
Weakly Supervised Learning of Rigid 3D Scene Flow

Zan Gojcic1,2 Or Litany 2,3 Andreas Wieser1 Leonidas J. Guibas2 Tolga Birdal2

1ETH Zurich 2Stanford University 3NVIDIA

3dsceneflow.github.io

Abstract

We propose a data-driven scene flow estimation algo-

rithm exploiting the observation that many 3D scenes can

be explained by a collection of agents moving as rigid bod-

ies. At the core of our method lies a deep architecture able

to reason at the object-level by considering 3D scene flow

in conjunction with other 3D tasks. This object level ab-

straction enables us to relax the requirement for dense scene

flow supervision with simpler binary background segmenta-

tion mask and ego-motion annotations. Our mild supervi-

sion requirements make our method well suited for recently

released massive data collections for autonomous driving,

which do not contain dense scene flow annotations. As out-

put, our model provides low-level cues like pointwise flow

and higher-level cues such as holistic scene understanding

at the level of rigid objects. We further propose a test-time

optimization refining the predicted rigid scene flow. We

showcase the effectiveness and generalization capacity of

our method on four different autonomous driving datasets.

We release our source code and pre-trained models under

github.com/zgojcic/Rigid3DSceneFlow .

1. Introduction

Understanding dynamic 3D environments is a core chal-

lenge in computer vision and robotics. In particular, appli-

cations such as self-driving and robot navigation rely upon

a robust perception of dynamically changing 3D scenes.

To equip autonomous agents with the ability to infer spa-

tiotemporal geometric properties, there has recently been

an increased interest in 3D scene flow as a form of low-

level dynamic scene representation [37, 67, 73, 51, 49, 54].

Scene flow is the 3D motion field of points in the scene [69]

and is a generalization of 2D optical flow. In fact, opti-

cal flow [3, 24] can be understood as the projection of the

scene flow onto a camera image plane [14]. Such dense mo-

tion fields can serve bottom-up approaches for high-level

dynamic scene understanding tasks like semantic segmen-

tation [38] or motion perception. However, representing

dynamics via a free form velocity field has two major disad-

vantages. First, in most applications of interest, dynamics

are attributed to rigid object motion [9, 42]. This notion

Figure 1: Our network takes two successive frames as input

(a), and outputs a set of transformation parameters for each

segmented rigid agent (c) which are used to recover per-

point rigid scene flow. After applying the predicted flow to

the first point cloud, the two frames are aligned (b, d).

has been extensively exploited in robotics [8, 13, 7, 6] and

holds especially for vehicles in autonomous driving. Pre-

dicting unconstrained per-point flow may lead to non-viable

results, e.g. parts of the same car might move in different di-

rections. Second, accurately learning direct flow estimation

necessitates dense supervision that is expensive to acquire

and prone to annotation errors. As a result, many meth-

ods have resorted to training on simulated data [41, 73, 51],

yet this comes at the price of a non-negligible domain gap.

Other methods have attempted to solve the problem in a

completely unsupervised manner [67, 75, 44], however they

fail to provide competitive performance. In Fig. 2 we illus-

trate these two extremes of no- and full-supervision while

spanning the many intermediate possibilities, sorted accord-

ing to the annotation effort1.

Based on this observation, we seek a sweet spot between

supervision effort and performance. To this end, we pro-

pose a scene abstraction approach that uses rigid objects as

the basic components. More specifically, by splitting the

scene into foreground (movable objects) and background

(static objects), we explain the background (BG) flow as

1Note that no prior work exists at different points on the spectrum given

in Fig. 2. This leaves ample room for future exploration.

5692



no labels ego-motion FG/BG semantic instance scene flow

PointFlowNet [4]

FlowNet3D [37]

HPLFlowNet [22]

MeteorNet [38]

PointPwcNet [75]

Flot [51], EgoFlow [67]

JGWTF [44]

PointPwcNet [75]

EgoFlow [67] Ours

Figure 2: Recent scene flow methods either use full super-

vision (and suffer from domain gap) or no-supervision (and

suffer from reduced performance). Instead, our method uses

weak supervision and benefits from the best of both worlds.

the sensor ego-motion and the foreground (FG) flow as clus-

ters of rigidly moving entities. As a result, we tackle both

aforementioned challenges at the same time: (1) we en-

force a rigidity constraint to get meaningful and more accu-

rate (foreground and background) flow, (2) we can relax the

requirement for dense flow supervision with a much sim-

pler binary mask annotation and ego-motion that can often

be extracted directly from the agent’s IMU. The result is

a weakly supervised method for accurate flow estimation

that, unlike completely unsupervised approaches, outper-

forms the previous state of the art (SoTA) by a significant

margin. For example, reducing the end-point-error on the li-

darKITTI dataset by more than 30 cm relative to the SoTA.

At the same time, our result provides an interpretable and

readily usable object-level scene representation. In brief,

our contributions are:

• We exploit the geometry of the rigid scene flow problem

to introduce an inductive bias into our network. This

allows us to learn from weak supervision signals: back-

ground masks and ego-motion.

• Our data-driven method decomposes the scene into

rigidly moving agents enabling us to reason on the level

of objects rather than points. We use this notion to pro-

pose a new test-time optimization, further refining the

flow predictions.

• Our method is backed by a novel, flexible, scene flow

backbone, which can be adapted to solve various tasks.

As a result of these contributions, our method greatly out-

performs the SoTA on several benchmarks: FT3D [41],

stereoKITTI [42], lidarKITTI [20], and semanticKITTI [5],

while generalizing to the waymo-open dataset [64] without

additional fine-tuning.

2. Related Work

Data Driven 3D Scene Flow. While there is extensive

literature on traditional 3D scene flow [69, 27, 74, 31, 65,

68, 48, 60, 61, 29, 17, 14, 9, 50], we focus our attention on

recent data-driven methods that emerged based on advances

in deep learning on unordered point sets [52, 82, 1].

Early methods for 3D scene flow estimation mimicked

their 2D counterparts. SceneFlowNet [41] used 2D op-

tical flow and disparity maps to estimate the 3D scene

flow. FlowNet3D [37] successfully adopted the ideas from

FlowNet [28, 16]. FlowNet3D++ [73] extended FlowNet3D

to incorporate additional geometric constraints. Meteor-

Net [38] used multiple temporally ordered frames to im-

prove the accuracy of the inferred flow. Wang et al. [71]

incorporated a continuous convolution into a 3D-FCN [66]

to undo both the ego-motion and object-motion in two con-

secutive LiDAR frames. PointRNN [19] used recurrent neu-

ral networks to model temporal point sets, which yields

3D scene flow as a by-product. HPLFlowNet [22] ordered

the points into a permutohedral lattice of SplatNet [63]

to apply bilateral convolution layers. This allowed effi-

cient and robust non-rigid 3D flow computation. Both Oc-

cFlow [49] and CaSPR [54] introduced spatio-temporal rep-

resentations to continuously and densely estimate the scene

flow. Mustafa and Hilton used semantic coherence between

multiple frames to improve 4D scene flow estimation, co-

segmentation, and reconstruction [46]. Mittal et al. [44] and

PointPWCNet [75] proposed self-supervised losses to infer

the scene flow in an end-to-end manner. Finally, FLOT [51]

proposed a simple correspondence-based end-to-end scene

flow network. While our backbone also estimates corre-

spondences, decomposing the scene into rigid agents pro-

vides us further higher-level scene understanding and en-

ables test-time optimization while requiring less supervi-

sion.

Local Rigidity and Multi-body Motion. Flow estima-

tion has also been tackled by imposing physical priors

such as multi-body rigidity. Initial attempts involved fac-

torization [11, 35] to separate independently moving ob-

jects. Golyanik et al. [21] used rigidity constraints on

over-segmentation of RGBD-frames. [45] used detection

& tracking to constrain the flow. Vogel et al. [70] modeled

scene flow using piecewise rigidly moving planar patches.

Dewan et al. [15] used 3D descriptors to enforce local ge-

ometric constancy on a factor graph. GraphFlow [2] and

SphereFlow [25] considered large motions and relied on

sparse keypoints that are not repeatable in 3D [57, 76]. Sim-

ilar to us, Jamiez et al. [30] and recent Dynamic-SLAM

pipelines [26, 58, 62] assumed that clustering would yield

motion segmentation. In fact, MaskFusion [56] and EMFu-

sion [62] explicitly used Mask-RCNN [23] to this end.

On a data driven front, considering the rigidity in the

scenes [39], Ma et al. [40] made use of depth and flow es-

timates from a stereo RGB-D setup within an optimization

framework to obtain the 3D motion of each instance. This

method relied upon a given instance segmentation, a diffi-

cult problem to solve even for the SoTA approaches [72, 81,

77]. Based on VoxelNet [85], PointFlowNet [4] jointly pre-

dicted 3D scene flow, bounding boxes, and rigid motion of

objects in the scene. Yi et al. [80] used a PointNet++ [53]

based flow estimator for piecewise rigid 3D part induction.

5693



Figure 3: Architecture of our weakly-supervised scene flow estimation pipeline. Our module consumes point clouds X and

Y of two consecutive frames and estimates per-object transformation parameters {T}K−1
k=1 , ego-motion Tego, and object

masks {z}Kk=1. These outputs can be combined into an object-level scene abstraction and pointwise rigid scene flow.

3. Method

Problem setting. Suppose that we observe a pair of 3D

scenes X and Y acquired by a single moving observer in

two consecutive instants t0 and t1, respectively. Here, X ∈
R

3×N = {xi ∈ R
3}i denotes a point cloud (so does Y)

and V ∈ R
3×N = {vi ∈ R

3}i its corresponding vector

field in 3D s.t. X + V ∼∼∼ Y relates frame t0 to t1. We

further assume that X, Y, and also V are multi-body i.e.

composed of multiple objects. Hence, V can be clustered

into K objects V = {Vk ∈ R
3×Nk}Kk=1 each of which

follows rigid dynamics, i.e. V can be summarized by a set

of K rigid transformations T ≡ {Tk ∈ SE(3)}Kk=1 such

that V ∼∼∼ {Tk ◦Xk −Xk}
K
k=1 where K ≪ N and:

SE(3) =

{

T ∈ R
4×4 : T =

[

R t

0⊤ 1

]}

, (1)

R ∈ SO(3), t ∈ R
3.2 The motion of the immobile back-

ground, determines the ego-motion Tego ⊂ T .

Summary. We refrain from directly predicting uncon-

strained pointwise flow vectors and rather aim to estimate

T ≡ {Tk}
K
k=1 for all rigid bodies from which the entire

scene flow V = {Vk}
K
k=1 can be recovered. To this end, we

propose to learn the task of rigid flow estimation by solving

an optimization problem composed of a set of loss functions

as illustrated in Fig. 3. To reason on the level of objects, we

use both instance masking and motion. To obtain the masks,

we use a FG / BG prediction module in conjunction with an

FG clustering. To estimate ego-motion, we run a differen-

tiable registration on the BGs extracted from both point sets.

The motions of the individual objects in the FGs are ob-

tained similarly under the assumption of local-rigidity. We

2We denote the action of T as X
′
= T ◦ X and X̂

′
= TX̂ where

X̂ ∈ R
4×N is the homogenized X.

avoid flow-level or instance-level supervision altogether and

only assume the availability of the binary FG/BG annota-

tions and ego-motion information as a much weaker super-

vision signal than dense scene flow. In the sequel, we first

describe our formulation of the individual objectives (§ 3.1)

before proceeding to our network architecture (§ 3.2). Ad-

ditional details are available in our supplement.

3.1. Energy Formulation

Our solution to the 3D scene flow estimation is attained

as the minimum of a non-convex energy composed of a BG

segmentation loss LBG, an ego-motion loss Lego, and an

FG loss LFG:

Γ⋆ = argmin
Γ

LBG + Lego + LFG (2)

where the optimal rigid scene flow (V⋆, T ⋆) results from the

output of a deep neural network ϕ with learnable parame-

ters Γ: (V⋆, T ⋆) = ϕΓ⋆(X,Y). Next, we detail the indi-

vidual loss terms; each involves an unknown or latent vari-

able obtained as a network prediction as specified in § 3.2.

Background segmentation error (LBG). To decom-

pose the scene into agents that move as rigid bodies, we

follow a coarse-to-fine approach. In the first step we aim

to split the background and foreground points, where the

foreground represents all points belonging to the movable

objects (e.g., cars, cyclists, people, . . . ). In order to learn

this binary segmentation of a point cloud, we minimize the

loss LBG = 1
2 (L

X
BG + LY

BG) where:

LX
BG =

1

N

N
∑

i=1

BCE(hX
i , h̄X

i ). (3)

hX, hY denote the GT binary masks of point clouds X and

Y, respectively. hX = {hX
i }Ni=1 and hY = {hY

i }Ni=1 are

5694



the inferred foreground probabilities of points in X and Y

yet to be clarified in § 3.2, and BCE(hi, h̄i) = hi log(hi)+
(1− hi) log(1− hi).

Ego-motion error (Lego). The scene flow of the physi-

cally static background can be fully explained by its trans-

formation parameters, the ego-motion. We estimate these

parameters by first extracting the background points of both

the source and target point cloud3. To reduce the compu-

tational complexity, we then randomly sample N b = 1024

points therefrom such that Xb ∈ R
3×Nb

⊂ X and Yb ∈

R
3×Nb

⊂ Y. The goal of ego-motion estimation is to

compute the optimal Rego ∈ SO(3) and tego ∈ R
3 in the

weighted least-squares sense

R⋆
ego, t

⋆
ego = argmin

Rego,tego

Nb

∑

l=1

wl‖Regox
b
l+tego−φ(xb

l ,Y
b)‖2,

where φ(x,Y) is a soft assignment function returning a

point from Y that corresponds to x ∈ X. The weights wl

will be clarified below.

We approximate the optimal soft assignment φ via the

entropy-regularized Sinkhorn algorithm [59, 12, 78]. To

this end, we momentarily assume the availability of an affin-

ity matrix M ∈ R
Nb

×Nb

describing the similarity of the

background points in Xb and Yb. Prediction of the cur-

rently unknown M will be made precise in § 3.2. Given M,

we perform an alternating row and column normalization

on it for kS , 3 iterations, which yields A ∈ R
Nb

×Nb

+ , a

doubly stochastic (DS) assignment matrix.

In practice, due to the occlusions and sampling pattern,

not all background points will have correspondences. We

therefore add a slack row and column to M (hence to A),

which enable down-weighting the outliers, while still re-

turning a DS-matrix. The soft correspondence function then

reads φ(xb
i ,Y

b) = Ybai/‖ai‖1 where ai is the i-th column

of A after removing the slack row. Given the correspon-

dences, the ego-motion can be recovered in closed-form

using a (differentiable) weighted Kabsch algorithm [34]

where the weights wi are obtained as the total contribution

wi =
∑Nb

j=1 aij . Our ego-motion penalty measures the l1-

discrepancy between the points transformed with the esti-

mated (Rego, tego) and the GT parameters (Rego, tego):

Ltrans =
1

B

B
∑

i=1

‖(Regox
b
i + tego)− (Regox

b
i + tego)‖1,

where B denotes the number of all background points in

point cloud X. To stabilize the training, we further add

a regularizer loss that discourages the assignment of large

3During training we use the GT BG segmentation mask 1 − h, while

during inference we threshold the inferred FG probabilities 1− h.

values to the slack rows and columns [78]:

Linlier =
1

N b

Nb

∑

i=1

(

1−

Nb

∑

j=1

aij

)

+
1

N b

Nb

∑

j=1

(

1−

Nb

∑

i=1

aij

)

.

The overall ego-motion loss is then the weighted sum:

Lego = Ltrans + λinlierLinlier (4)

where λinlier := 0.005 in all our experiments.

FG instance-level rigidity error (LFG). To define our

per-instance rigidity loss, we assume the availability of the

following entities: (i) Xf , the points of the source frame

belonging to the FG; (ii) Vf , the flow vectors associated to

Xf ; and (iii) foreground clusters C = {Ck ∈ R
3×Nk =

{ckj ∈ R
3}j}

NC

k=1 aggregating the individual rigid entities.

(i) is a by-product of BG segmentation, i.e. during train-

ing, the indices of these points are obtained from the GT

mask and during inference by thresholding the inferred FG

probabilities. The flow vectors in (ii) are the result of the

scene flow module (see § 3.2). Finally, (iii) is computed by

a simple DBSCAN clustering [18] of the 3D coordinates in

Xf . The DBSCAN clustering is based on the hypothesis

that the foreground objects scattered across the scene are

naturally separated by void space [33]. We refrain from us-

ing a data driven instance segmentation module because our

simple approach alleviates the need for instance segmenta-

tion labels.

Our rigidity loss Lrigid encourages the predicted flow

vectors V
f
k of each cluster k to be congruent, i.e. V

f
k can be

well approximated by a rigid transformation Tk composed

of the rotation Rk and translation tk:

Lrigid =
1

N c

Nc

∑

k=1

1

Nk

Nk

∑

j=1

‖Rkc
k
j + tk − (ckj + vk

j )‖1 (5)

The supervision signals Rk and tk are computed on the fly,

such that they best explain the underlying flow Vf :

T⋆
k = argmin

Tk

‖Tk ◦Ck − (Ck +V
f
k)‖. (6)

We solve Eq (6) for each individual cluster once again using

the Kabsch algorithm [34]. We additionally complement

the per-cluster rigidity objective with a two way Chamfer

distance (CD) computed across all the foreground points:

LCD =
∑

x∈X
f
v

min
y∈Yf

‖x− y‖2 +
∑

y∈Yf

min
x∈X

f
v

‖x− y‖2 (7)

where Xf
v := Xf + Vf . The overall FG loss is then a

weighted sum of the above objectives:

LFG = Lrigid + λCDLCD (8)

where λCD := 0.5 in all our experiments.

5695



3.2. Network implementation

Provided a large dataset with FG-BG mask annotations

as well as ego-motion, we learn to minimize Eq (2) using a

deep neural network ϕΓ as shown in Fig. 3. In the sequel,

we describe the individual modules of our network and the

full inference of rigid scene flow. We refer the reader to the

supplement for more details.

Backbone. Our formulation (§ 3.1) involves the estimation

of different entities, requiring our network to solve multiple

tasks similar to [32]. While it would be possible to deploy

a specialized network for each task, this would increase the

memory footprint and would not encourage tasks to rein-

force each other [84, 83]. Instead, we propose a flexible

backbone suited for solving multiple tasks through special-

ized heads. Specifically, our backbone network is based on

Minkowski-Net [10] and follows a U-Net [55]-like encoder-

decoder architecture with skip connections. Its input is a

sparsely voxelized point cloud Xv ∈ R
3×Nv

and its outputs

are per-point latent features Fv ∈ R
64×Nv

. The same back-

bone with shared weights is also applied to Yv ∈ R
3×Mv

to

obtain the latent features Gv ∈ R
64×Mv

. In the following,

we omit the superscript v for clarity and unless specified dif-

ferently, use X and Y to refer to the voxelized point clouds

and F and G to refer to their associated latent features.

Background segmentation head. Our background seg-

mentation head consists of two sparse convolutional layers

with instance normalization and the ReLU [47] activation

function after the first one. It takes the latent features F and

G as input and outputs per-point foreground probabilities

hX ∈ R
Nv

and hY ∈ R
Mv

.

Ego-motion head. Given the latent features Fb and Gb

of the background points Xb and Yb, the ego-motion head

computes the affinity matrix M ∈ R
Nb

×Nb

s.t.

Mij = exp
(

− ‖f bi − gb
j‖/τego

)

, (9)

where τego controls the softness of the correspondences.

Scene flow head. Based on the notion that scene flow is

tightly coupled to correspondences [51], we now devise our

scene flow head. To assure differentiability, we estimate soft

correspondences. To allow for large motion, we measure

the similarity in the latent space of features F and G instead

of in the physical space. Hence, we find the corresponding

points in X and Y as:

Xc := YD, dij := softmax(−
1

τflow
‖fi − gj‖2) (10)

where τflow is again a learnable temperature that controls

the softness of the correspondences in the same manner as

τego above. Soft correspondences can be used to compute

the initial flow estimate as Vinit := Xc −X. However, this

initial flow vector field is likely to be noisy due to large mo-

tions, sampling, and imperfect latent features and thus still

has to be refined [51]. Our refinement module takes Vinit

as input and locally smoothens it by estimating a residual

flow ∆Vinit thorough a series of sparse convolutional lay-

ers. The refined scene flow V ∈ R
3×Nv

is then obtained

as: V = Vinit + ∆Vinit. The detailed architecture of the

scene flow head is given in the supplement.

From transformations to per-point rigid scene flow. The

output of our multi-task network comprises of: (i) transfor-

mation parameters of the ego-motion Tego and individual

clusters {Tk}
K−1
k=1 ; (ii) object level masks {zk}

K
k=1; and

(iii) unconstrained pointwise scene flow estimates V. The

pointwise rigid scene flow Vrigid can then be recovered as

Vrigid
∼∼∼ {Tk◦Xk−Xk}

K
k=1, where Xk denotes the points

of X belonging to the cluster k according to the inferred ob-

ject masks zk. For the points that are neither assigned to the

background nor to any of the foreground rigid bodies, we

use the unconstrained scene flow predictions V.

Training and implementation details. Our method is

implemented in PyTorch using the MinkowskiEngine [10].

Unless specified differently, we train our network in an end-

to-end manner for 40 epochs (or until convergence), by min-

imizing Eq (2). We train on a single NVIDIA GTX2080Ti

with batch size 8. We use the Adam [36] optimizer with

an initial learning rate 10−3, which is decayed every epoch

according to an exponential schedule with γ = 0.98. The

whole training takes about two and a half days. The de-

tailed parameters of the Sinkhorn algorithm and DBSCAN

clustering are available in the supplement.

Inference. The abstraction of the scene into a collection of

rigid bodies enables us to run test-time optimization of their

inferred transformation parameters. Specifically, we run an

optimization scheme in which we iteratively minimize the

closest point distance to the target points. For ego-motion,

we index the background points, and for individual clusters,

all the foreground points of Y. The indexing is performed

using the inferred object masks zXk and zYk . Given the final

transformation estimates {T⋆
k}

K
k=1 pointwise rigid scene

flow can be recomputed as Vrigid
∼∼∼ {T⋆

k ◦Xk −Xk}
K
k=1.

A detailed description of our optimization scheme including

its run-time is available in the supplement.

In the following, we reintroduce the superscript v to de-

note the voxelized point clouds. Note that Vrigid represents

the flow for the voxel centers Xv and during inference, still

has to be transferred to the points X. We perform this trans-

fer by a simple inverse-distance weighted interpolation:

v⋆
i =

∑

j:xv
j
∈E(xi)

v
rigid
j ‖xi − xv

j‖
−1

2
∑

j:xv
j
∈E(xi)

‖xi − xv
j‖

−1

2

, (11)

where E(·) returns the set of k-NN in the Euclidean sense.

5696



Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

FT3D

FlowNet3D [37] Full 0.114 0.412 0.771 0.602

HPLFlowNet [22] Full 0.080 0.614 0.855 0.429

PointPWC-Net [75] Full 0.059 0.738 0.928 0.342

FLOT [51] Full 0.052 0.732 0.927 0.357

EgoFlow [67] Full 0.069 0.670 0.879 0.404

Ours Full 0.052 0.746 0.936 0.361

stereoKITTI

Flownet3D [37] Full 0.177 0.374 0.668 0.527

HPLFlowNet [22] Full 0.117 0.478 0.778 0.410

PointPWC-Net [75] Full 0.069 0.728 0.888 0.265

FLOT [51] Full 0.056 0.755 0.908 0.242

EgoFlow [67] Full 0.103 0.488 0.822 0.394

Ours Full 0.042 0.849 0.959 0.208

Table 1: Evaluation results in a fully supervised setting on

FT3D and stereoKITTI datasets.

4. Experimental Evaluation

In this section, we first describe the datasets (§ 4.1) and

evaluation metrics (§ 4.2) used in our experiments. We

start the evaluation, by assessing the performance of our

backbone flow estimation network under full supervision

on point clouds lifted from stereo images (§ 4.3). We then

proceed to evaluate our full pipeline in a weakly supervised

setting on real LiDAR scans (§ 4.4). Finally, we showcase

the generalization capability of our method (§ 4.5) and jus-

tify our design choices in an ablation study (§ 4.6).

4.1. Datasets

For all datasets, we follow a common preprocessing

step [37, 22] and remove points whose depth or distance

to the sensor is larger than 35 m. For training and evalu-

ation, we randomly sample 8192 points from both frames

independently. A detailed description of the datasets and

preprocessing steps is available in the supplement.

FlyingThings3D (FT3D). [41] is a large-scale stereo

dataset of synthetic man-made objects that are scattered in

space and move randomly between the two frames. We

generate the point clouds and GT scene flow in accordance

with [22]. FT3D consists of 19640 training examples (from

which we use 3928 for validation) and 3824 test examples.

Note, FT3D is only used for training in the fully supervised

evaluation of our backbone and scene flow head (§ 4.3).

stereoKITTI. [42, 43] is a real world scene flow dataset

with 142 point cloud pairs, which are all used for testing.

The point clouds and GT scene flow are obtained by lifting

the annotated disparity maps and optical flow to 3D [22].

As a consequence, the points of the two frames are under

direct correspondence. We remove the ground points by

naive thresholding of the height coordinate [37, 22].

lidarKITTI. [20] is a real world dataset acquired with

a Velodyne 64-beam LiDAR. It consists of the same 142

pairs as stereoKITTI. GT is obtained by projecting the point

clouds to the image plane and assigning them the annotated

3D flow vectors. In this dataset, the points of the two input

Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

lidarKITTI

(w/o ground)

PointPWC-Net [75] Full 0.390 0.387 0.550 0.653

FLOT [51] Full 0.653 0.155 0.313 0.837

Ours (backbone) Full 0.535 0.262 0.437 0.742

Ours Weak 0.150 0.521 0.744 0.450

Ours+ Weak 0.110 0.745 0.844 0.353

Ours++ Weak 0.094 0.784 0.885 0.314

lidarKITTI

(with ground)

PointPWC-Net [75] Full 0.710 0.114 0.219 0.932

FLOT [51] Full 0.773 0.084 0.177 0.943

MeteorNet [38] 1 Full 0.277 / / /

Ours (backbone) Full 0.820 0.102 0.190 0.934

Ours Weak 0.133 0.460 0.746 0.527

Ours+ Weak 0.106 0.673 0.808 0.421

Ours++ Weak 0.102 0.686 0.819 0.410

1 MeteorNet uses three tine frames and was trained on 100 and evaluated on 42 scenes of this dataset.

Table 2: Evaluation results on lidarKITTI. Ours (backbone)

denotes our model from § 4.3 trained with full supervi-

sion on FT3D. Ours are the direct estimates of our pipeline.

Ours+ and Ours++ additionally denote test-time optimiza-

tion of only ego-motion and all rigid bodies, respectively.

frames are not in direct correspondence and have a typical

sampling pattern of a LiDAR sensor.

semanticKITTI. [5] provides per point semantic labels and

accurate ego-motion for 21 LiDAR sequences of the KITTI

odometry dataset. It is split into eleven (00-10) LiDAR se-

quences for training and eleven (11-21) for testing. We use

sequences 03 and 05 for validation and the remaining nine

for training. SemanticKITTI is used to train our method in

a weakly supervised manner (§ 4.4 to § 4.6). Note that this

dataset does not contain dense scene flow annotations.

4.2. Evaluation metrics

We use standard evaluation metrics to assess the perfor-

mance of our approach and compare it with SoTA methods,

FlowNet3D [37], HPLFlowNet [22], PointPWCNet [75],

FLOT [51], and EgoFlow [67]. Our main evaluation met-

ric is the 3D end-point-error (EPE3D), defined as the mean

l2 distance between the predicted and GT scene flow.

Additionally, we follow [37, 22] and also report: (i) strict

accuracy (Acc3DS), defined as the percentage of points

whose EPE3D < 0.05 m or relative error < 0.05, (ii) re-

laxed accuracy (Acc3DR) that denotes the ratio of points

whose EPE3D < 0.10 m or relative error < 0.10, and (iii)

Outliers, i.e. the ratio of points whose EPE3D > 0.30 m or

relative error > 0.10.

For the experiments in a weakly supervised setting, we

also report the relative angular error (RAE) and the relative

translation error (RTE) of the estimated ego-motion.

4.3. Our backbone under full supervision

A core module of our proposed pipeline is the backbone

network described in § 3.2. It is therefore valuable to first

assess its performance in conjunction with the scene flow

prediction head, before turning to evaluate the performance

of our entire weakly-supervised pipeline. To this end, we

follow the traditional setting used by our competitors and

train in a fully supervised manner on FT3D by minimizing

5697



Figure 4: Qualitative results of our weakly supervised method on lidarKITTI (top) and waymo open (bottom). For improved

visibility, the EPE3D (top row b,c ) is clipped to the range between 0.0 m (white) at 0.3m (red). As a result of predicting an

unconstrained pointwise sceneflow, the rigid objects (car) in the results of FLOT might get deformed (c).

the l1 distance between the predicted and GT scene flow.

We then evaluate our model on both FT3D and stereoKITTI.

When evaluated on FT3D, our method performs on

par with FLOT [51] in terms of EPE3D and outperforms

all methods in terms of Acc3DS and Acc3DR (Tab. 1).

More importantly, it achieves superior generalization per-

formance on stereoKITTI, where it consistently outperforms

SoTA in all evaluation metrics, setting a new SoTA with

0.042 m EPE3D (≈ 1.5 cm better than the closest com-

petitor). Based on these results, we conclude that sparse

convolutions are an effective backbone for scene-flow esti-

mation and that our simple scene flow head can match the

performance of SoTA while enabling better generalization.

4.4. Our pipeline under weak supervision

Setting. Point clouds in both FT3D and stereoKITTI are

obtained in the same manner: by lifting stereo images to

3D. Hence, their domain gap is relatively small. On the

other hand, in LiDAR-based autonomous driving scenarios,

point clouds are much sparser and assume a very different

sampling pattern, resulting in a much more challenging set-

ting for scene flow estimation.

We evaluate our entire weakly-supervised pipeline in this

challenging setting by using lidarKITTI dataset. Specif-

ically, we consider two scenarios: 1) we remove ground

points by naively thresholding the vertical coordinate, 2)

we use the “raw” point clouds that also include the ground

points for which the flow estimation is especially difficult.

We train a joint model for both scenarios in a

weakly supervised manner using the point clouds from se-

manticKITTI. Unlike semanticKITTI, lidarKITTI only in-

cludes the points and annotations of the objects that are vis-

ible within the front camera images. We, therefore, process

semanticKITTI in the same manner. Since there are no Li-

DAR datasets available with scene flow annotations, we use

the models trained on FT3D for all the baselines.

Evaluation. Fig. 4 and Tab. 2 show that the domain gap

between the stereo and LiDAR point clouds is too big for

the traditional fully supervised methods to generalize effec-

tively. Indeed, the performance of SoTA methods is up to 10

times worse when compared to the results on stereoKITTI.

On the other hand, our weakly supervised model predicts

accurate rigid scene flow with an EPE3D ≈ 0.1 m for both

scenarios (after test-time optimization), while also provid-

ing an object-level abstraction (Fig. 4). Since our fully su-

pervised backbone model also fails to generalize, we con-

clude that the crucial advantage of our method does not lie

in a stronger backbone, but rather in the ability to train on

the same domain. Additional qualitative and quantitative

results are available in the supplement.

4.5. Generalization to other datasets.

Waymo open [64] is a recently introduced large-scale au-

tonomous driving dataset that would ideally be used for su-

pervision of 3D scene flow methods. However, it does not

provide dense flow annotations. While it does include all

the annotations that our weakly supervised approach relies

on, we are more interested in using it to evaluate the gen-

eralization capability of our method. To this end, we use

the first three sequences4 of the waymo open validation set

and quantitatively evaluate our weakly supervised model in

terms of ego-motion estimation and background segmenta-

tion. We provide qualitative results of the rigid scene flow

estimation and object-level scene abstraction in Fig. 4.

Remarkably, our model that was trained only on se-

manticKITTI can seamlessly generalize to waymo open.

When evaluated on the task of ego-motion estimation, it

achieves an RRE of 0.141◦ and RTE of 0.099 m. In the

BG-segmentation task, its performance on the foreground

points drops to 0.960 precision and 0.689 recall, while on

the background points it remains high with 0.957 and 0.996

4This results in more than 14k point cloud pairs, which is almost the

same size as the whole semanticKITTI dataset

5698



lidarKITTI

Lego LCD Lrigid EPE [m] ↓ Acc3DS ↑ Acc3DR ↑ RRE [◦] ↓ RTE [m] ↓

✓ ✓ 0.721 0.044 0.093 0.476 0.750

✓ ✓ 0.363 0.044 0.163 0.610 0.342

✓ ✓ 0.136 0.409 0.712 0.380 0.146

✓ ✓ ✓ 0.134 0.460 0.746 0.320 0.130

Table 3: Ablation study of the proposed training objec-

tive. All models are trained on semanticKITTI and eval-

uated without test-time optimization on lidarKITTI (with

ground) dataset.

precision and recall, respectively. The drop in foreground

performance can be accredited to the domain gap between

the datasets [79]; waymo open includes many more fore-

ground objects, especially pedestrians, than semanticKITTI.

4.6. Ablation Studies

Influence of different loss terms. We compare our model

trained with the full loss function to multiple ablations in

Tab. 3. Each model is trained on semanticKITTI and eval-

uated without test-time optimization on lidarKITTI with

ground points. Tab. 3 shows that the terms Lego and LCD

are crucial for the performance of our model. Adding Lrigid

further regularizes the performance and leads to an im-

provement in all evaluation metrics. Note how the terms

that are applied only on foreground points (e.g. Lrigid) also

improve the ego-motion estimation Tab. 3.

Task-specific networks. Instead of training a single net-

work capable of solving multiple tasks, one could also de-

vise a combination of task-specific networks. We ablate

this design choice in Tab. 4 in which we compare our full

model to BG segmentation and ego-motion specific net-

works. Both task specific networks comprise of our back-

bone with the corresponding head and are trained with

the LBG and Lego objective function, respectively. Tab. 4

shows that the performance of our full model is slightly

inferior to the task-specific one when compared on BG

segmentation. This is expected, since in our full pipeline

the BG segmentation head is also trained nearly in isola-

tion, with a single loss function. On the other hand, our

full model outperforms the task-specific ego-motion model,

even though the task-specific model is combined with the

GT background mask. This shows that individual tasks (e.g.

flow and ego-motion estimation) can indeed reinforce each

other, which leads to better downstream performance.

Pretraining the backbone with full supervision. We an-

alyze the effect of initializing our weakly supervised model

with pretrained backbone weights. To this end, we use the

backbone weights from the model trained with full supervi-

sion in § 4.3. Initializing the backbone with the pretrained

model leads to 1.4 cm and 2.3 cm improvement in terms

of EPE3D on lidarKITTI without and with ground points,

respectively. Further details and additional metrics of this

ablation study are available in the supplement. Note that

Task BG segmentation ego-motion

BG seg. ego-motion prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

semanticKITTI (w/o ground)

✓ 0.977 0.901 0.992 0.998 - -

✓ - - - - 0.245 0.054

✓ ✓ 0.971 0.895 0.991 0.998 0.201 0.047

semanticKITTI (with ground)

✓ 0.970 0.911 0.996 0.999 - -

✓ - - - - 0.307 0.071

✓ ✓ 0.966 0.904 0.996 0.999 0.249 0.059

Table 4: Comparison of our full pipeline with specialized

networks for BG segmentation and ego-motion estimation,

respectively. Note, we provide GT background masks to the

ego-motion specialized network also in the test phase.

in all evaluations presented in Sec. 4 we use the inferior

model with randomly initialized weights trained only with

weak supervision.

Run time. We now compare our method to FLOT [51]

and PointPWC-Net [75] in terms of run-time and number

of parameters5. We perform the evaluation on a standalone

computer with Intel Xeon E5-1650, 32GB RAM, and a

single NVIDIA Titan V. For FLOT [51] and PointPWC-

Net [75] we use the official implementation provided by the

authors. FLOT has the lowest number of trainable parame-

ters (0.11 million) but, with 0.395 seconds on average, also

the highest run time per point cloud pair. PointPWC-Net

has a larger model with approximately 7.7 million param-

eters but performs one inference step in 0.147 seconds on

average. Finally, our method contains about 8 million pa-

rameters and requires 0.154 seconds on average for a single

point cloud pair. With added test-time optimization our run

time increases to 0.234 seconds on average.

5. Conclusion

Scene flow is the lowest level in a hierarchy of dynamic

scene perception. As such, while providing a useful cue to

higher-level tasks, it is also the most demanding to super-

vise. Based on this observation, in this work, we have in-

troduced a novel method that relaxes the dense supervision

by integrating flow into a higher-level scene abstraction in

the form of multi rigid-body motion. The result is a state-

of-the-art flow estimation network that additionally outputs

a concise dynamic scene representation. In particular, our

mild supervision requirements are well suited for utilizing

the annotation level of recently released massive data col-

lections for autonomous driving. In future work, we plan to

incorporate cues from multiple frames further seeking tem-

poral consistency as well as increased accuracy.

Acknowledgements. This work is sponsored by Stanford-Ford Al-

liance, the Samsung GRO program, NSF grant IIS-1763268, the Vannevar

Bush Faculty fellowship, and the NVIDIA GPU grant. We thank Barbara

Verbost for her help with the visualizations and Davis Rempe for proof-

reading the article.

5The evaluation is performed with 8192 randomly sampled points on

the lidarKITTI dataset.

5699



References

[1] Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek,

Kseniya Cherenkova, Rig Das, Gleb Gusev, Djamila

Aouada, and Björn Ottersten. Deep learning advances on

different 3d data representations: A survey. arXiv preprint

arXiv:1808.01462, 1, 2018. 2

[2] Hassan Abu Alhaija, Anita Sellent, Daniel Kondermann, and

Carsten Rother. Graphflow–6d large displacement scene

flow via graph matching. In German Conference on Pattern

Recognition, pages 285–296. Springer, 2015. 2

[3] Steven S. Beauchemin and John L. Barron. The computation

of optical flow. ACM computing surveys (CSUR), 27(3):433–

466, 1995. 1

[4] Aseem Behl, Despoina Paschalidou, Simon Donné, and An-

dreas Geiger. Pointflownet: Learning representations for

rigid motion estimation from point clouds. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7962–7971, 2019. 2

[5] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-

mantic Scene Understanding of LiDAR Sequences. In IEEE

International Conf. on Computer Vision, 2019. 2, 6

[6] Tolga Birdal, Umut Simsekli, Mustafa Onur Eken, and Slo-

bodan Ilic. Bayesian pose graph optimization via bingham

distributions and tempered geodesic mcmc. In S. Bengio, H.

Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information Process-

ing Systems, volume 31, pages 308–319. Curran Associates,

Inc., 2018. 1

[7] Mai Bui, Tolga Birdal, Haowen Deng, Shadi Albarqouni,

Leonidas Guibas, Slobodan Ilic, and Nassir Navab. 6d cam-

era relocalization in ambiguous scenes via continuous multi-

modal inference. In Andrea Vedaldi, Horst Bischof, Thomas

Brox, and Jan-Michael Frahm, editors, Computer Vision –

ECCV 2020, pages 139–157, Cham, 2020. Springer Interna-

tional Publishing. 1

[8] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning

rigid body motion using deep neural networks. In 2017

IEEE International Conference on Robotics and Automation

(ICRA), pages 173–180. IEEE, 2017. 1

[9] Rodrigo L Carceroni and Kiriakos N Kutulakos. Multi-view

scene capture by surfel sampling: From video streams to

non-rigid 3d motion, shape and reflectance. International

Journal of Computer Vision, 49(2-3):175–214, 2002. 1, 2

[10] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019. 5

[11] João Paulo Costeira and Takeo Kanade. A multibody fac-

torization method for independently moving objects. Inter-

national Journal of Computer Vision, 29(3):159–179, 1998.

2

[12] Marco Cuturi. Sinkhorn distances: Lightspeed computation

of optimal transport. In Advances in neural information pro-

cessing systems, pages 2292–2300, 2013. 4

[13] Haowen Deng, Mai Bui, Nassir Navab, Leonidas Guibas,

Slobodan Ilic, and Tolga Birdal. Deep bingham networks:

Dealing with uncertainty and ambiguity in pose estimation.

arXiv preprint arXiv:2012.11002, 2020. 1

[14] Frederic Devernay, Diana Mateus, and Matthieu Guilbert.

Multi-camera scene flow by tracking 3-d points and surfels.

In 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06), volume 2, pages

2203–2212. IEEE, 2006. 1, 2

[15] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wol-

fram Burgard. Rigid scene flow for 3d lidar scans. In 2016

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 1765–1770. IEEE, 2016. 2

[16] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2758–2766, 2015. 2

[17] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip

Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts

Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,

et al. Fusion4d: Real-time performance capture of challeng-

ing scenes. ACM Transactions on Graphics (TOG), 35(4):1–

13, 2016. 2

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei

Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. In KDD, 1996. 4

[19] Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural

network for moving point cloud processing. arXiv preprint

arXiv:1910.08287, 2019. 2

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012. 2, 6

[21] Vladislav Golyanik, Kihwan Kim, Robert Maier, Matthias

Nießner, Didier Stricker, and Jan Kautz. Multiframe scene

flow with piecewise rigid motion. In 2017 International Con-

ference on 3D Vision (3DV), pages 273–281. IEEE, 2017. 2

[22] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lat-

tice flownet for scene flow estimation on large-scale point

clouds. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 3254–3263, 2019. 2, 6

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 2

[24] Berthold KP Horn and Brian G Schunck. Determining op-

tical flow. In Techniques and Applications of Image Under-

standing, volume 281, pages 319–331. International Society

for Optics and Photonics, 1981. 1

[25] Michael Hornacek, Andrew Fitzgibbon, and Carsten Rother.

Sphereflow: 6 dof scene flow from rgb-d pairs. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3526–3533, 2014. 2

[26] Jiahui Huang, Sheng Yang, Zishuo Zhao, Yu-Kun Lai, and

Shi-Min Hu. Clusterslam: A slam backend for simultaneous

rigid body clustering and motion estimation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 5875–5884, 2019. 2

5700



[27] Frédéric Huguet and Frédéric Devernay. A variational

method for scene flow estimation from stereo sequences. In

2007 IEEE 11th International Conference on Computer Vi-

sion, pages 1–7. IEEE, 2007. 2

[28] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 2462–2470, 2017. 2

[29] Matthias Innmann, Michael Zollhöfer, Matthias Nießner,

Christian Theobalt, and Marc Stamminger. Volumedeform:

Real-time volumetric non-rigid reconstruction. In European

Conference on Computer Vision, pages 362–379. Springer,

2016. 2

[30] Mariano Jaimez, Christian Kerl, Javier Gonzalez-Jimenez,

and Daniel Cremers. Fast odometry and scene flow from rgb-

d cameras based on geometric clustering. In 2017 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 3992–3999. IEEE, 2017. 2

[31] M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cre-

mers. A primal-dual framework for real-time dense rgb-d

scene flow. In Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA), 2015. 2

[32] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,

Erik Learned-Miller, and Jan Kautz. Sense: A shared en-

coder network for scene-flow estimation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3195–3204, 2019. 5

[33] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-

Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point group-

ing for 3d instance segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4867–4876, 2020. 4

[34] Wolfgang Kabsch. A solution for the best rotation to re-

late two sets of vectors. Acta Crystallographica Section A:

Crystal Physics, Diffraction, Theoretical and General Crys-

tallography, 32(5):922–923, 1976. 4

[35] Ken-ichi Kanatani. Motion segmentation by subspace sep-

aration and model selection. In Proceedings Eighth IEEE

International Conference on computer Vision. ICCV 2001,

volume 2, pages 586–591. IEEE, 2001. 2

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[37] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.

Flownet3d: Learning scene flow in 3d point clouds. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 529–537, 2019. 1, 2, 6

[38] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-

net: Deep learning on dynamic 3d point cloud sequences. In

IEEE International Conference on Computer Vision, pages

9246–9255, 2019. 1, 2, 6

[39] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing

Sun, James M Rehg, and Jan Kautz. Learning rigidity in

dynamic scenes with a moving camera for 3d motion field

estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 468–484, 2018. 2

[40] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3614–3622, 2019. 2

[41] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A.

Dosovitskiy, and T. Brox. A large dataset to train con-

volutional networks for disparity, optical flow, and scene

flow estimation. In IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

arXiv:1512.02134. 1, 2, 6

[42] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint

3d estimation of vehicles and scene flow. ISPRS Annals

of Photogrammetry, Remote Sensing & Spatial Information

Sciences, 2, 2015. 1, 2, 6

[43] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-

ject scene flow. ISPRS Journal of Photogrammetry and Re-

mote Sensing, 140:60–76, 2018. 6

[44] Himangi Mittal, Brian Okorn, and David Held. Just go

with the flow: Self-supervised scene flow estimation. arXiv

preprint arXiv:1912.00497, 2019. 1, 2

[45] Frank Moosmann and Christoph Stiller. Joint self-

localization and tracking of generic objects in 3d range data.

In 2013 IEEE International Conference on Robotics and Au-

tomation, pages 1146–1152. IEEE, 2013. 2

[46] Armin Mustafa and Adrian Hilton. Semantically coherent

4d scene flow of dynamic scenes. International Journal of

Computer Vision, pages 1–17, 2019. 2

[47] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 5

[48] Richard A Newcombe, Dieter Fox, and Steven M Seitz.

Dynamicfusion: Reconstruction and tracking of non-rigid

scenes in real-time. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 343–352,

2015. 2

[49] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Occupancy flow: 4d reconstruction by

learning particle dynamics. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 5379–

5389, 2019. 1, 2

[50] J-P Pons, Renaud Keriven, and Olivier Faugeras. Modelling

dynamic scenes by registering multi-view image sequences.

In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 2, pages

822–827. IEEE, 2005. 2

[51] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:

Scene Flow on Point Clouds Guided by Optimal Transport.

In European Conference on Computer Vision, 2020. 1, 2, 5,

6, 7, 8

[52] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In IEEE conference on computer vision

and pattern recognition, pages 652–660, 2017. 2

[53] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 2

[54] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic,

Srinath Sridhar, and Leonidas J. Guibas. Caspr: Learning

5701



canonical spatiotemporal point cloud representations. In Ad-

vances in Neural Information Processing Systems (NeurIPS),

2020. 1, 2

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 5

[56] Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfu-

sion: Real-time recognition, tracking and reconstruction of

multiple moving objects. In 2018 IEEE International Sym-

posium on Mixed and Augmented Reality (ISMAR), pages

10–20. IEEE, 2018. 2

[57] Samuele Salti, Federico Tombari, and Luigi Di Stefano. A

performance evaluation of 3d keypoint detectors. In 2011 In-

ternational Conference on 3D Imaging, Modeling, Process-

ing, Visualization and Transmission, pages 236–243. IEEE,

2011. 2

[58] Muhamad Risqi U Saputra, Andrew Markham, and Niki

Trigoni. Visual slam and structure from motion in dynamic

environments: A survey. ACM Computing Surveys (CSUR),

51(2):1–36, 2018. 2

[59] Richard Sinkhorn. A relationship between arbitrary positive

matrices and doubly stochastic matrices. The annals of math-

ematical statistics, 35(2):876–879, 1964. 4

[60] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers,

and Slobodan Ilic. Killingfusion: Non-rigid 3d reconstruc-

tion without correspondences. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1386–1395, 2017. 2

[61] Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic.

Sobolevfusion: 3d reconstruction of scenes undergoing free

non-rigid motion. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2646–

2655, 2018. 2

[62] Michael Strecke and Jorg Stuckler. Em-fusion: Dynamic

object-level slam with probabilistic data association. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 5865–5874, 2019. 2

[63] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2530–2539, 2018. 2

[64] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: An open dataset benchmark. arXiv

preprint arXiv:1912.04838, 2019. 2, 7

[65] Georg Tanzmeister, Julian Thomas, Dirk Wollherr, and Mar-

tin Buss. Grid-based mapping and tracking in dynamic envi-

ronments using a uniform evidential environment represen-

tation. In 2014 IEEE International Conference on Robotics

and Automation (ICRA), pages 6090–6095. IEEE, 2014. 2

[66] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmen-

tation of 3d point clouds. In 2017 international conference

on 3D vision (3DV), pages 537–547. IEEE, 2017. 2

[67] Ivan Tishchenko, Sandro Lombardi, Martin R Oswald, and

Marc Pollefeys. Self-supervised learning of non-rigid resid-

ual flow and ego-motion. arXiv preprint arXiv:2009.10467,

2020. 1, 2, 6

[68] Arash K Ushani, Ryan W Wolcott, Jeffrey M Walls, and

Ryan M Eustice. A learning approach for real-time tempo-

ral scene flow estimation from lidar data. In 2017 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 5666–5673. IEEE, 2017. 2

[69] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,

and Takeo Kanade. Three-dimensional scene flow. In IEEE

International Conference on Computer Vision, pages 722–

729. IEEE, 1999. 1, 2

[70] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-

wise rigid scene flow. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1377–1384,

2013. 2

[71] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei

Pokrovsky, and Raquel Urtasun. Deep parametric contin-

uous convolutional neural networks. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 2589–

2597, 2018. 2

[72] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. Sgpn: Similarity group proposal network for 3d point

cloud instance segmentation. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2569–2578,

2018. 2

[73] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Adrian

Prisacariu, and Min Chen. Flownet3d++: Geometric

losses for deep scene flow estimation. arXiv preprint

arXiv:1912.01438, 2019. 1, 2

[74] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and D.

Cremers. Efficient dense scene flow from sparse or dense

stereo data. In ECCV, Marseille, France, October 2008. 2

[75] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li

Fuxin. Pointpwc-net: A coarse-to-fine network for super-

vised and self-supervised scene flow estimation on 3d point

clouds. arXiv preprint arXiv:1911.12408, 2019. 1, 2, 6, 8

[76] Jiaqi Yang, Yang Xiao, and Zhiguo Cao. Toward the re-

peatability and robustness of the local reference frame for

3d shape matching: An evaluation. IEEE Transactions on

Image Processing, 27(8):3766–3781, 2018. 2

[77] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,

Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point

clouds with self-attention and gumbel subset sampling. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3323–3332, 2019. 2

[78] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point

matching using learned features. In CVPR, 2020. 4

[79] Li Yi, Boqing Gong, and Thomas Funkhouser. Complete &

label: A domain adaptation approach to semantic segmenta-

tion of lidar point clouds, 2020. 8

[80] Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao

Su, and Leonidas Guibas. Deep part induction from articu-

lated object pairs. ACM Transactions on Graphics (TOG),

37(6):209, 2019. 2

[81] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J

Guibas. Gspn: Generative shape proposal network for 3d

5702



instance segmentation in point cloud. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 3947–

3956, 2019. 2

[82] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Ruslan Salakhutdinov, and Alexander Smola.

Deep sets, 2018. 2

[83] Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri,

Zhangjie Cao, Jitendra Malik, and Leonidas J Guibas. Ro-

bust learning through cross-task consistency. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 11197–11206, 2020. 5

[84] Amir R Zamir, Alexander Sax, William Shen, Leonidas J

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3712–3722, 2018. 5

[85] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018. 2

5703


