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Abstract

While state of the art image segmentation models typ-

ically output segmentations in raster format, applications

in geographic information systems often require vector

polygons. To help bridge the gap between deep network

output and the format used in downstream tasks, we

add a frame field output to a deep segmentation model

for extracting buildings from remote sensing images.

We train a deep neural network that aligns a predicted

frame field to ground truth contours. This additional

objective improves segmentation quality by leveraging

multi-task learning and provides structural information

that later facilitates polygonization; we also introduce

a polygonization algorithm that that utilizes the frame

field along with the raster segmentation. Our code

is available at https://github.com/Lydorn/

Polygonization-by-Frame-Field-Learning.

1. Introduction

Figure 1: A frame field

output by our network.

Due to their success in

processing large collections

of noisy images, deep con-

volutional neural networks

(CNNs) have achieved state-

of-the-art in remote sensing

segmentation. Geographic in-

formation systems like Open

Street Map (OSM) [29], how-

ever, require segmentation

data in vector format (e.g., polygons and curves) rather

than raster format, which is generated by segmentation net-

works. Additionally, methods that extract objects from re-

mote sensing images require especially high throughput to

handle the volume of high-resolution aerial images captured

daily over large territories of land. Thus, modifications to

the conventional CNN pipeline are necessary.

Existing work on deep building segmentation gener-

ally falls into one of two general categories. The first

vectorizes the probability map produced by a network

a posteriori, e.g., by using contour detection (march-

ing squares [25]) followed by polygon simplification

(Ramer–Douglas–Peucker [30, 13]). Such approaches suf-

fer when the classification maps contain imperfections such

as smoothed out corners, a common artifact of conven-

tional deep segmentation methods. Moreover, as we show

in Fig. 2, even perfect probability maps are challenging to

polygonize due to shape information being lost from the

discretization of the raster output. To improve the final

polygons, these methods employ expensive and complex

post-processing procedures. ASIP polygonization [20] uses

polygonal partition refinement to approximate shapes from

the output probability map based on a tunable parameter

controlling the trade-off between complexity and fidelity.

In [42], a decoder and a discriminator regularize output

probability maps adversarially. This requires computing

large matrices of pairwise discontinuity costs between pix-

els and involves adversarial training, which is less stable

than conventional supervised learning.

Another category of deep segmentation methods learns

a vector representation directly. For example, Curve-

GCN [23] trains a graph convolutional network (GCN) to

deform polygons iteratively, and PolyMapper [21] uses a

recurrent neural network (RNN) to predict vertices one at

a time. While these approaches directly predict polygon

parameters, GCNs and RNNs suffer from several disad-

vantages. Not only are they more difficult to train than

CNNs, but also their output topology is restricted to simple

polygons without holes—a serious limitation in segment-

ing complex buildings. Additionally, adjoining buildings

with common walls are common, especially in city centers.

Curve-GCN and PolyMapper are unable to reuse the same

polyline in adjoining buildings, yielding overlaps and gaps.

We introduce a building extraction algorithm that avoids

the challenges above by adding a frame field output to a

fully-convolutional network (see Fig. 1). While this has im-

perceptible effect on training or inference time, the frame

field not only increases segmentation performance, e.g.,

yielding sharper corners, but also provides useful informa-

tion for vectorization. Additional losses learn a valid frame

field that is consistent with the segmentation. These losses

regularize the segmentation, similar to [37], which includes
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MRF/CRF regularization terms in the loss function to avoid

extra MRF/CRF inference steps.

The frame field allows us to devise a straightfor-

ward polygonization method extending the Active Contours

Model (ACM, or “snakes”) [19], which we call the Active

Skeleton Model (ASM). Rather than fitting contours to im-

age data, ASM fits a skeleton graph, where each edge con-

nects two junction nodes with a chain of vertices (i.e., a

polyline). This allows us to reuse shared walls between ad-

joining buildings. To our knowledge, no existing method

handles this case ([38] shows results with common walls

but does not provide details). Our method naturally handles

large buildings and buildings with inner holes, unlike end-

to-end learning methods like PolyMapper [21]. Lastly, our

polygon extraction pipeline is highly GPU-parallelizable,

making it faster than more complex methods.

Our main contributions are:

(i) a learned frame field aligned to object tangents, which

improves segmentation via multi-task learning;

(ii) coupling losses between outputs for self-consistency,

further leveraging multi-task learning; and

(iii) a fast polygonization method leveraging the frame

field, allowing complexity tuning of a corner-aware

simplification step and handling non-trivial topology.

2. Related work

ASIP polygonization [20] inputs an RGB image and a

probability map of objects (e.g., buildings) detected in the

image (e.g., by a neural network). Then, starting from a

polygonal partition that oversegments the image into convex

cells, the algorithm refines the partition while labeling its

cells by semantic class. The refinement process is an opti-

mization with terms that balance fidelity to the input against

complexity of the output polygons. The configuration space

is explored by splitting and merging the polygonal cells.

As the fidelity and complexity terms can be balanced with

a coefficient, the fidelity-to-complexity ratio can be tuned.

However, there does not exist a systematic approach for in-

terpreting or determining this coefficient. While ASIP post-

processes the output of a deep learning method, recent ap-

proaches aim for an end-to-end pipeline.

CNNs are successful at converting grid-based input to

grid-based output for tasks where each output pixel depends

on its local neighborhood in the input. In this setting, it

is straightforward and efficient to train a network for su-

pervised prediction of segmentation probability maps. The

paragraphs below, however, detail major challenges when

using such an approach to extract polygonal buildings.

First, the model needs to produce variable-sized outputs

to capture varying numbers of objects, contours, and ver-

tices. This requires complex architectures like recurrent

neural networks (RNNs) [18], which are not as efficiently

trained as CNNs and need multiple iterations at inference

time. Such is the case for PolyMapper [21], Polygon-

RNN [5], and Polygon-RNN++ [1]. Curve-GCN [23] pre-

dicts a fixed number of vertices simultaneously.

A second challenge is that the model must make discrete

decisions of whether to add a contour, whether to add a

hole to an object, and with how many vertices to describe a

contour. Adding a contour is solved by object detection:

a contour is predicted for each detected object. Adding

holes to an object is more challenging, but a few methods

detect holes and predict their contours. One model, BSP-

Net [8], circumvents this issue by combining predicted con-

vex shapes for the final output, producing shapes in a com-

pact format, with potential holes inside. To our knowledge,

the number of vertices is not a variable that current deep

learning models can optimize for; discrete decisions are dif-

ficult to pose differentiably without training techniques such

as the straight-through estimator [3] or reinforcement learn-

ing [35, 28, 27].

A third challenge is that, unlike probability maps, the

output structure of polygonal building extraction is not grid-

like. Within the network, the grid-like structure of the image

input has to be transformed to a more general planar graph

structure representing building outlines. City centers have

the additional problem of adjoining buildings that share a

wall. Ideally, the output geometry for such a case would

be a collection of polygons, one for each individual build-

ing, which share polylines corresponding to common walls.

Currently, no existing deep learning method tackles this

case. Our method solves it but is not end-to-end. PolyMap-

per [21] tackles the individual building and road network

extraction tasks. As road networks are graphs, they pro-

pose a novel sequentialization method to reformulate graph

structures as closed polygons. Their approach might work

in the case of adjoining buildings with common walls. Their

output structure, however, is less adapted to GPU compu-

tation, making it less efficient. RNNs such as PolyMap-

per [21], Polygon-RNN [5], and Polygon-RNN++ [1] per-

form beam search at inference to prune off improbable se-

quences, which requires more vertex predictions than are

used in the final output and is inefficient. The DefGrid [14]

module is a non-RNN approach where the network pro-

cesses polygonal superpixels. It is more complex than our

simple fully-convolutional network and is still subject to the

rounded corner problem.

The challenges above demand a middle ground between

learning a bitmap segmentation followed by a hand-crafted

polygonization method and end-to-end methods, aiming to

be easily-deployable, topologically flexible w.r.t. holes and

common walls, and efficient. A step in this direction is

the machine-learned building polygonization [41] that pre-

dicts building segmentations using a CNN, uses a generative

adversarial network to regularize building boundaries, and
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learns a building corner probability map, from which ver-

tices are extracted. In contrast, our model predicts a frame

field both as additional geometric information (instead of

a building corner probability map) and as a way to regu-

larize building boundaries (instead of adversarial training).

The addition of this frame field output is similar in spirit to

DiResNet [12], a road extraction neural network that out-

puts road direction in addition to road segmentation, first

introduced in [2]. The orientation is learned for each road

pixel by a cross-entropy classification loss whose labels are

orientation bins. This additional geometric feature learned

by the network improves the overall geometric integrity of

the extracted objects (in their case road connectivity). The

differences to our method include the following: (1) our

frame fields encode two orientations instead of one (needed

for corners), (2) we use a regression loss instead of a clas-

sification loss, and (3) we use coupling losses to promote

coherence between segmentation and frame field.

3. Method

Our key idea is to help the polygonization method solve

ambiguous cases caused by discrete probability maps by

asking the neural network to output missing shape infor-

mation in the form of a frame field (see Fig. 2). This prac-

tically does not increase training and inference time, allows

for simpler and faster polygonization, and regularizes the

segmentation—solving the problem of small misalignments

of the ground truth annotations that yield rounded corners if

no regularization is used.

(a) Iter. 0 (b) Iter. 50 (c) Iter. 250 (d) Result

Figure 2: Even a perfect classification map can yield incor-

rect polygonization due to a locally ambiguous probability

map, as shown in (a), the output of marching squares. Our

polygonization method iteratively optimizes the contour (b-

d) to align to a frame field, yielding better results as our

frame field (blue) disambiguates between slanted walls and

corners, preventing corners from being cut off.

3.1. Frame fields

We provide the necessary background on frame fields, a

key part of our method. Following [39, 11], a frame field is a

4-PolyVector field, which assigns four vectors to each point

of the plane. In the case of a frame field, however, the first

two vectors are constrained to be opposite to the other two,

i.e., each point is assigned a set of vectors {u,−u, v,−v}.

At each point in the image, we consider the two directions

that define the frame as two complex numbers u, v ∈ C. We

need two directions (rather than only one) because build-

ings, unlike organic shapes, are regular structures with sharp

corners, and capturing directionality at these sharp corners

requires two directions. To encode the directions in a way

that is agnostic to relabeling and sign change, we represent

them as coefficients of the following polynomial:

f(z) = (z2 − u2)(z2 − v2) = z4 + c2z
2 + c0 . (1)

We denote (1) above by f(z; c0, c2). Given a (c0, c2) pair,
we can easily recover one pair of directions defining the
corresponding frame:

{

c0 = u
2
v
2

c2 = −(u2 + v
2)

⇐⇒
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2
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2
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.

(2)

In our approach, inspired by [4], we learn a smooth

frame field with the property that, along building edges,

at least one field direction is aligned to the polygon tan-

gent direction. At polygon corners, the field aligns to both

tangent directions, motivating our use of PolyVector fields

rather than vector fields. Away from polygon boundaries,

the frame field does not have any alignment constraints but

is encouraged to be smooth and not collapse to a line field.

Like [4], we formulate the field computation variationally,

but, unlike their approach, we use a neural network to learn

the field at each pixel, which is also explored in [36]. To

avoid sign and ordering ambiguity, we learn a (c0, c2) pair

per pixel rather than (u, v).

3.2. Frame field learning

We describe our method, illustrated in Fig. 3. Our net-

work takes a 3×H×W image I as input and outputs a pixel-

wise classification map and a frame field. The classification

map contains two channels, ŷint corresponding to building

interiors and ŷedge to building boundaries. The frame field

contains four channels corresponding to the two complex

coefficients ĉ0, ĉ2 ∈ C, as in §3.1 above.

Segmentation losses. Our method can be used with any

deep segmentation model as a backbone; in our experi-

ments, we use the U-Net [31] and DeepLabV3 [7] archi-

tectures. The backbone outputs an F -dimensional feature

map ŷbackbone ∈ R
F×H×W . For the segmentation task, we

append to the backbone a fully-convolutional block (taking

ŷbackbone as input) consisting of a 3×3 convolutional layer,

a batch normalization layer, an ELU nonlinearity, another

3×3 convolution, and a sigmoid nonlinearity. This segmen-

tation head outputs a segmentation map ŷseg ∈ R
2×H×W .

The first channel contains the object interior segmentation

map ŷint and the second contains the contour segmentation

map ŷedge. Our training is supervised—each input image
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Figure 3: Given an overhead image, our model outputs an edge mask, interior mask, and frame field. The loss aligns the

masks and field to ground truth data, enforces smoothness of the frame field, and ensures consistency between the outputs.

is labeled with ground truth yint and yedge, corresponding

to rasterized polygon interiors and edges, respectively. We

then use a linear combination of the cross-entropy loss and

Dice loss [34] for loss Lint applied on the interior output as

well as loss Ledge applied on the contour (edge) output.

Frame field losses. In addition to the segmentation

masks, our network outputs a frame field. We append an-

other head to the backbone via a fully-convolutional block

consisting of a 3×3 convolutional layer, a batch normaliza-

tion layer, an ELU nonlinearity, another 3×3 convolution,

and a tanh nonlinearity. This frame field block inputs the

concatenation of the output features of the backbone and

the segmentation output: [ŷbackbone, ŷseg] ∈ R
(F+2)×H×W .

It outputs the frame field with ĉ0, ĉ2 ∈ C
H×W . The cor-

responding ground truth label is an angle θτ ∈ [0, π) of

the unsigned tangent vector of the polygon contour. We use

three losses to train the frame field:

Lalign = 1
HW

∑

x∈I

yedge(x)|f(e
iθτ ; ĉ0(x), ĉ2(x))|

2, (3)

Lalign90 = 1
HW

∑

x∈I

yedge(x)|f(e
iθ

τ
⊥ ; ĉ0(x), ĉ2(x))|

2, (4)

Lsmooth = 1
HW

∑

x∈I

(
‖∇ĉ0(x)‖

2 + ‖∇ĉ2(x)‖
2
)
, (5)

where θw is the direction of w (w = ‖w‖2e
iθw ), and τ⊥ =

τ − π

2 . Each loss measures a different property of the field:

• Lalign enforces alignment of the frame field to the tan-

gent directions. This term is small when the polynomial

f(·; ĉ0, ĉ2) has a root near eiθτ , implicitly implying that

one of the field directions {±u,±v} is aligned with the

tangent direction τ . Since (1) has no odd-degree terms,

this term has no dependence on the sign of τ , as desired.

• Lalign90 prevents the frame field from collapsing to a line

field by encouraging it to also align with τ⊥.

• Lsmooth is a Dirichlet energy measuring the smoothness of

ĉ0(x) and ĉ2(x) as functions of location x in the image.

Smoothly-varying ĉ0 and ĉ2 yield a smooth frame field.

Output coupling losses. We add coupling losses to en-

sure mutual consistency between our network outputs:

Lint align =
1

HW

∑

x∈I

f(∇ŷint(x); ĉ0(x), ĉ2(x))
2, (6)

Ledge align =
1

HW

∑

x∈I

f(∇ŷedge(x); ĉ0(x), ĉ2(x))
2, (7)

Lint edge =
1

HW

∑

x∈I

max (1− ŷint(x), ‖∇ŷint(x)‖2)

· |‖∇ŷint(x)‖2 − ŷedge(x)| .

(8)

• Lint align aligns the spatial gradient of the predicted interior

map ŷint with the frame field (analogous to (3)).

• Ledge align aligns the spatial gradient of the predicted edge

map ŷedge with the frame field (analogous to (3)).

• Lint edge makes the predicted edge map be equal to the

norm of the spatial gradient of the predicted interior

map. This loss is applied outside of buildings (hence the

1 − ŷint(x) term) and along building contours (hence the

‖∇ŷint(x)‖2 term) and is not applied inside buildings, so

that common walls between adjoining buildings can still

be detected by the edge map.

Final loss. Because the losses (Lint, Ledge, Lalign, Lalign90,

Lsmooth, Lint align, Ledge align, and Lint edge) have distinct units,

we compute a normalization coefficient for each loss by av-

eraging its value over a random subset of the training dataset

using a randomly-initialized network. Losses are then nor-

malized by this coefficient before being linearly combined.

This normalization aims to rescale losses such that they are

easier to balance. More details are in the supplementary

materials.

3.3. Frame field polygonization

The main steps of our polygonization method are shown

in Fig. 4. It is inspired by the Active Contour Model

(ACM) [19]. ACM is initialized with a given contour and
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Figure 4: Overview of our post-processing polygonization algorithm. Given an interior classification map and frame field

(Fig. 3) as input, we optimize the contour to align to the frame field using an Active Skeleton Model (ASM) and detect

corners using the frame field, simplifying non-corner vertices.

minimizes an energy function E∗
contour, which moves the

contour points toward an optimal position. Usually this en-

ergy is composed of a term to fit the contour to the image

and additional terms to limit the amount of stretch and/or

curvature. The optimization is performed by gradient de-

scent. Overall the ACM lends itself perfectly for paral-

lelized execution on the GPU, and the optimization can

be performed using an automatic differentiation module in-

cluded in deep learning frameworks. We adapt ACM so that

the optimization is performed on a skeleton graph instead

of contours, giving us the Active Skeleton Model (ASM).

We call the skeleton graph the graph of connected pixels

of the skeleton image obtained by the thinning method [40]

applied on the building wall probability map yedge. The fol-

lowing energy terms are used:

• Eprobability fits the skeleton paths to the contour of the

building interior probability map yint(v) at a certain prob-

ability threshold ℓ (set to 0.5 in practice).

• Eframe field align aligns each edge of the skeleton graph to

the frame field.

• Elength ensures that the node distribution along paths re-

mains homogeneous as well as tight.

Details about our data structure (designed for GPU com-

putation), definition and computation of our energy terms,

and explanation of our corner-aware simplification step can

be found in the supplementary materials.

4. Experimental setup

4.1. Datasets

Our method requires ground truth polygonal building

annotations (rather than raster binary masks) so that the

ground truth angle for the frame field can be computed

by rasterizing separately each polygon edge and taking the

edge’s angle. Thus, for each pixel we get a θτ value, which

is used in Lalign.

We perform experiments on these datasets (more details

in the supplementary material):

• CrowdAI Mapping Challenge dataset [32] (CrowdAI

dataset): 341438 aerial images of size 300×300 pixels

with associated ground truth polygonal annotations.

• Inria Aerial Image Labeling dataset [26] (Inria dataset):

360 aerial images of size 5000×5000 pixels. Ten cities

are represented, making it more varied than the Crow-

dAI dataset. However, the ground truth is in the form

of raster binary masks. We thus create the Inria OSM

dataset by taking OSM polygon annotations and correct-

ing their misalignment using [15]. We also create the In-

ria Polygonized dataset by converting the original ground

truth binary masks to polygon annotations with our poly-

gonization method (see supplementary materials).

• Private dataset: 57 satellite images for training with sizes

varying from 2000×2000 pixels to 20000×20000 pixels,

captured over 30 different cities from all continents with

three different types of satellites. This is our most varied

and challenging dataset. However, the building outline

polygons were manually labeled precisely by an expert,

ensuring the best possible ground truth. Results for this

private dataset are in the supplementary material.

4.2. Backbones

The first backbone we use is U-Net16, a small U-Net [31]

with 16 starting hidden features (instead of 64 in the orig-

inal). We also use DeepLab101, a DeepLabV3 [7] model

that utilizes a ResNet-101 [17] encoder. Our best per-

forming model is UResNet101—a U-Net with a ResNet-

101 [17] encoder (pre-trained on ImageNet [10]). We ob-

served that the pre-trained ResNet-101 encoder achieves

better final performance than random initialization. For the

UResNet101, we additionally use distance weighting for the

cross-entropy loss, as done for the original U-Net [31].

4.3. Ablation study and additional experiments

We perform an ablation study to validate various compo-

nents of our method (results in Tables 1, 2, and 4):

• “No field” removes the frame field output for compar-

ison to pure segmentation. Only interior segmentation

Lint, edge segmentation Ledge and interior/edge coupling

Lint edge losses remain.

• “Simple poly.” uses a baseline polygonization algo-
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rithm (marching-squares contour detection followed by

the Ramer–Douglas–Peucker simplification) on the inte-

rior classification map learned by our full method. This

allows us to study the improvement of our polygonization

method from leveraging the frame field.

Additional experiments in the supplementary material in-

clude: “no coupling losses” removes all coupling losses

(Lint align, Ledge align, Lint edge) to determine whether en-

forcing consistency between outputs has an impact; “no

Lalign90,” “no Lint edge,” “no Lint align and Ledge align,” and “no

Lsmooth” all remove the specified losses; “complexity vs.

fidelity” varies the simplification tolerance parameter ε to

demonstrate the trade-off between complexity and fidelity

of our corner-aware simplification procedure.

4.4. Metrics

The standard metric for image segmentation is Intersec-

tion over Union (IoU), which is then used to compute other

metrics such as MS COCO [22], Average Precision (AP),

and Average Recall (AR)—along with variants AP50, AP75,

AR50, AR75. Since we aim to produce clean geometry, it is

important to measure contour regularity, not captured by the

area-based metrics IoU, AP, and AR. Moreover, as annota-

tions are bound to have some alignment noise, only opti-

mizing IoU will favor blurry segmentations with rounded

corners over sharp segmentations, as the blurry ones corre-

spond to the shape expectation of the noisy ground truth an-

notation; segmentation results with sharp corners may even

yield a lower IoU than segmentations with rounded cor-

ners. We thus introduce the max tangent angle error metric

that compares the tangent angles between predicted poly-

gons and ground truth annotations, penalizing contours not

aligned with the ground truth. It is computed by uniformly

sampling points along a predicted contour, computing the

angle of the tangent for each point, and comparing it to the

tangent angle of the closest point on the ground truth con-

tour. The max tangent angle error is the maximum tangent

angle error over all sampled points. More details about the

computation of these metrics can be found in the supple-

mentary material.

5. Results and discussion

5.1. CrowdAI dataset

We visualize our polygon extraction results for the Crow-

dAI dataset and compare them to other methods in Fig. 5.

The ASIP polygonization method [20] inputs the proba-

bility maps of a U-Net variant [9] that won the CrowdAI

challenge. All methods perform well on common building

types, e.g., houses and residential buildings, but we can see

that results of ASIP are less regular than PolyMapper and

ours. For more complex building shapes (e.g., not rectan-

gular or with a hole inside), ASIP outputs reasonable re-

Method Mean max tangent angle errors ↓
UResNet101 (no field), simple poly. 51.9°

UResNet101 (with field), simple poly. 45.1°

U-Net variant [9], ASIP poly. [20] 44.0°

UResNet101 (with field), ASIP poly. [20] 38.3°

U-Net variant [9], UResNet101 our poly. 36.6°

PolyMapper [21] 33.1°

UResNet101 (with field), our poly. 31.9°

Table 1: Mean max tangent angle errors over all the original

validation polygons of the CrowdAI dataset [32].

sults, albeit still not very regular. However, the PolyMap-

per approach of object detection followed by polygonal out-

line regression does not work in the most difficult cases. It

does not support nontrivial topology by construction, but

also, it struggles with large complex buildings. We hypoth-

esize that PolyMapper suffers from the fact that there are not

many complex buildings and does not generalize as well as

fully-convolutional networks.

We report results on the original validation set of the

CrowdAI dataset for the max tangent angle error in Ta-

ble 1 and MS COCO metrics in Table 2. “(with field)”

refers to models trained with our full frame field learn-

ing method, “(no field)” refers to models trained without

any frame field output, “mask” refers to the output raster

segmentation mask of the network, “our poly.” refers to

our frame field polygonization method, and “simple poly.”

refers to the baseline polygonization of marching squares

followed by Ramer-Douglas-Peucker simplification. We

also applied our polygonization method to the same prob-

ability maps used by the ASIP polygonization method (U-

Net variant [9]) for fair comparison of polygonization meth-

ods.

In Table 1, “simple poly.” performs better using “(with

field)” segmentation compared to “(no field)” because of a

regularization effect from frame field learning. PolyMap-

per performs significantly better than “simple poly.” even

though it is not explicitly regularized. Our frame field learn-

ing and polygonization method is necessary to decrease the

error further and compare favorably to PolyMapper.

In Table 2, our UResNet101 (with field) outperforms

most previous works, except “U-Net variant [9], ASIP

poly. [20]” due to the U-Net variant being the winning en-

try to the challenge. However our polygonization applied

after that same U-Net variant achieves better max tangent

angle error and AP than ASIP but worse AR. The same is

true when applying ASIP to our UResNet101 (with field):

it has slightly worse AP, AR, and max tangent angle error.

However, the ASIP method also results in better max tan-

gent angle error when using our UResNet101 (with field)

compared to using the U-Net variant.

Runtimes. We compare runtimes in Table 3. ASIP does

not have a GPU implementation. In their paper they give
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Figure 5: Example building extraction results on CrowdAI test images. Buildings become more complex from left to right.

(top) U-Net variant [9] + ASIP [20], (middle) PolyMapper [21], and (bottom) ours: UResNet101 (full), frame field polygo-

nization.

Method AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑
UResNet101 (no field), mask 62.4 86.7 72.7 67.5 90.5 77.4

UResNet101 (no field), simple poly. 61.1 87.4 71.2 64.7 89.4 74.1

UResNet101 (with field), mask 64.5 89.3 74.6 68.1 91.0 77.7

UResNet101 (with field), simple poly. 61.7 87.7 71.5 65.4 89.9 74.6

UResNet101 (with field), our poly. 61.3 87.5 70.6 65.0 89.4 73.9

UResNet101 (with field), ASIP poly. [20] 60.0 86.3 69.9 64.0 88.8 73.4

U-Net variant [9], UResNet101 our poly. 67.0 92.1 75.6 73.2 93.5 81.1

Mask R-CNN [16] [33] 41.9 67.5 48.8 47.6 70.8 55.5

PANet [24] 50.7 73.9 62.6 54.4 74.5 65.2

PolyMapper [21] 55.7 86.0 65.1 62.1 88.6 71.4

U-Net variant [9], ASIP poly. [20] 65.8 87.6 73.4 78.7 94.3 86.1

Table 2: AP and AR results on the CrowdAI dataset [32] for

all polygonization experiments.

Method Time (sec) ↓ Hardware

PolyMapper [21] 0.38 GTX 1080Ti

ASIP [20] 0.15 Laptop CPU

Ours 0.04 GTX 1080Ti

Table 3: Average times to extract buildings from a 300×300
pixel patch. Ours refers to UResNet101 (with field), our

poly. ASIP’s time does not include model inference.

an average runtime of 1-3s on CPU with ~10% CPU uti-

lization. Assuming perfect parallelization, they estimate

their average runtime to be 0.15s with 100% CPU utiliza-

tion. Their method uses a priority queue for optimizing the

polygonal partitioning with various geometric operators and

is harder to implement on GPU. Our efficient data structure

makes our building extraction competitive with prior work.

5.2. Inria OSM dataset

U-Net16 (no field), simple poly. U-Net16 (with field), our poly.

Figure 6: Small crop of Inria dataset results.
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Method mIoU ↑ Mean max tangent angle errors ↓
Eugene Khvedchenya1, simple poly. 80.7% 52.2 °

ICTNet [6], simple poly. 80.1% 52.1°

UResNet101 (no field), simple poly. 73.2% 52.0°

Zorzi et al. [41] poly. 74.4% 34.5°

UResNet101 (with field), our poly. 74.8% 28.1°

Table 4: IoU and mean max tangent angle errors for poly-

gon extraction methods on the Inria polygonized dataset.

The Inria OSM dataset is more challenging than the

CrowdAI dataset because it contains more varied areas (e.g.,

countryside, city center, residential, and commercial) with

different building types. It also contains adjacent buildings

with common walls, which our edge segmentation output

can detect. The mean IoU on test images of the output

classification maps is 78.0% for the U-Net16 trained with

a frame field compared to 76.9% for the U-Net16 with no

frame field. The IoU does not significantly penalize irreg-

ular contours, but, by visually inspecting segmentation out-

puts as in Fig. 6, we can see the effect of the regularization.

Our method successfully handles complex building shapes

which can be very large, with blocks of buildings featuring

common walls and holes. See the supplementary materials

for more results.

5.3. Inria polygonized dataset

Eugene Khvedchenya1, simple poly. UResNet101 (with field), our poly.

Figure 7: Crop of an Inria polygonized dataset test image.

The Inria polygonized dataset with its associated chal-

lenge1 allows us to directly compare to other methods

trained on the same ground truth, even though it does not

consider learning of separate buildings. In Table 4, our

1https://project.inria.fr/aerialimagelabeling/

leaderboard/

method matches [41] in terms of mIoU, with lower max

tangent angle error. The two top methods on the leader-

board (ICTNet [6] and “Eugene Khvedchenya”) achieve a

mIoU over 80%, but they lack contour regularity with high

max tangent angle error; they also only output segmenta-

tion masks, needing a posteriori polygonization to extract

polygonal buildings. Fig. 7 shows the cleaner geometry

of our method. The ground truth of the Inria polygonized

dataset has misalignment noise, yielding imprecise corners

that produce rounded corners in the prediction if no regu-

larization is applied. See the supplementary materials for

more results.

6. Conclusion

We improve on the task of building extraction by learn-

ing an additional output to a standard segmentation model:

a frame field. This motivates the use of a regularization loss,

leading to more regular contours, e.g., with sharp corners.

Our approach is efficient since the model is a single fully-

convolutional network. The training is straightforward, un-

like adversarial training, direct shape regression, and recur-

rent networks, which require significant tuning and more

computational power. The frame field adds virtually no

cost to inference time, and it disambiguates tough poly-

gonization cases, making our polygonization method less

complex. Our data structure for the polygonization makes

it parallelizable on the GPU. We handle the case of holes

in buildings as well as common walls between adjoining

buildings. Because of the skeleton graph structure, com-

mon wall polylines are naturally guaranteed to be shared by

the buildings on either side. As future work, we could apply

our method to any image segmentation network, including

multi-class segmentation, where the frame field could be

shared between all classes.
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