stage

classifiers observe very limited number of frames, we only

want to enable exiting when the classifier is highly confident

about the prediction, i.e. ft has a very low loss. Hence, it

is preferred to use smaller ǫt for these classifiers. On the

other hand, late stage classifiers mostly deal with difficult

videos with high loss. Therefore, as we proceed to later

stage classifiers, we increase ǫt to enable early exiting. In

our experiments, we define ǫt = β exp( t2 ), where β is a

hyper-parameter that controls the trade-off between model

accuracy and total computation costs. The higher the β, the

more computational saving we obtain.

The final objective for training our model is given as:

L = E(v,y)∼Dtrain
[Lcls + Lgate] (7)

Note that we use equal weights for the classification and

gating loss terms in all of our experiments.

4. Experiments

We conduct extensive experiments to investigate the

efficacy of our proposed method using three large-scale
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Figure 3: Watermelon visualization of FrameExit pre-

dictions over time. The exiting statistics of our method

over time for β = 1e−4 (top) and β = 1e−6 (bottom) on

the validation set of ActivityNet. The area of a circle at

time step t represents the percentage of samples that ex-

ited through classifier t. Easier examples exit earlier from

the network with higher accuracy while only hard exam-

ples reach to late stage classifiers leading to increased miss-

classifications. The illustration is inspired from [52].

datasets on two video understanding tasks, namely action

recognition and holistic video understanding, as described

in Section 4.1. Our experiments demonstrate that Frame-

Exit outperforms the state of the art while significantly re-

ducing computational costs as discussed in Section 4.2. Fi-

nally, we present an ablation study of our design choices in

Section 4.3

4.1. Experimental setup

Datasets. We conduct experiments on three large-

scale datasets: ActivityNet-v1.3 [3], Mini-Kinetics [26], and

HVU [7]. ActivityNet-v1.3 [3] is a long-range action recog-

nition dataset consisting of 200 classes with 10, 024 videos

for training and 4, 926 videos for validation. The average

length of the videos in this dataset is 167 seconds. Mini-

Kinetics [26] is a short-range action recognition dataset,

provided by [33], that contains 200 classes from Kinetics

dataset [26] with 121, 215 training and 9, 867 testing videos.

The average duration of videos is 10 seconds. HVU [7] is

a large-scale, multi-label dataset for holistic video under-

standing with 3142 classes of actions, objects, scenes, at-

tributes, events and concepts. It contains 476k training and

31k validation videos. The average duration of videos in

this dataset is 8.5 seconds.

Evaluation metrics. Following the literature, we use

mean average precision (mAP) and top-1 accuracy to eval-

uate accuracy for multi-class (Mini-Kinetics) and multi-

label (ActivityNet and HVU) classification respectively.

We measure the computational cost as giga floating point

operations (GFLOPs). As a reference, ResNet-50 and

EfficientNet-b3 have 4.12 and 1.8 GFLOPs respectively for

a single input image of size 224 × 224. Moreover, the

X3D-S architecture has 1.96 GFLOPs for an input size of

13 × 160 × 160. As different baseline methods use differ-

ent number of frames for recognition, we report per video
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Figure 4: Illustration of the exiting performance. The

matrix entry (i, j) illustrates the accuracy of the classifier

Cj , if it were to classify the video data Di that originally

early exited by the model through Ci. Interestingly, if a

video prematurely exits earlier than what was decided, we

significantly lose accuracy while if it exits later than the

model’s decision, no significant gain is obtained.

GFLOPs in all of our experiments.

Implementation details. We use ResNet-50 [19] and

EfficientNet-b3 [38] hereafter referred to as ResNet and Ef-

ficientNet, as well as X3D-S [11] as our backbone networks.

Both backbones are pretrained on ImageNet. We remove

the last classification layers from the backbone networks,

and replace it with a fully-connected layer with 4096 neu-

rons. We set the number of input frames, T , to 10. We use

max-pooling as the accumulated feature pooling function,

Ψ in Eq. 3, for all the experiments unless otherwise stated.

We train the model in two stages: we first train the back-

bone network and classifiers, then we learn the parameters

of the gating modules. We use Adam optimizer [27] with

a learning rate of 1e−4 for both training stages. The first

training step runs for 35 epochs whilst dropping the learn-

ing rate after 16, and 30 epochs with a factor of 0.1. The

second training step runs for 10 epochs and the learning rate

is dropped after epochs 5 and 8. We set the hyper-parameter

β ranging from 1e−6 to 1e−2 to generate varying trade-off

points between accuracy and computational costs.

4.2. Results

We first analyze the behaviour of our conditional early

exiting method. Then we compare FrameExit with the

state of the art in action recognition and holistic video un-

derstanding. This section is concluded by reporting several

qualitative results.

Conditional early exiting. We analyze the effectiveness

of FrameExit in adjusting the amount of computations per

video based on its content. Figure 3 illustrates predic-

tions and the number of frames processed by two Frame-
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Exit models trained with different values of β = 1e−4 and

β = 1e−6. As expected, a higher β encourages more video

samples to exit early from the network (top row) compared

to a lower β (bottom row). A general observation is that the

more we proceed to classifiers in later stages, the more in-

accurate the predictions become. This may sound counter-

intuitive, because if we were to have a model without early

exiting, late-stage classifiers produce the most accurate pre-

dictions. However, the trend shown in Figure 3 is highly

desirable, because it shows that the easier examples have

already exited from the network while only hard examples

reach to late stage classifiers.

This observation is more clear in Figure 4. The matrix

entry (i, j) illustrates the accuracy of the classifier Cj , if

it were to classify the video data Di that originally early

exited by the model through Ci. The diagonal entries

(i, j = i) in the matrix represent the actual early-exiting

results obtained by the model. In an ideal early exiting sce-

nario, for each row i, it is desired to have a significantly

lower performance for Cj compared to Ci when j < i and

a similar accuracy to Ci when j > i. A similar pattern is

observed in Figure 4. As can be seen, if a video prema-

turely exits earlier than what was decided by the model,

we lose accuracy significantly while if it exits later than

the model’s decision, no significant gain in accuracy is ob-

tained. FrameExit learns to exit from the optimal classifier

to balance computational costs and model accuracy.

Figure 5 illustrates average precision of all categories in

the ActivityNet dataset as well as the average number of

frames required for each category to confidently exit from

the network. As can be seen, the classes with strong visual

cues (such as riding bumper car, playing accordion, play-

ing pool, etc.) appear to be simpler and therefore exit in

the early stages with a high accuracy. In contrast, actions

which involve more complex interactions and require a se-

ries of frames to unveil (such as Javelin throw and trimming

branches) take more frames to be recognized.

Comparison to state of the art: Action recognition.

We compare our method with an extensive list of

recent works on efficient video recognition: AR-

Net [33], AdaFrame [52], LiteEval [51], SCSampler [29],

MARL [49], and ListenToLook [15]. AR-Net uses

MobileNet-V2 as the sampler network and adaptively

chooses a ResNet architecture with varying depths as the

recognition network. The method is additionally evaluated

with variants of EfficientNet [38] as the recognition net-

work. AdaFrame and LiteEval both use MobileNet-V2 as

the policy network and ResNet-101 as the recognition net-

work. SCSampler uses MobileNet-V2 as the sampler net-

work and ResNet-50 as the recognition network. MARL

uses a ResNet-101 as the recognition network combined

with a fully connected layer as a policy network. Listen-

ToLook uses MobileNet-V2 as the sampler network and

- Riding bumper car
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- Playing pool

- Using pommel horse

- Jack-o-lanterns

- Removing curlers

- Making a cake

- Using rowing machine

- Trimming branches
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Figure 5: AP vs number of processed frames per cat-

egory in the ActivityNet dataset. Categories with ob-

ject/scene cues exit in the early stages with high accuracy

while complex actions require more frames for recognition.

Table 1: Comparison to state of the art on action recogni-

tion. FrameExit outperforms competing methods in terms

of accuracy and efficiency using ResNet, EfficientNet, and

X3D-S backbones. Results of other methods are adopted

from [33]. ∗(IA|IA) denotes the variant of the Listen-

ToLook method that additionally uses audio for sampling

and recognition.

ActivityNet Mini-kinetics

mAP (%) GFLOPs Top-1 (%) GFLOPs

ResNet

AdaFrame [52] 71.5 79.0 - -

LiteEval [51] 72.7 95.1 61.0 99.0

ListenToLook [15] 72.3 81.4 - -

ListenToLook (IA|IA)* [15] 75.6 37.5 - -

SCSampler [29] 72.9 41.9 70.8 41.9

AR-Net [33] 73.8 33.5 71.7 32.0

Ours (w/o exit) 77.3 41.2 73.3 41.2

Ours (FrameExit) 76.1 26.1 72.8 19.7

EfficientNet

AR-Net [33] 79.7 15.3 74.8 16.3

Ours (w/o exit) 81.1 18.0 75.9 18.0

Ours (FrameExit) 80.0 11.4 75.3 7.8

X3D-S

Ours (w/o exit) 87.4 19.6 - -

Ours (FrameExit) 86.0 9.8 - -

ResNet-101 as the recognition network. Finally, Listen-

ToLook (IA|IA) uses two ResNet-18 for audio and visual

modality respectively as the sampler. The same architecture

is used for recognition network.

While the competing methods use two networks for sam-

pling and recognizing, FrameExit uses a single network for

efficient video recognition. The results for ActivityNet and

Mini-Kinetics are shown in Table 1. Our method with a

ResNet backbone outperforms all other approaches by ob-

taining an improved accuracy while using 1.3×– 5× less

GFLOPs. The gain in accuracy is mainly attributed to

our accumulated feature pooling module, while the gain

in efficiency is attributed to the proposed sampling policy
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Figure 6: Accuracy vs. efficiency curves on ActivityNet.

FrameExit performs similar to or better than other methods

at a much lower computational cost. Note that L2L (IA|
IA) denotes the variant of the ListenToLook method that

additionally uses audio for sampling and recognition.

and gating modules for conditional early exiting (see Sec-

tion 4.3 for detailed analyses). Compared to our model

without early exiting, denoted as “Ours (w/o exit)”, Frame-

Exit achieves a comparable accuracy with a significant re-

duction in GFLOPs (see Appendix for wall-clock timing of

FrameExit). In addition, Figure 6 presents accuracy vs.

computations trade-off curves on ActivityNet for various

methods. Note that except ListenToLook (IA—IA) [15]

that uses audio and visual features for sampling and recog-

nition, other methods rely solely on visual features. As

shown, FrameExit achieves the same top-performance as

other methods at a much lower computational cost.

To verify that the performance of our model is not lim-

ited to one architecture, we conduct similar experiments

with EfficientNet and X3D backbones. Using EfficientNet-

b3, FrameExit obtains 3.9% further absolute gain in mAP

on ActivityNet and 2.5% on Mini-Kinetics, while consum-

ing 2.3× and 2.5× less compute. In particular, on Activ-

ityNet and mini-kinetics, we outperform AR-Net [33], the

leading method among competitors, with 1.3× and 2.1×
less GFLOPs, respectively. When using the highly efficient

X3D-S as our backbone, at a similar computational cost,

FrameExit achieves 86.0% which is 6.0% higher than the

best 2D model. This demonstrates the superiority of our

method for efficient video understanding using both 2D and

3D backbones.

Comparison to state of the art: Holistic understanding.

We evaluate our method for the task of holistic video un-

derstanding, where the goal is to recognize various seman-

tic aspects including objects, scenes, and actions within

a video. To this end, we conduct experiments on the

Table 2: Comparison to state of the art on holistic video

understand. FrameExit significantly improves mAP on

HVU dataset while saving compute. ∗indicates GFLOPs

for one input clip.

mAP (%) GFLOPs

2D/3D ResNet

Uniform-10 44.7 41.2
Random-10 43.6 41.2
3D-ResNet18 [41] 35.4 38.6∗

HATNet [7] 39.6 41.8∗

FrameExit (β = 1e−3) 45.7 8.6

FrameExit (β = 1e−5) 49.2 18.7
EfficientNet

FrameExit (β = 1e−3) 47.7 11.7
FrameExit (β = 1e−2) 46.1 5.7

large-scale, multi-label HVU dataset [7]. we use average

pooling in our accumulated feature pooling module, Ψ in

Eq. 3, as it outperforms max pooling. We compare our

method with the commonly-used uniform and random sam-

pling baselines. These baselines sample K frames (uni-

formly/randomly) and average frame-level predictions to

generate a final video-level prediction. We additionally,

compare our method with 3D-ResNet18 [41] and mixed

2D/3D ResNet [7] models. As shown in Table 2, our

method consistently outperforms other methods in terms of

accuracy while saving significant computation. In particu-

lar, we report two variants of FrameExit with the ResNet

backbone by changing accuracy-efficiency trade-off param-

eter β. FrameExit trained with β = 1e−3 only uses 8.6
GFLOPs to obtain 45.7% mAP, which is highly suitable

for low-budget requirements. FrameExit trained with β =
1e−5 uses 18.7 GFLOPs on average to obtain 49.2% mAP,

which is suitable for high-accuracy requirements. Interest-

ingly, FrameExit outperforms 3D models [41, 7] in this task.

Given that HVU requires recognizing static 2D concepts

such as scenes (8% of the class labels) and objects (55%
of the class labels), 3D-CNN methods are not necessarily

the optimal choice for this task. The most budget-friendly

trained model is FrameExit with the EfficientNet backbone

that uses only 5.7 GFLOPs and achieves a mAP of 46.1.

This experiment implies that our method can be used in

a wider range of efficient video recognition tasks. Our re-

sults set a new state of the art on the HVU dataset for future

research.

4.3. Ablation study

In this section we inspect different aspects of FrameExit.

For all ablations, we follow the same training procedure ex-

plained in Section 4.1 and use the Activitynet-v1.3 dataset.

Impact of policy function. To validate the impact of our

proposed deterministic policy function for frame sampling,
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Table 3: Impact of sampling policy. we report the results

over 5 runs.

Train-random Test-random mAP (%) GFLOPS

(1) ✗ ✗ 73.7 27.6

(2) ✓ ✗ 74.3 ± 0.9 26.7 ± 0.33

(3) ✗ ✓ 74.4 ± 0.02 27.0 ± 0.19

(4) ✓ ✓ 74.4 ± 0.34 25.0 ± 0.37

FrameExit - - 76.1 26.1

we make comparisons with two commonly used sampling

approaches namely “Sequential” and “Random”, both dur-

ing training and evaluation. For “Sequential”, we keep orig-

inal frame order while in “Random”, we randomly sam-

ple frames. Results for all combinations are shown in Ta-

ble 3. Using the original frame ordering during training

and testing results in a lower mAP and a higher GFLOPs.

We speculate that during training, earlier classifiers receive

less informative gradients due to not observing a holistic

view of the entire video (row 1 vs. row 2). Similarly, the

model consumes higher GFLOPs because it needs to ob-

serve more frames to infer a confident prediction (row 1 vs.

row 3). Random sampling both during training and testing

improves the results because early stage classifiers have a

higher chance of obtaining more useful information reflect-

ing the entire video time-span. The best result, however, is

obtained by our simple deterministic sampling policy. This

is because jumping forward and backward enabled by our

frame sampling policy effectively improves the chance of

picking up informative frames for recognition.

Impact of accumulated feature pooling. We evaluate the

impact of accumulated feature pooling module by compar-

ing the performance of FrameExit with and without feature

pooling as reported in Table 4. For the FrameExit without

feature pooling, we train each classifier and its associated

gating module only on the currently sampled frame. We

then average frame-level predictions made by all classifiers

up until the exiting classifier to obtain the video-level pre-

diction. Therefore, the major difference in the design of

these two settings relates to the use of the pooling opera-

tion in feature space or in the prediction space. The results

in Table 4 demonstrates that pooling over features is much

more effective than over output predictions.

Number of input frames. We train FrameExit with var-

ious number of input frames T = {4, 8, 10, 16}. During

inference, the gates decide when to stop processing. As

shown in Table 5, the performance of the model increases

Table 4: Impact of accumulated feature pooling.

Feature pooling mAP (%) GFLOPs

✓ 76.1 26.1

✗ 67.8 27.6

Table 5: Impact of number of frames on FrameExit.

T = 4 T = 8 T = 10 T = 16
mAP (%) 66.2 74.3 76.1 76.1
GFLOPs 13.0 22.4 26.1 35.1

Table 6: Impact of adaptive exiting. ∗for each column, re-

sults are reported over an average no. of processed frames.

No. processed frames 3 4 6 7
Fixed budget 60.8 67.5 74.0 75.2
FrameExit* 67.5 70.1 75.8 76.4

as the number of input frames increases, but up to a cer-

tain limit. This is a reasonable observation, as certain ac-

tions/videos may require more frames to be recognized.

However, the reason why increasing the number of frames

after a limit does not further improve the performance could

be mainly attributed to the limited capacity of 2D convolu-

tional networks in leveraging temporal information. As a

result, to keep the balance between accuracy and efficiency,

we set T = 10 in our experiments.

Adaptive vs fixed exiting. To show the merits of adap-

tive early exiting versus a fixed budget exiting, we conduct

an ablation in two settings. In the first setting, we use our

conditional early exiting model and in the second setting,

we assume a fixed number of frames is processed for each

test video. Table 6 shows that our conditional early exiting

method consistently outperforms fixed exiting.

5. Conclusions

In this paper, we presented FrameExit, a conditional

early exiting method for efficient video recognition. Our

proposed method uses gating modules, trained to allow

the network to automatically determine the earliest exiting

point based on the inferred complexity of the input video.

To enable gates to make reliable decisions we use an effec-

tive video representation obtained using accumulated fea-

ture pooling. We showed that our early exiting mechanism

combined with a simple, deterministic sampling strategy

obviates the need for complex sampling policy techniques.

Our proposed method is model-agnostic and can be used

with various network architectures. Comprehensive experi-

ments show the power of our method in balancing accuracy

versus efficiency in action recognition as well as holistic

video understanding tasks.
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