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Abstract

Recognition tasks, such as object recognition and key-

point estimation, have seen widespread adoption in recent

years. Most state-of-the-art methods for these tasks use

deep networks that are computationally expensive and have

huge memory footprints. This makes it exceedingly difficult

to deploy these systems on low power embedded devices.

Hence, the importance of decreasing the storage require-

ments and the amount of computation in such models is

paramount. The recently proposed Lottery Ticket Hypothe-

sis (LTH) states that deep neural networks trained on large

datasets contain smaller subnetworks that achieve on par

performance as the dense networks. In this work, we per-

form the first empirical study investigating LTH for model

pruning in the context of object detection, instance segmen-

tation, and keypoint estimation. Our studies reveal that

lottery tickets obtained from Imagenet pretraining do not

transfer well to the downstream tasks. We provide guidance

on how to find lottery tickets with up to 80% overall spar-

sity on different sub-tasks without incurring any drop in the

performance. Finally, we analyse the behavior of trained

tickets with respect to various task attributes such as object

size, frequency, and difficulty of detection.

1. Introduction

Recognition tasks, such as object detection, instance

segmentation, and keypoint estimation, have emerged as

canonical tasks in visual recognition because of their intu-

itive appeal and pertinence in a wide variety of real-world

problems. The modus operandi followed in nearly all state-

of-the-art visual recognition methods is the following: (i)

Pre-train a large neural network on a very large and di-

verse image classification dataset, (ii) Append a small task-

specific network to the pre-trained model and fine-tune the

weights jointly on a much smaller dataset for the task. The
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Figure 1: Performance of lottery tickets discovered using direct pruning

for various object recognition tasks. Here we have used a Mask R-CNN

model with ResNet-18 backbone (top) and ResNet-50 backbone (bottom)

to train models for object detection, segmentation and human keypoint es-

timation on the COCO dataset. We show the performance of the baseline

dense network, the sparse subnetwork obtained by transferring ImageNet

pre-trained “universal” lottery tickets, as well as the subnetwork obtained

by task-specific pruning. Task-specific pruning outperforms the universal

tickets by a wide margin. For each of the tasks, we can obtain the same

performance as the original dense networks with only 20% of the weights.

introduction of ResNets by He et al. [22] made the training

of very deep networks possible, helping in scaling up model

capacity, both in terms of depth and width, and became a

well-established instrument for improving the performance

of deep learning models even with smaller datasets [25]. As

a result, the past few years have seen increasingly large neu-

ral network architectures [35, 55, 47, 23], with sizes often

exceeding the memory limits of a single hardware accel-

erator. In recent years, efforts towards reducing the mem-

ory and computation footprint of deep networks have fol-

lowed three seemingly parallel tracks with common objec-

tives: weight quantization, sparsity via regularization, and

network pruning; Weight Quantization [24, 16, 44, 6, 30]
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methods either replace weights of a trained neural network

with lower precision or arithmetic operations with bit-wise

operations to reduce the memory up to an order of magni-

tude. Regularization approaches, such as dropout [45, 2] or

LASSO [48], attempt to discourage an over-parameterized

network from relying on a large number of features and en-

courage learning a sparse and robust predictor. Both quanti-

zation and regularization approaches are effective in reduc-

ing the number of weights in a network or the memory foot-

print, but usually at the cost of increased error rates [20, 30].

In comparison, pruning approaches [28, 19] disentangle the

learning task from pruning by alternating between weight

optimization and weight deletion. The recently proposed

Lottery Ticket Hypothesis ·(LTH) [12] falls in this category.

According to LTH, an over-parameterized network con-

tains sparse sub-networks which not only match but some-

times even exceed the performance of the original network,

all by virtue of a “lucky” random initialization before train-

ing. The original paper was followed up with tips and tricks

to train large-scale models under the same paradigm [15].

Since then, there has been a large, growing body of litera-

ture exploring its nuances. Although some of these recent

works have tried to answer the question – how well do the

tickets transfer across domains [38, 37], when it comes to

vision tasks – the buck stops at image classification.

In this work, we aim to extend and explore the analysis

of lottery tickets to fundamental visual recognition tasks of

object detection, instance segmentation, and keypoint de-

tection. Popular methods for such recognition tasks use a

two-stage detection pipeline, with a supervised pre-trained

convolutional neural network (ConvNet) backbone, a re-

gion proposal network (RPN), and one or more region-wise

task-specific neural network branches. Loosely speaking,

a ConvNet backbone is the most computationally intensive

part of the architecture, and pre-training is the most time-

consuming part. Therefore, as part of this study, we ex-

plore the following questions: (a) Are there universal sub-

networks within the ConvNet backbone that can be trans-

ferred to the downstream object recognition tasks? (b) Can

we train sparser and more accurate sub-networks for each

of the downstream tasks? And, (c) How does the behav-

ior or properties of these sub-networks change with respect

to the corresponding dense network? We investigate these

questions under the dominant settings used in object recog-

nition frameworks. Specifically, we use ImageNet [7] pre-

trained ResNet-18 and ResNet-50 [22] backbones, Faster R-

CNN [41] and Mask R-CNN [21] modules for object recog-

nition on Pascal VOC [11] and COCO [31] datasets. Our

contributions are as follows:

• We show that tickets obtained from ImageNet training

don’t transfer to object recognition in case of COCO,

i.e., there are no universal tickets in pre-trained Ima-

geNet models that can be used for downstream recog-

nition tasks without a drop in performance. This is in

contrast with previous works related to ticket transfer

in vision models [37, 38]. In case of smaller datasets

such as Pascal VOC, we are able to find winning tickets

from ImageNet pre-training with upto 40% sparsity.

• With direct pruning, we can find “task-specific” tick-

ets with up to 80% sparsity for each of the datasets and

backbones. We also investigate the efficacy of methods

introduced by [12, 38, 13, 42] such as iterative mag-

nitude pruning, late resetting, early bird training, and

layerwise pruning in the context of object recognition.

• Finally we analyse the behavior of tickets obtained for

object recognition tasks, with respect to various task

attributes such as object size, frequency, and difficulty

of detection, to make some expected (and some sur-

prising) observations.

2. Related Work

Model Compression: Ever since deep neural networks

started gaining traction in real-world applications, there

have been serious attempts made to reduce their parame-

ters, intending to attain lower memory footprints [16, 52,

24, 44, 6, 30], higher inference speeds [49, 8, 18] and po-

tentially better generalization [1]. Amongst the various pro-

posed techniques, model pruning approaches are predomi-

nant mainly due to their simplicity and effectiveness. One

line of methods follow an unstructured process where in-

significant weights are set to zero and are frozen for the

rest of the training. The significance of weights are quanti-

fied either by magnitude [19] or gradients during training

time [29]. In structured pruning methods, relationships be-

tween pruned weights are taken into consideration, leading

to pruning them in groups. Methods like [51] utilize Group

Lasso regularization to prune redundant filter weights to en-

able structural sparsity, [33] uses explicit L0 regularization

to make weights within structures have exact zero values,

and network slimming [32] learns an efficient network by

modelling the scaling factor of batch normalization layer.

The Lottery Ticket Hypothesis: The introduction of Lot-

tery Ticket Hypothesis by [15] opened a pandora’s box of

immense possibilities in the field of pruning and sparse

models. The original paper was followed by [14] where the

authors introduce the concept of ”late resetting” which en-

abled the application of the hypothesis to larger and deeper

models. [56] followed up by proposing an extensive, in-

depth analysis where they show that the resetting of the

weights need not be to the exact initialization, but just need

to the initial signs. [13] probes the aspect of resetting fur-

ther to show that the reason why LTH works is because

of its ability to make the subnetwork stable to SGD noise.

As far as theoretical guarantees are considered, [36] offers
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strong theoretical proofs for the experimental evidence of

LTH. [17] probed an orthogonal question about the num-

ber of possible tickets from a network. They showed that

a single initialization had multiple winning tickets with low

overlap and empirically conclude that there exists an entire

“distribution” of winning lottery tickets.

Complementary to LTH[15], [29] and [50] offer algo-

rithms that can pick the winning ticket without the need for

training. But they do not match the performance of the orig-

inal procedure. The problem of longer training using LTH

was effectively tackled by [53] which introduced the con-

cept of “early bird tickets” where the authors show that the

winning tickets and their masks are obtained in the first few

epochs of training, foregoing the need to train the original

initialization till convergence. The intriguing properties of

LTH led to a glut of works which investigated its eclec-

tic aspects. [38] scrutinize the generalization properties of

winning tickets and offer empirical evidence that winning

tickets can be transferred across datasets and optimizers, in

the realm of image classification. The authors also discuss

the learnt “inductive biases” of the tickets which may lead

to worse performance of transferred tickets when compared

with a ticket obtained from the same dataset. [37] then pro-

posed a variation of the theory titled “transfer ticket hypoth-

esis” where they investigate the effectiveness of transferring

a mask generated from source dataset to a target dataset. [9]

shows that the winning tickets do not perform simple over-

fitting to any domain and carry forward certain inherent bi-

ases which can prove useful for other domains too. There

have been many applications of LTH in the fields of NLP [5]

[39] [9][3] and Reinforcement Learning [54] [53] as well.

The work of [43] briefly analyzes LTH on single stage de-

tectors such as YOLOv3 [40] and achieves 90% winning

tickets, while maintaining the mAP on the Pascal VOC 2007

dataset. However, as they evaluate on light-weight and fast

detectors, their mAP (∼ 56) is much lower compared to net-

works like Faster R-CNN [41] which reach mAP of ∼ 69
with just a ResNet-18 backbone. They are also limited to

object detection and do not provide a detailed analysis of

LTH for this task. The idea for transferring subnetworks

obtained from ImageNet to object detection tasks was con-

currently discussed by [4]. For small datasets such as Pascal

VOC, [4] observes that ImageNet tickets transfer for detec-

tion and segmentation tasks. However, we extend the anal-

ysis to the larger COCO dataset and show that this observa-

tion doesn’t hold. We further build upon these results, to test

out the generalization and transfer capabilities of winning

lottery tickets across different object recognition datasets

and tasks in computer vision.

3. Background: Lottery Ticket Hypothesis

LTH states that dense randomly-initialized neural net-

works contain sparse sub-networks which can be trained

Algorithm 1 Iterative Pruning for LTH

1: Randomly initialize network f with initial weights w0,

mask m0 = ✶, prune target percentage p, and T prun-

ing rounds to achieve it.

2: while i < T do

3: Train network for N iterations f(x;mi ⊙ w0) →
f(x;mi ⊙ wi)

4: Prune bottom p
1

k% of mi ⊙ wi and update mi.

5: Reset to initial weights w0

6: i← i+ 1 ⊲ next round

in isolation and can match the test accuracy of the origi-

nal network. These sub-networks are called winning tick-

ets and can be identified using an algorithm called Itera-

tive Magnitude Pruning (IMP). Suppose the number of it-

erations for pruning is T and we wish to prune p% of the

network weights. The weights/parameters are represented

by w ∈ R
n and the pruning mask by m ∈ {0, 1}n where n

is the total number of weights in the network. The complete

algorithm is presented in 1.

This pruning method can be one-shot when it proceeds

for only a single iteration or it can proceed for multiple it-

erations, k, pruning p
1

k% each round. The authors also use

other techniques such as learning rate warmup and show

that finding winning tickets is sensitive to the learning rate.

While this method obtains winning tickets for smaller

datasets, like MNIST [27], CIFAR10 [26], they fail to gen-

eralize to deeper networks, such as ResNets, and larger vi-

sion benchmarks, such as ImageNet [7]. [14] shows that

IMP fails when resetting to the original initialization. They

claim that resetting instead to the network weights after a

few iterations of training provides greater stability and en-

ables them to find winning tickets in these larger networks.

They show that rewinding/late resetting to 3−7% into train-

ing yields subnetworks which are 70% smaller in the case

of ResNet-50, without any drop in accuracy.

4. LTH for Object Recognition

In this section, we extend the Lottery Ticket Hypothesis

to several object recognition tasks, such as Object Detec-

tion, Instance Segmentation, and Keypoint Detection. In

§4.1, we describe the datasets, models, and metrics we use

in our paper. §4.2 examines the transfer of the lottery tickets

obtained from ImageNet training to the downstream recog-

nition tasks. §4.3 investigates direct pruning on the down-

stream tasks. §4.4 analyzes the various properties of win-

ning tickets obtained using direct pruning.

4.1. Experimental setup

We evaluate LTH primarily on the 2 datasets - Pascal

VOC 2007 and COCO. We deal with the 3 tasks of object
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Table 1: Performance on the COCO dataset for ImageNet transferred tickets for ResNet-18 backbone at varying sparsity. The results for VOC are averaged

over 5 runs with the standard deviation in parantheses. We obtain winning tickets at higher sparsity for smaller datasets like VOC compared to COCO.

Prune %
COCO Detection COCO segmentation COCO Keypoint VOC Detection

Network

sparsity
mAP AP50

Network

sparsity
mAP AP50

Network

sparsity
mAP AP50

Network

sparsity
mAP

90% 31.61% 25.59 43.69 31.61% 24.03 40.89 21.47% 55.30 79.30 79.49% 63.91(±0.41)

80% 28.10% 27.70 46.50 28.10% 25.90 43.70 19.09% 56.70 81.10 70.66% 65.82(±0.23)

50% 17.57% 28.52 47.54 17.57% 26.60 44.66 11.94% 56.96 80.83 44.16% 68.06(±0.11)

0% 0% 29.91 49.05 0% 27.64 46.00 0% 58.59 82.04 0% 68.53(±0.29)

Table 2: Performance on the COCO dataset for ImageNet transferred tickets for ResNet-50 backbone at various levels of pruning. The results for VOC are

averaged over 5 runs with the standard deviation in parantheses. We obtain higher levels of sparsity compared to ResNet-18 transferred tickets which can be

expected as it has fewer redundant parameters. Additionally, tickets for VOC have much higher sparsity with no drop in mAP compared to unpruned model.

Prune %
COCO Detection COCO segmentation COCO Keypoint VOC Detection

Network

sparsity
mAP AP50

Network

sparsity
mAP AP50

Network

sparsity
mAP AP50

Network

sparsity
mAP

90% 41.99% 30.66 50.75 41.99% 28.68 47.76 31.49% 57.78 82.25 65.37% 71.20(±0.21)

80% 37.33% 31.01 50.98 37.33% 29.04 47.90 28% 58.55 83.06 58.11% 71.08(±0.20)

0% 0% 38.5 59.29 0% 35.13 56.39 0% 64.59 86.48 0% 71.21(±0.32)

detection, instance segmentation, and keypoint detection for

COCO and only object detection for VOC. We use Mask-

RCNN for object detection and segmentation for COCO,

Keypoint-RCNN for keypoint detection, and Faster-RCNN

for object detection on VOC. We compare the results for

ResNet-18 and ResNet-50 backbones. Note that while we

use the term mean Average Precision (mAP) as a perfor-

mance metric for all the tasks and datasets, the actual calcu-

lation of mAP is done using code provided in the respective

datasets (and cannot be compared across the tasks).

4.2. Transfer of ImageNet Tickets

Many object recognition tasks utilize pre-trained net-

works whose backbones are trained on the ImageNet

dataset. This is because ImageNet features and weights

have shown the ability [21] to generalize well to several

downstream vision tasks. A plethora of works exists which

perform LTH for the ImageNet classification task and ob-

tain winning tickets. Therefore, tickets for standard con-

volutional backbones, such as ResNets, are readily avail-

able. This raises the pertinent question of whether pruned

ImageNet trained models transfer directly to object recogni-

tion tasks. In order to answer this question, we transfer the

pruned model to the backbone of the RCNN-based network

and fine-tune the full network while ensuring the pruned

weights in the backbone remain as zeros.

We perform experiments for the two architectures:

ResNet-18 and ResNet-50, where we obtain 10%, 20%, and

50% tickets on ImageNet by following the approach of [14],

and then transfer the model to the backbones of the three R-

CNN based networks. All models were trained on COCO,

encompassing the three recognition tasks and the results

are summarized in Tables 1, 2. Additionally, we also per-

form similar experiments on the smaller Pascal VOC 2007

dataset for object detection to verify whether ImageNet

tickets transfer without a significant drop in mAP. The re-

sults are shown in the last column of Tables 1, 2. Note that

pruning percentage of the ImageNet ticket is not equal to

the actual network sparsity of the various networks as only

the backbone of the networks are transferred and they make

up a fraction of the total weights.

We see that ImageNet tickets transferred to COCO show

a noticeable drop in mAP even with low levels of sparsity.

We also note that another drawback of training transferred

tickets on COCO is that they require careful tuning of learn-

ing rate and batch size for different tasks. On the other hand,

for smaller datasets such as Pascal VOC, winning tickets are

easily obtained at higher levels of sparsity which is ∼ 45%
for ResNet-18 and ∼ 65% for ResNet-50. The larger net-

works can be pruned to a greater extent for both datasets.

ImageNet transferred tickets offer very little sparsity as

the backbone of the networks usually do not make up most

of the weights. For example, the ResNet-18 based Mask-

RCNN for COCO Detection and Segmentation has only

44% of the parameters in the backbone, and hence, the over-

all network sparsity reaches 31% when pruning 90% of the

backbone weights, as shown in Table 1. The rest of the

weights are usually from the fully-connected layers of the

network. It is therefore imperative to prune layers in addi-

tion to the backbone to increase network sparsity without

decrease in mAP. As a consequence, we look into directly

pruning the full network using LTH.

765



0 20 40 60 80
Sparsity %

60

62

64

66

68

70

m
AP

Effect of prune percentage

0 2000 4000 6000 8000 10000
Reset iteration

60

62

64

66

68

70

m
AP

Effect of late resetting

5 10 15
Layer number

40

50

60

70

80

90

100

Pr
un

e 
%

Prune % across layers

(a) (b) (c)

1 2 3 4 5 6
Number of rounds

60

62

64

66

68

70

m
AP

Effect of number of pruning rounds

20 40 60 80
Sparsity %

60

62

64

66

68

70
m

AP

Effect of layerwise pruning

Global pruning
Layerwise pruning

2000 4000 6000 8000 10000
Early bird iteration

65

66

67

68

69

m
AP

mAP
IoU

0.90

0.92

0.94

0.96

0.98

1.00

Io
U

Effect of early bird training

(d) (e) (f)

Figure 2: Effect of varying different hyperparameters for pruning Faster RCNN with ResNet-18 backbone on the Pascal VOC 2007 [11] dataset. All solid

lines reported are the values averaged over 5 runs and the error bands are within 3 times the standard deviation.

4.3. Direct Pruning for Downstream Task

In this section, we analyze the effect of various hyper-

parameters and pruning strategies for detection networks

in order to obtain winning tickets. We primarily use the

ResNet-18 backbone for Faster-RCNN trained on VOC for

all our experiments in this section, unless mentioned other-

wise. Even though the ResNet-18 backbone is smaller than

other backbone networks such as ResNet-50, we find that

similar conclusions hold for the larger networks as well.

The Faster RCNN network consists of parameters which

we group into 4 main modules: Base Convolutions, Classi-

fication Network Convolutions (Top), Region Proposal Net-

work (RPN), Classification network box and classification

fully connected heads (Box and Cls Head). We provide a

detailed analysis of pruning these 4 groups and their effect

on winning tickets. Additionally, we also analyze different

pruning strategies and the role played by hyperparameters.

Varying Pruning Percentage: We evaluate the network

performance at varying levels of sparsity. We prune differ-

ent percentages of parameters in the Base and Top modules

which include 88% of the total network parameters. The re-

sults are plotted in Fig.2a. We achieve performance within

one standard deviation of the baseline, with 70% sparsity.

Our models outperform the baseline mean, thereby proving

that we can indeed obtain high performance winning tickets

at much higher levels of sparsity for detection. Additionally,

we see that at any given sparsity, direct pruning yields much

better results compared to ImageNet transferred tickets. We

also show that these observations pan other vision tasks by

obtaining winning tickets for Mask-RCNN and Keypoint-

RCNN with both ResNet-18 and ResNet-50 backbones on

the COCO dataset. We additionally prune FC layers in these

set of experiments in order to achieve desired sparsity levels

as they take up ∼ 50% of the total weights. The results for

ResNet-18 are shown in Fig. 1. We obtain winning tickets

with 80% sparsity on all the three tasks while outperform-

ing the unpruned network for lower levels of sparsity. Addi-

tionally, we consistently outperform the different ImageNet

transferred tickets (50%, 80%, 90%) by a large margin sup-

porting our claim that direct training of tickets on down-

stream tasks yield better results than ImageNet tickets.

Effect of Early/Late Resetting: [14] states that resetting

the network to a few iterations through training instead of

the initialization stabilizes the winning ticket training. We

evaluate whether this holds true for detection tasks as well.

We show the performance of winning tickets as a function

of resetting at various stages of training in Fig. 2b and ob-

serve that resetting during the earlier or even mid stages of

training does not have a very strong effect on the final mAP.

This is likely because the backbones of detection networks

are initialized with ImageNet weights and are not random

as is the case with other papers dealing with LTH in the

classification setting. Therefore, the weights are more sta-

ble and late resetting is not necessary. We also additionally

analyze effects of resetting towards the end of training and

notice that there is a sharp drop in the performance after

8k iterations. This is because the learning rate is decayed

at this stage of training and the parameters change signif-

icantly right after. A similar case holds when we perform
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Table 3: Performance on Pascal VOC by pruning different modules of a

ResNet-18 Faster-RCNN network. The results are averaged over 5 runs

with the standard deviation in parantheses. X represents the module being

pruned, while Param % represents the percentage of parameters occupied

by the modules being pruned.

Base Top RPN
Box,

Cls Head

Param

%

Network

Sparsity
mAP

- - - - 0 0% 69.74 (±0.16)

- - - X 0.65 0.52% 70.30 (±0.14)

- - X - 9.71 7.77% 70.02 (±0.19)

- - X X 10.36 8.29% 70.08 (±0.10)

X - - - 21.93 17.55% 69.32 (±0.07)

X - - X 22.59 18.07% 69.60 (±0.19)

X - X - 31.64 25.31% 69.39 (±0.25)

X - X X 32.29 25.83% 69.47 (±0.15)

- X - - 66.39 53.11% 69.02 (±0.19)

- X - X 67.04 53.63% 68.74 (±0.21)

- X X - 76.09 60.88% 68.88 (±0.25)

- X X X 76.75 61.40% 68.93 (±0.26)

X X - - 88.32 70.66% 68.45 (±0.21)

X X - X 88.97 71.18% 68.54 (±0.23)

X X X - 98.03 78.42% 68.51 (±0.23)

X X X X 98.68 78.94% 68.47 (±0.10)

learning rate warmup but do late resetting before the learn-

ing rate is fully warmed up. The performance drops signif-

icantly as the learning rate keeps fluctuating showing that

late resetting is quite sensitive to learning rate.

Pruning different Faster-RCNN modules: We prune 20%
of the parameters of the various modules within the Faster-

RCNN network and analyze their effects on the mAP. We

also try different combinations of pruning with the mod-

ules and report the results in Table 3. Pruning the Box and

Classification head (which takes up only 65% weights) out-

performs the baseline case of no pruning, but does not al-

ways improve performance when other modules are being

pruned. Additionally, pruning the RPN module increases

the performance slightly even though it comprises of only

10% of the network weights. Next, pruning the Base mod-

ule and/or the Top module of the backbone leads to a drop in

performance, which is expected as they consist of 22% and

66% of the weights respectively. Pruning the Base alone,

excluding the Top, performs nearly as well as the baseline,

while including the Top yields a lower mAP.

Performance of Early-bird tickets: [53] showed that tick-

ets can be found at early stages of training. We visualize this

by obtaining masks at various stages in training and evalu-

ating their performance. We also plot each masks’ Inter-

section over Union (IoU) with the default mask obtained at

the end of training. This IoU shows the overlap in the pa-

rameters being pruned. The results are visualized in Fig. 2f.

We see that within 50% of network training we find tick-

ets whose performance is within a standard deviation of the

performance of the default ticket (obtained at the end of

training). This is because the IoU becomes more or less sta-

ble at around 0.96 during the middle stages of training and

the mask is unchanged as training advances. This allows

us to cut down on the number of training iterations signifi-

cantly with very little cost to the network performance.

Effect of number of rounds of pruning: [12] states that

iterative pruning performs better than one-shot pruning on

the classification task with small datasets and networks. We

show that this does not necessarily hold true for detection

and larger backbones. We plot the network’s performance

against various rounds of pruning and observe that one-shot

pruning outperforms iterative methods in Fig. 2d.

Layer-wise vs. global pruning: [14] performs global prun-

ing for larger datasets and networks and claims that pruning

at the same rate in lower layers as compared to higher lay-

ers, is detrimental to the network performance. We evaluate

the two methods of pruning on the detection task and show

the results in Fig. 2e. Additionally, for global pruning, we

plot the percentage of parameters pruned in each layer of

the backbone network in Fig. 2c. Layer-wise pruning does

as good as global pruning for lower levels of sparsity. How-

ever, there is a noticeable performance gap for sparsity lev-

els above 60%. This is because layer-wise pruning forces

lower layers with very few parameters to have high sparsity

percentages. But as per Fig. 2c, for global pruning, we see

that lower layers are pruned less as they are crucial to both

the RPN and Classification stages of the network.

4.4. Properties of Winning Tickets

In Section 4.3, we showed that we can discover sparser

networks within our two-stage Mask-RCNN detector if we

directly prune on the task itself. We build upon those results

to further probe the properties of winning tickets.

Effect of backbone architecture: In Fig. 3, we show how

winning tickets behave for 2 different backbones, ResNet-

18 and ResNet-50, at different sparsity levels (50%, 80%,

90%). We make two observations: First, the breaking point

for both networks is ∼ 80% sparsity. However, perfor-

mance of ResNet-18 drops more sharply than ResNet-50

afterwards. This is intuitive since ResNet-18 has fewer re-

dundant parameters and over-pruning leads to drop in the

performance. Second, as we gradually increase the spar-

sity of the networks, mAP increases for all tasks in case of

both networks. However, gains for ResNet-18 models are

consistently more than ResNet-50.

Do winning tickets behave differently for varying object

sizes? Using the definition from [31], we categorize bound-

ing boxes into small (area < 322), medium (322 < area

< 962), and large (area > 322). To understand how sparse

networks behave for different sized objects, we plot the per-

centage gain or drop from the mAP of a dense network.

Figure 4 shows the percentage change in mAP for differ-

ent levels of sparsity in the Mask R-CNN model. We can
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(c) Keypoint Estimation

Backbone
ResNet18 (unpruned mAP: 58.60)
ResNet50 (unpruned mAP: 64.59)

Figure 3: ResNet-18 vs. ResNet-50. We analyse change in mAP by using LTH on Mask R-CNN with different backbones.

(a) Bounding Box Detection (b) Instance Segmentation (c) Keypoint Estimation

Figure 4: Comparison of Mean Average Precision (mAP) of pruned model for different object sizes in case of Object Detection, Instance Segmentation,

Keypoint Estimation. x-axis shows the sparsity of the subnetwork (or the percentage of weights removed). y-axis shows the percentage drop in mAP as

compared to the unpruned network. For all tasks, and object sizes, performance doesn’t drop till about 80% sparsity. After which, small objects are hit

slightly harder as compared to medium and large objects.

observe that in each case, the model performance increases

with sparsity, until sparsity reaches 80%, after which, mAP

sharply declines. We note that the percentage drop for small

boxes is more, with winning tickets (10% of weights) show-

ing a drop of over 17% in case of detection and segmenta-

tion tasks while medium sized objects show smaller drops

than large objects for all tasks.

How does the performance of the pruned network vary

for rare vs. frequent categories? We sort the 80 object

categories in COCO by their frequency of occurrence in

training data. We consider networks with 80% and 90%

of their weights pruned and observe the percentage change

in the bounding box mAP of the model with respect to the

unpruned network for each of the categories. Figure 5(a)

depicts the behavior with a bar graph. While for most cat-

egories, winning tickets are obtained at 80% sparsity, per-

formance drops sharply with more pruning in case of rare

categories (such as toaster, parking meter, and bear) as com-

pared to common categories (such as person, car, and chair).

Do the winning tickets behave differently on easy vs

hard categories? For a machine learning model, an ob-

ject can be easy or hard to recognize because of a variety

of reasons. We have already discussed two reasons that in-

fluence the performance — number of instances available

in the training data, and size of the object. There can also

be other causes that can render an object unrecognizable in

given surroundings. Camouflage or occlusion, poor cam-

era quality, light conditions, distance from the camera, or

just variations within different instances or views of the ob-

ject are few of them. Since exhaustive analyses of these

causes is intractable, we rank object categories based on

performance of an unpruned Mask R-CNN model. We do

this categorization for detection and segmentation models

as shown in Figure 5(b) and (c). Note that ‘easy’ and ‘hard’

categories from these two definitions have an overlap but

they are not the same. For example, knife, handbag, and

spoon are the categories with lowest bounding box mAP,

and giraffe, zebra, and stop signs are one with the high-

est (excluding ‘hair drier’ which has 0 mAP). On the other

hand, skis, knife, and spoon have the lowest segmentation

mAP, while stop sign, bear, and fire hydrant have the high-

est. From the Figure 5(b) and (c), we make the following

observations — (i) tickets with 80% sparsity can actually

increase mAP for certain categories like snowboard by as

much as 38%, (ii) Going from 80% to 90% sparsity, mAP

drops significantly for easy categories, (iii) categories that

are hit the hardest such as skis, hot dog, spoon, fork, hand-

bags usually have long, thin appearance in images.

Do winning tickets transfer across tasks? We showed that
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Figure 5: Comparison of Mean Average Precision (mAP) of pruned model for 80 COCO object categories. x-axis in each of the plot is a list of categories

(sorted using different criteria). y-axis shows the percentage drop in mAP as compared to the unpruned network.

Table 4: Effect of ticket transfer across tasks. Transferred tickets do worse

than direct training as expected, but still do not result in drastic drops in

the mAP or AP50. Here we do task transfer using the 80% pruned model.

Target

task

Source

task

Network

sparsity
mAP AP50

Det
Det/Seg 78.4% 30.04 49.40

Keypoint 50.11% 23.94 41.08

Seg
Det/Seg 78.4% 27.90 46.68

Keypoint 50.11% 23.02 39.01

Keypoint
Det/Seg 76.98% 58.31 81.53

Keypoint 79.4% 59.34 82.36

ImageNet tickets transfer to a limited extent to downstream

tasks. We further study whether the tickets obtained from

the downstream task of detection/segmentation transfer to

keypoint estimation and vice-versa. We train Mask-RCNN

and Keypoint-RCNN respectively for the two tasks on the

COCO dataset while maintaining a sparsity level of 80%.

For both the tasks we transfer all values till box head mod-

ules, after which the model structures differ. The results are

shown in Table 4. We can observe that the drop is marginal

for the transfer of tickets between detection-segmentation to

keypoint task, as compared with the reverse case which reg-

isters a significant drop. This might be because the ticket is

obtained on the keypoint task which is trained only on ‘hu-

man’ class and it fails to transfer well for the detection task

which uses the entire COCO dataset.

5. Discussion

[37, 38] show that winning tickets transfer well across

datasets. However, the study in [37] was limited to smaller

datasets, like CIFAR-10 and FashionMNIST, and both [37,

38] are limited to classification tasks. We obtain contrast-

ing results when transferring tickets across tasks as shown

in Sec. 4.2. ImageNet tickets transfer with approximately

40% sparsity to fall within one standard deviation of the

baseline network. This is likely due to the fact that win-

ning tickets retain inductive biases from the source dataset

which are less likely to transfer to a new domain and task.

Additionally, we show that unlike prior LTH works, itera-

tive pruning degrades the performance of subnetworks on

detection and one-shot pruning provides the best networks.

We also observe that due to the use of pre-trained weights

from ImageNet for the backbone of detection networks, late

resetting is not necessary for finding winning tickets. This is

in contrast to the [14], which is restricted to the classifica-

tion task involving random initialization for the networks.

Like previous works, in our experiments as well, we find

that sparse lottery tickets often outperform the dense net-

works themselves. However, we make another interesting

observation — in each of object recognition tasks, tickets

with fewer parameters such as ResNet-18 show more gains

in performance as compared to tickets with more parame-

ters (ResNet-50). We also find that small and infrequent ob-

jects face higher performance drop as the sparsity increases.

6. Conclusion

We investigate the Lottery Ticket Hypothesis in the con-

text of various object recognition tasks. Our study re-

veals that the main points of original LTH hold for different

recognition tasks, i.e., we can find subnetworks or winning

tickets in object recognition pipelines with up to 80% spar-

sity, without any drop in performance on the task. These

tickets are task-specific, and pre-trained ImageNet model

tickets don’t perform as well on the downstream recogni-

tion tasks. We also analyse claims made in recent literature

regarding training and transfer of winning tickets from an

object recognition perspective. Finally, we analyse how the

behavior of sparse tickets differ from their dense counter-

parts. In the future, we would like to investigate how much

speed up can be achieved using these sparse models with

various hardware [34] and software modifications [10]. Ex-

tending this analyses for even bigger datasets such as JFT-

300M [46] or IG-1B [35] and for self-supervised learning

techniques is another direction to pursue.
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