
Mixed-Privacy Forgetting in Deep Networks

Aditya Golatkar2,1 Alessandro Achille1 Avinash Ravichandran1 Marzia Polito1 Stefano Soatto1

1Amazon Web Services 2UCLA

{aachille,ravinash,mpolito,soattos}@amazon.com aditya29@cs.ucla.edu

Abstract

We show that the influence of a subset of the train-

ing samples can be removed – or “forgotten” – from the

weights of a network trained on large-scale image classifi-

cation tasks, and we provide strong computable bounds on

the amount of remaining information after forgetting. In-

spired by real-world applications of forgetting techniques,

we introduce a novel notion of forgetting in mixed-privacy

setting, where we know that a “core” subset of the training

samples does not need to be forgotten. While this varia-

tion of the problem is conceptually simple, we show that

working in this setting significantly improves the accuracy

and guarantees of forgetting methods applied to vision clas-

sification tasks. Moreover, our method allows efficient re-

moval of all information contained in non-core data by sim-

ply setting to zero a subset of the weights with minimal loss

in performance. We achieve these results by replacing a

standard deep network with a suitable linear approxima-

tion. With opportune changes to the network architecture

and training procedure, we show that such linear approx-

imation achieves comparable performance to the original

network and that the forgetting problem becomes quadratic

and can be solved efficiently even for large models. Un-

like previous forgetting methods on deep networks, ours can

achieve close to the state-of-the-art accuracy on large scale

vision tasks. In particular, we show that our method allows

forgetting without having to trade off the model accuracy.

1. Introduction

When building a classification system, one rarely has all

the data to be used for training available at the outset. More

often, one starts by pre-training a model with some “core”

dataset (e.g. ImageNet, or datasets close to the target task)

and then incorporates various cohorts of task-specific data

as they become available from diverse sources. In some

cases, the wrong data may be incorporated inadvertently, or

the owners may change their mind and demand that their

data be removed. One can, of course, restart the training

from scratch every time such a demand is made, but at a

significant cost of time and disruption. What if one could

remove the effect of cohort(s) of data a-la-carte, without

re-training, in a way that the resulting model is function-

ally indistinguishable from one that has never seen the co-

hort(s) in question, and in addition has no residual infor-

mation about it buried in the weights of the model? Of

course, forgetting can always be trivially achieved by ze-

roing the weights or replacing them with random noise, but

this comes at the expense of the accuracy of the model. Can

we forget the cohort of interest without interfering with in-

formation about the other data and preserving, to the extent

possible, the accuracy of the trained model? Recently, the

problem of forgetting has received considerable attention

[15, 16, 13, 19, 5, 24, 35, 41, 6, 39, 12, 7, 36], but solutions

have focused on simpler machine learning problems such as

linear logistic regression. Removing information from the

weights of a standard convolutional network still remains

an open problem, with some initial results working only on

small scale problems [15, 16]. This is mainly due to the

highly non-convex loss-landscape of CNNs, which makes

the influence of a particular sample on the optimization tra-

jectory and the final weights highly non-trivial to model.

In this paper we introduce Mixed-Linear Forgetting

(ML-Forgetting), a method to train large scale computer vi-

sion models in such a way that information about a subset of

the data can be removed on request – with strong bounds on

the amount of remaining information – while at the same

time retaining close to the state of the art accuracy on the

tasks. To the best of our knowledge, this is the first al-

gorithm to achieve forgetting for deep networks trained on

large-scale computer vision problems without compromis-

ing the accuracy. To further improve the performance in

realistic use-cases, we introduce the notion of forgetting in

a mixed-privacy setting, that is, when we know that a subset

Dc ⇢ D of the training dataset, which we call core data,

will not need to be forgotten. For example, the core data

may be a large dataset of generic data used for pre-training

(e.g., ImageNet) or a large freely available collection of

task-specific data (e.g., a self-driving dataset) which is not

likely subject to changes. We show that ML-Forgetting can

naturally take advantage of this setting, to improve both ac-

792

curacy and bounds on the amount of remaining information

after forgetting.

One of the main challenges of forgetting in deep net-

works is how to estimate the effects of a given training sam-

ple on the parameters of the model, which has lead the re-

search to focus on simpler convex learning problem such as

linear or logistic regression, for which a theoretical analysis

is feasible. To address this problem, Mixed-Linear Forget-

ting uses a first-order Taylor-series inspired decomposition

of the network to learn two sets of weights: a core set wc

which is trained only with the core data Dc using a stan-

dard (non-convex) algorithm, and a set of linear w of user

weights, which is trained to minimize a quadratic loss func-

tion on the changeable user data D. The core weights are

learned through standard training (since forgetting is not re-

quired on core data), while the user weights are obtained

as the solution to a strongly convex quadratic optimization

problem. This allows us to remove influence of a subset of

the data with strong guarantees. Moreover, by construction,

simply setting to zero the user weights removes influence of

all changeable data with the lowest possible drop in perfor-

mance, thus easily allowing the user to remove all of their

data at the same time.

To summarize, our key contributions are:

1. We introduce the problem of forgetting (unlearning or

data deletion or scrubbing) in a mixed-privacy setting

which, compared to previous formalizations, is better

taylored to standard practice, and allows for better pri-

vacy guarantees.

2. In this setting we propose ML-Forgetting. ML-

Forgetting trains a set of non-linear core weights and

a set of linear user weights, which allow it to achieve

both good accuracy, thanks to the flexibility of the non-

linear weights, and strong privacy guarantees thanks to

the linear weights.

3. As a side effect, all the user data may be forgotten com-

pletely with the lowest possible drop in performance

by simply erasing the user weights.

4. We show that ML-Forgetting can be applied to large-

scale vision datasets, and enjoys both strong forgetting

guarantees and test time accuracy comparable to stan-

dard training of a Deep Neural Network (DNN). To the

best of our knowledge, this is the first forgetting algo-

rithm to do so.

5. Furthermore, we show that ML-Forgetting can handle

multiple sequential forgetting requests without degrad-

ing its performance, which is important for real world

applications.

2. Related Work

Forgetting. The problem of machine unlearning is in-

troduced in [8] as an efficient forgetting algorithm for sta-

tistical query learning. [32, 13] gives method for forgetting

for particular class of learning algorithms, such as k-means

clustering. Other methods involve splitting the data into

multiple subsets and train models separately on combina-

tions of them [6, 41]. This allows perfect forgetting, but

incurs in heavy storage costs as multiple models/gradients

need to be stored. In the context of model interpretabil-

ity and cross-validation, [27, 14] provided a hessian based

method for estimating the influence of a training point on

the model predictions. [5] proposed a method for hide in-

formation about an entire class from the output logits, but

does not remove information from the model weights. [19]

proposed to remove information from the weights on con-

vex problems using Newton’s method, and uses differential

privacy [1, 11, 10, 9] to certify data removal. [24] pro-

vides a projective residual update method using synthetic

data points to delete data points from linear/logistic regres-

sion based models. [36] proposed an unlearning mechanism

for logistic regression and gaussian processes in a Bayesian

setting using variational inference. Recently, [35] proposed

a gradient descent based method for data deletion in convex

settings, with theoretical guarantees for multiple forgetting

requests. They also introduce the notion of statistical indis-

tinguishably of the entire state or just the outputs similar to

the information theoretic framework of [16]. We use some

of their proof techniques for our theoretical results.

Deep Networks provide additional challenges to forget-

ting due to their highly non-convex loss functions. [15]

proposed an information theoretic procedure to scrub the

information from intermediate layers of DNN trained with

stochastic gradient descent (SGD), exploiting the stability

of SGD [21]. They also bound the amount of remaining

information in the weights [3] after scrubbing. [16] extend

the framework of [15] to activations. They also show that an

approximation of the training process based on a first-order

Taylor expansion of the network (NTK theory) can be used

to the estimate the weights after forgetting. This approxi-

mation works well on small scale vision datasets. However,

the approximation accuracy and the computational cost de-

grade for larger datasets (in particular the cost is quadratic

in the number of samples). We also use linearizarion but,

crucially, instead of linearly approximating the training dy-

namics of a non-linear network, we show that we can di-

rectly train a linearized network for forgetting. This ensures

that our forgetting procedure is correct, and it allows us to

scale easily to standard real-world vision datasets.

Linearization. Using a first-order Taylor expansion (lin-

earization) of the network to study its behavior has gained

interest recently in the NTK theory [25, 30] as a tool to

study the dynamics of DNNs in the limit of infinite filters.

793

[33] shows that aside from a theoretical tool, it is possible to

directly train a (finite) linearized network using an efficient

algorithm for the Jacobian-Vector product computation. [2]

show that with some changes to the architecture and train-

ing process, linearized models can match the performance

of non-linear models on many vision tasks, while still main-

taining a convex loss function.

3. Preliminaries and Notations

We use the empirical risk minimization (ERM) frame-

work throughout this paper for training. Let D =
{xi,yi}

n
i=1 be a dataset where xi 2 X denotes the input

datum (for example, images) and yi 2 Y the correspond-

ing output (for example, one hot vector in classification).

Given an input image x, let fw(x) : X ⇥ R
d ! Y (for

instance, a DNN) be a function parameterized by w 2 R
d

used to model the relation X ! Y . Given a input-target

pair (x,y) 2 (X ,Y), we denote empirical risk or the train-

ing loss for (x,y) by `(fw(x),y) : X ⇥ Y ⇥ R
d ! R

+.

We will sometimes abuse notation and use `(w) by drop-

ping x,y. For a training dataset D = {xi,yi}
n
i=1 ⇢

(X ,Y)n, we denote the empirical risk/total training loss on

D by LD(w) , 1
|D|

P

i2D `(fw(xi),yi). We will inter-

changebly use LD(fw) with LD(w). Let Aτ (LD(w0)) :
(X ,Y)n⇥R

d⇥N ! R
d, denote the weights obtained after

⌧ steps of a training algorithm A using w0 as the initializa-

tion (for examples, SGD in our case). We denote with kwk
the L2 norm of a vector w and with �Max(Q) the largest

eigenvalue of a matrix Q. To keep the notation uncluttered,

we also use the shorthand rwL(w0) , rwL(w)|w=w0 .

4. The Forgetting Problem

The weights w of a trained deep network fw(x) are a

(possibly stochastic) function of the training data D. As

such, they may retain information about the training sam-

ples which an attacker1 can extract from knowledge of the

weights or outputs at inference time. A forgetting procedure

is a function S(w,D,DF)
2 (also called scrubbing function)

which, given a set of weights w trained on D and a subset

Df ⇢ D of images to forget, outputs a new set of weights

w0 which are indistinguishable from weights obtained by

training without Df .

Readout functions. The success of the forgetting pro-

cedure, can be measured by looking at whether a discrimi-

nator function R(w) that can guess – at better than chance

probability – whether a set of weights w was trained with

or without Df or whether it was trained with Df and then

scrubbed. Following [15, 16] we call such functions read-

1An attacker is any agent intent to extract information about the data

used for training.
2We will abuse the notation and write S(w) when its arguments are

clear from the context.

out functions. A popular example of readout function is the

confidence of the network (that is, the entropy of the output

softmax vector) on the samples in Df : Since networks tend

to be overconfident on their training data [20, 28], a higher

than expected confidence may indicate that the network was

indeed trained on Df . We discuss more read-out functions

in Section 8.1. Alternatively, we can measure the success

of the forgetting procedure by measuring the amount of

remaining mutual information I(S(w);Df)
3 between the

scrubbed weights S(w) and the data Df to be forgotten.

While this is more difficult to estimate, it can be shown that

I(S(w);Df) upper-bounds the amount of information that

any read-out function can extract [15, 16]. That is, it is an

upper-bound on the amount of information that an attacker

can extract about Df using the scrubbed weights S(w).
Quadratic forgetting. An important example is forget-

ting in a linear regression problem, which has a quadratic

loss function LD(w) =
P

(xi,yi)2D kyi �wTxik
2. Given

the weights w = Aτ (LD(w)) obtained after training on

LD(w) using algorithm A, the optimal forgetting function

is given by:

w 7! w �H�1
Dr

rwLDr
(w), (1)

where H�1
Dr

,rwLDf
(w) is the hessian and gradient of the

loss function computed on the remaining data respectively.

When Aτ (LD(w)) = w⇤ , argmin
w
LD(w), we can re-

place LDr
(w⇤) with �LDf

(w⇤) in which case it can be in-

terpreted as a reverse Newton-step that unlearns the data Df

[19, 15]. Since, as we will see later, the “user weights” of

ML-Forgetting minimize a similar quadratic loss function,

eq. (1) also describes the optimal forgetting procedure for

our model. The main challenge for us will be how to accu-

rately compute the forgetting step since the Hessian matrix

can’t be computed or stored in memory due to the high-

number of parameters of a deep network (Section 6).

Convex forgetting. Unfortunately, for more general ma-

chine learning models we do not have a close form expres-

sion for the optimal forgetting step. However, it can be

shown [27] that eq. (1) is always a first-order approxima-

tion of the optimal forgetting. [19] shows that for strongly

convex Lipschitz loss functions, the discrepancy between

eq. (1) and the optimal forgetting is bounded. Since this

discrepancy – even if bounded – can leak information, a

possible solution is to add a small amount of noise after for-

getting:

w 7! w +H�1
Dr

(w)rwLDf
(w) + �2✏, (2)

where ✏ ⇠ N(0, I) is a vector of random Gaussian noise,

which aims to destroy any information that may leak due to

3
I(x,y) = EPx,y

[log (Px,y/PxPy)] is the mutual information be-

tween x and y, where Px,y is the joint distribution and Px, Py are the

marginal distributions.

794

small discrepancies. Increasing the variance � of the noise

destroys more information, thus making forgetting more se-

cure, but also reduces the accuracy of the model since the

weights are increasingly random. The curve of possible

Pareto-optimal trade-offs between accuracy and forgetting

can be formalized with the Forgetting Lagrangian [15].

Alternatively, to forget data in a strongly convex prob-

lem, one can fine-tune the weights on the remaining data us-

ing perturbed projected-GD [35]. Since projected-GD con-

verges to the unique minimum of a strongly convex function

regardless of the initial condition (contrary to SGD, which

may not converge unless proper learning rate scheduling is

used), this is guaranteed to remove all influence of the ini-

tial data [35]. The downside is that gradient descent (GD) is

impractical for large-scale deep learning applications com-

pared to SGD, projection based algorithms are not popular

in practice, and the commonly used loss functions are not

generally Lipschitz.

Non-convex forgetting. Due to their highly non-convex

loss-landscape, small changes of the training data can cause

large changes in the final weights of a deep network. This

makes application of eq. (2) challenging. [15] shows that

pre-training helps increasing the stability of SGD and de-

rives a similar expression to eq. (2) for DNNs, and also pro-

vides a way to upper-bound the amount of remaining in-

formation in a DNN. [15] builds on recent results in linear

approximation of DNNs, and approximate the training path

of a DNN with that of its linear approximation. While this

improves the forgetting results, the approximation is still

not good enough to remove all the information. Moreover,

computing the forgetting step scales quadratically with the

number of training samples and classes, which restricts the

applicability of the algorithm to smaller datasets.

5. Mixed-Linear Forgetting

Let fw(x) be the output of a deep network model with

weights w computed on an input image x. For ease of nota-

tion, assume that the core dataset and the user dataset share

the same output space (for example, the same set of classes,

for a classification problem). After training a set of weights

wc on a core-dataset Dc we would like to further perturb

those weights to fine-tune the network on user data D. We

can think of this as solving the two minimization problems:

w⇤

c = argmin
wc

LDc
(fwc

) (3)

w⇤

u = argmin
wu

LD

�
fw⇤

c+wu

�
(4)

where we can think of the user weights wu a perturbation

to the core weights that adapts them to the user task. How-

ever, since the deep network fw is not a linear function in

of the weights w, the loss function LD

�
fw⇤

c+wu

�
can be

highly non-convex. As discussed in the previous section,

this makes forgetting difficult. However, if the perturba-

tion wu is small, we can hope for a linear approximation

of the DNN around w⇤

c to have a similar performance to

fine-tuning the whole network [33], while at the same time

granting us easiness of forgetting.

Motivated, by this, we introduce the following model,

which we call Mixed-Linear Forgetting model (ML-model):

fML
w⇤

c ,wu
(x) , fw⇤

c
(x)

| {z }

trained on Dc

+

train on D
z }| {

rwfw⇤

c
(x) ·wu . (5)

The model fML
w⇤

c ,wu
(x) can be seen as first-order Taylor ap-

proximation of the effect of fine-tuning the original deep

network fw⇤

c+wu
(x). It has two sets of weights, a set of

non-linear core weights wc, which enters the model through

the non-linear network fwc
(x), and a set linear user-weights

wu which enters the model linearly. Even though the model

is linear in wu, it is still a highly non-linear function of x

due to the non-linear activations in rwf(w⇤

c).
We train the model solving two separate minimization

problems:

w⇤

c = argmin
wc

LCE
Dc

(fwc
), (6)

w⇤

u = argmin
wu

LMSE
D

�
fML
w⇤

c+wu

�
. (7)

Eq. (6) is akin to pretraining the weights wc on the core

dataset Dc, while eq. (7) fine-tunes the linear weights on all

the data D. This ensures the weights wc will only contain

information about the core dataset Dc, while all information

about the user data D is contained in wu. Also note that we

introduce two separate loss functions for the core and user

data. To train the user weights we use a mean square error

(i.e., L2) loss [23, 34, 17]:

LMSE
D (wu) =

1

2|D|

X

(x,y)2D

�
�fw⇤

c
(x) +rwfw⇤

c
(x) ·wu � y

�
�
2

+
µ

2
kwuk

2 (8)

where y is a one-hot encoding of the class label. This loss

has the advantage that the weights wu are the solution to

a quadratic problem, in which case the optimal forgetting

step can be written in closed form (see eq. 1). On the other

hand, since we do not need to remove any information from

the the weights wc, we can train them using any loss in

eq. (3). We pick the standard cross-entropy loss, although

this choice is not fundamental for our method.

5.1. Optimizing the Mixed-Linear model

Ideally, we want the ML-model to have a similar accu-

racy on the user data to a standard non-linear network. At

795

the same time, we want the ML-model to perform signifi-

cantly better than simply training a linear classifier on top

of the last layer features of fw⇤

c
, which is the trivial baseline

method to train a linear model for an object classification

task. In Figure 1 (see Section 8 for details) we see that this

is indeed the case: while linear, the ML-model is still flexi-

ble enough to fit the data with a comparable accuracy to the

fully non-linear model (DNN). However, some considera-

tions are in order regarding how to train our ML-model.

Training the core model. Eq. (3) reduces to the standard

training of a DNN on the dataset Dc using cross-entropy

loss. We train using SGD with annealing learnig rate. In

case Dc is composed of multiple datasets, for example Im-

ageNet and a second dataset closer to the user task, we first

pretrain on ImageNet, then fine-tune on the other dataset.

Training the Mixed-Linear model. Training the linear

weights of the Mixed-Linear model in eq. (4) is slighly more

involved, since we need to compute the Jacobian-Vector

product (JVP) of rwfw⇤

c
(x) · wu. While a naı̈ve imple-

mentation would require a separate backward pass for each

sample, [33, 37] show that the JVP of a batch of samples

can be computed easily for deep networks using a slightly

modified forward pass. The modified forward pass has only

double the computational cost of a standard forward pass,

and can be further reduced by linearizing only the final lay-

ers of the network. Using the algorithm of [33] to compute

the model output, eq. (4) reduces to a standard optimization,

which we perform again with SGD with annealing learning

rate. Note that, since the problem is quadratic, we could use

more powerful quasi-Netwon methods to optimize, however

we avoid that to keep the analysis simpler, since optimiza-

tion speed is not the focus of this paper.

Architecture changes. We observe that a straightfor-

ward application of [33] to a standard pre-trained ResNet-

50 tend to under-perform in our setting (fine-tuning on large

scale vision tasks). In particular, it achieves only slightly

better performance than training a linear classifier on top of

the last layer features. Following the suggetsion of [2], we

replace the ReLUs with Leaky ReLUs, since it boosts the

accuracy of linearized models.

6. Forgetting procedure

The user weights wu are obtained by minimizing the

quadratic loss function LMSE
D in eq. (8) on the user data D.

Let Df ⇢ D denote a subset of samples we want to forget

(by hypothesis Dc \Df = ;, i.e., the core data is not going

to change) and let Dr = D�Df denote the remaining data.

As discussed in Section 4, in case of quadratic training loss

the optimal forgetting step to delete Df is given by:

wu 7!wu �H�1
Dr

(wc)gDr
(wu), (9)

Figure 1. Mixed-Linear model has comparable accuracy to

standard DNN. Plot of the test errors for different datasets using

different models. We take a ResNet-50 pretrained on ImageNet

and fine-tune it using different procedures, (DNN) We fine-tune

the whole network on various datasets, (Mixed-Linear) We fine-

tune the linearized ResNet-50 (eq. (5)) in a mixed private setting,

Last-Layer Features: We simply fine-tune the final fully con-

nected (FC) layer of the ResNet-50. We show that fine-tuning

a linearized DNN using the mixed-privacy framework performs

comparable to fine-tuning a DNN and outperforms simply fine-

tuning the last FC layer.

where we define gDr
(wu) , rwLDr

(wu) and we can ex-

plicitly write the Hessian HDr
(wc) of the loss eq. (8) as:

HDr
(wc) =

X

x2Dr

rwfwc
(x)Trwfwc

(x) + µI. (10)

where I is the identity matrix of size d. Thus, forgetting

amounts to computing the update step eq. (9). Unfortu-

nately, even if we can easily write the hessian DDr
in closed

form, we cannot store it in memory and much less invert it.

Instead, we now discuss how to find an approximation of

the forgetting step H�1
Dr

(wc)gDr
(wu) by solving an opti-

mization problem which does not require constructing or

inverting the hessian.

Since HDr
(wc) is positive definite, we can define the

auxiliary loss function

L̂Dr
(v) =

1

2
vTHDr

(wc)v � gDr
(wu)

Tv (11)

By setting the gradient to zero, it is easy to see that the for-

getting update H�1
Dr

(wc)gDr
(wu) is the unique minimizer

of L̂Dr
(v), so we can recast computing the forgetting up-

date as simply minimizing the loss L̂Dr
(v) using SGD. In

general, the product vTHDr
(wc)v of eq. (11) can be com-

puted efficiently without constructing the Hessian using the

Hessian-Vector product algorithm [27]. However, in our

case we have a better alternative due to the fact that we use

MSE loss and that ML-model is linear in weight-space: Us-

ing eq. (10), we have that

vTHDr
(wc)v =

X

x2Dr

krwfw⇤

c
(x)vk2 + µkvk2, (12)

where rwfw⇤

c
(x)v is a Jacobian-Vector product which can

be computed efficiently (see Section 5.1). Using this result,

796

we compute the (approximate) minimizer of eq. (11) using

SGD. When optimizing eq. (11), we compute gDr
(wu) ex-

actly on Dr and approximate eq. (10) by Monte-Carlo sam-

pling. In Figure 4, we show this method outperforms full

stochastic minimization of eq. (11).

Mixed-Linear Forgetting. Let ∆wu , Aτ (L̂Dr
) be

the approximate minimizer of eq. (11) obtained by training

with SGD for ⌧ iterations. Our Mixed-Linear (ML) forget-

ting procedure S(w) for the ML-model in eq. (5) is:

wu 7! wu �∆wu + �2✏ (13)

where ✏ ⇠ N(0, I) is a random noise vector [15, 16]. As

mentioned in Section 4, we need to add noise to the weights

since ∆wu is only an approximation of the optimal forget-

ting step, and the small difference may still contain infor-

mation about the original data. By adding noise, we destroy

the remaining information. Larger values of � ensure better

forgetting, but can reduce the performance of the model. In

the next sections, we analyze theoretically and practically

the role of �.

Sequential forgetting. In practical applications, we may

receive several separate requests to forget the data in a se-

quential fashion. In such cases, we simply apply the forget-

ting procedure in eq. (13) on the weights obtained at the end

of the previous step. A key component is to ensure that the

performance of the system does not deteriorate too much

after many sequential requests, which we do next.

7. Bounds on Remaining Information

We now derive bounds on the amount of information that

an attacker can extract from the weights of the model after

applying the scrubbing procedure eq. (13). This will also

guide us in selecting the optimal � and the number of itera-

tions ⌧ to approximate the forgetting step that are necessary

to reach a given privacy level (see fig. 2). Let YDF
denote

some attribute of interest regarding Df an attacker might

want to access, then from Proposition 1 in [15] we have:

I(YDf
, S(w))

| {z }

Recovered Information

 I(Df , S(w))
| {z }

Remaining Information in Weights

where S(w) = S(w,D,Df) is the scrubbing/forgetting

method which given weights w trained on D removes in-

formation about Df (which in our case is given by eq. 13).

Hence, bounding the amount of information about Df that

remains in the weights S(w) after forgetting uniformly

bounds all the information that an attacker can extract.

We now upper-bound the remaining information

I(Df , S(w)) after applying the forgetting procedure in

eq. (13) to our ML-model, over multiple forgetting re-

quests. Let [K
k=1Df

k be the total data asked to be forgot-

ten at the end of K forgetting requests and let wK
u be the

weights obtained using the forgetting procedure in eq. (13)

sequentially. Then we seek to provide a bound on the

mutual information between the two, i.e., I([K
k=1D

k
f) ,

I([K
k=1D

k
f ,w

K
u). We prove the following theorem.

Theorem 1 (Informal). Let ∆wu = Aτ (L̂Dr
) be the ap-

proximate update step obtained minimizing L̂Dr
(eq. 13)

using ⌧ steps of SGD with mini-batch size B. Let � =
1�µ2/�2, where � is the smoothness constant of the loss in

eq. (7). Consider a sequence of K equally sized forgetting

requests {D1
f ,D

2
f , . . . ,D

K
f } and let wK

u be the weights ob-

tained after the K requests using eq. (13). Then we have the

following bound on the amount of information remaining in

the weights wK
u about [K

k=1D
k
f

I([K
k=1D

k
f)

forgetting
steps
z {

�τ c0

⇣

ratio to
forget
z {

c1
r2

�2
+

num.
params
z{

d
⌘

+

batch
size

z {
c2
B�2

1� (1 + ↵)�τ

. (14)

where c0, c1, c2 > 0, r = |Dk
f |/|D| and 0 < ↵ < 1/�τ �1,

d = dim(w) and � < 1.

In [35] a similar probabilistic bound is given on the dis-

tance of the scrubbed weights from the optimal weights for

strongly convex Lipschitz loss functions trained using pro-

jected GD. We prove our bound for the more general case of

a convex loss function with L2 regularization trained using

SGD (instead of GD) and also bound the remaining infor-

mation in the weights.

Role of �. We make some observations regarding

eq. (14). First, increasing the variance �2 of the noise added

to the weights after the forgetting step further reduces the

possible leakage of information from an imperfect approxi-

mation. Of course, the downside is that increasing the noise

may reduce the performance of the model (see Figure 2

(top) for the trade-off between the two).

Forgetting with more iterations. Running the algo-

rithm A for an increasing number of steps ⌧ improves

the accuracy of the forgetting step, and hence reduces the

amount of remaining information. We confirm this em-

pirically in Figure 2 (bottom). Note however that there is

a diminishing return. This is due to the variance of the

stochastic optimization overshadowing gains in accuracy

from longer optimization (see the additive term depending

on the batch size). Increasing the batch-size, B in eq. (13)

reduces the variance of the estimation and leads to better

convergence.

Fraction of data to forget. Finally, forgetting a smaller

fraction r = |Dk
f |/|D| of the data is easier. On the other

hand, increasing the number of parameters d of the model

may make the forgetting more difficult.

797

Figure 2. Forgetting-Accuracy Trade-off Plots of the amount of

remaining information in the weights about the data to forget (red,

left axis) and test error (blue, right axis) as a function of the (top)

scrubbing noise and (bottom) number of optimization iterations

used to compute the scrubbed weights in eq. (13). We aim to

forget 10% of the training data through 10 forgetting requests on

the Caltech-256 (left) and Aircrafts datasets (right). Note that the

remaining information in the weights decreases with an increase

in the forgetting noise or the number of epochs during forgetting

as predicted by the bound in Theorem 1. Increasing the forget-

ting noise increases the test error after forgetting (top). In terms

of the computational efficiency/speed, doing 2-3 passes over the

data (i.e. 2-3 epochs) is sufficient for forgetting (in terms of the

test error and the remaining information) rather than re-training

from scratch for 50 epochs (bottom) for each forgetting request

D
k
f . Thus providing a 16-25⇥ speed-up per forgetting request.

We fine-tune the ML-Forgetting model for 50 epochs while train-

ing the user weights. Values for τ and σ can be chosen using these

trade-off curves given a desired privacy level.

8. Experiments

We use a ResNet-50 [22] as the model fw(x) in ML-

Forgetting. Unless specified otherwise, we forget 10%
of randomly chosen training data in all the experiments

through 10 sequential forgetting requests each of size 1%.

In the appendix, we also provide results for forgetting an en-

tire class and show that our method is invariant to the choice

of the subset to be forgotten. More experimental details can

be found in the appendix.

Datasets used. We test our method on the following

image classification tasks: Caltech-256 [18], MIT-67 [38],

Stanford Dogs [26], CUB-200 [40], FGVC Aircrafts [31],

CIFAR-10 [29]. Readout function and forgetting-accuracy

trade-off plots for MIT-67, StanfordDogs, CUB-200 and

CIFAR-10 can be found in the appendix.

8.1. Readout functions

The forgetting procedure should be such that an attacker

with access to the scrubbed weights w should not be able to

construct some function R(w) : Rd ! R, which will leak

Figure 3. Read-out functions for different forgetting methods.

We forget a subset of 10% of the training data through 10 equally-

size sequential deletion requests using different forgetting meth-

ods, and show the value of the several readout functions for the

resulting scrubbed models. Ideally, the value of the readout func-

tion should be the same as the value (denoted with the green area)

obtained on a model retrained from scratch without those samples.

Closer to the green area is better. (Original) denotes the trivial

baseline where we do apply any forgetting procedure. (Fisher)

Adds Fisher noise as as described in ([15]), (ML-Forgetting) The

model obtained with our method after forgetting. In all cases, we

observe that ML-Forgetting obtains a model that is indistinguish-

able from one trained from scratch without the data, whereas the

other methods fail to do so. This is particularly the case for the

Retrain Time readout functions, which exploits full knowledge of

the weights and it is therefore more difficult to defend against.

information about the set to forget Df . More precisely the

scrubbing procedure should be such that for all R(w):

KL
�
P(R(S(w,D,Df))|D

| {z }

readout on weights
after forgetting Df

) kP(R(S0(w))|Dr
| {z }

readout on weights
after re-training on Dr

�
= 0

(15)

where S0(w) is some baseline function that does not de-

pend on Df (it only depends on the subset to retain Dr

= D � Df). Here P(w|D), P(w|Dr) corresponds to the

distribution of weights (due to the stochastic training algo-

rithm) obtained after minimizing the empirical risk on D,

Dr respectively. S(w,D,Df) corresponds to the scrubbing

update defined in eq. (13). We choose S0(w) = w + z,

where z ⇠ N (0,�2I). For an ideal forgetting procedure,

the value of the readout functions (or evaluation metrics)

should be same for a model obtained after forgetting Df

and re-trained from scratch without using Df . Some com-

mon choice of readout functions include (see Figure 3):

1. Error on Dr, Df , DTest: The scrubbed and the re-trained

model (from scratch on Dr) should have similar accuracy on

all the three subsets of the data

2. Re-learn Time: We fine-tune the scrubbed (model after

forgetting) and re-trained model for a few iterations on a

subset of the training data (which includes Df) and compute

the number of iterations it takes for the models to re-learn

Df . An ideal forgetting procedure should be such that the

re-learn time should be comparable to the re-trained model

798

Figure 4. Comparison of complete and stochastic residual gra-

dient estimation for forgetting. ML-Forgetting uses the complete

residual gradient for the forgetting step, exploiting the fact that

the loss function is quadratic. However, one can also estimate it

stochastically, which is equivalent to fine-tuning on the remaining

data to forget. Here we show that indeed both methods work but

– when using the same number of steps – complete estimate gives

a better solution due to smaller variance and faster convergence

(lower test error and information leakage).

(we plot the relative re-train time in Figure 3). Re-learn time

serves a proxy for the amount of information remaining in

the weights about Df (see Figure 3).

3. Activation Distance: We compute the distance be-

tween the final activations of the scrubbed weights

and the re-trained model (wDr
) on different subsets

of data. More precisely we compute the following:

Ex2D0 [k softmax(fw(x)) � softmax(fwDr
(x))k1], where

D0 = Dr,Df ,DTest. We compare different w correspond-

ing to the original weights without any forgetting, weights

after adding Fisher noise and ML-forgetting (see Figure 3).

This serves as a proxy for the amount of information re-

maining in the activations about Df .

4. Membership Attack: We construct a simple yet effec-

tive membership attack similar to [16] using the entropy of

the model output. Ideally, a forgetting procedure should

have the same attack success as a re-trained model (which

is what we observe, see Figure 3).

8.2. Complete vs Stochastic residual gradient

In eq. (13) we compute the residual gradient gDr
(wu)

completely once over the remaining data instead of es-

timating that term stochastically using A. In Figure 4,

we compare both the methods of computing the residual

gradient. We show that in the ideal region of noise (i.e.

� 2 [10�5, 10�3]), both the remaining information and test

error after forgetting (10% of the data through 10 requests)

is lower when computing the residual gradient completely.

8.3. Effect of choosing different core datasets

For fine-grained datasets like FGVC-Aircrafts and CUB-

200, we show that if the core data has some information

about the user task, then it improves forgetting significantly

both in terms of the remaining information and the test ac-

curacy. In Figure 5, we show that using ImageNet + 30%

of the Aircrafts (we assume that we are not asked to forget

Figure 5. Effect of using a core data close to the task. Plot of the

remaining information and test error on Aircrafts using (a) generic

ImageNet core data, and (b) ImageNet pre-training + 30% of the

Aircrafts. When the core data contain information close to the

user task that the network does not need to forget, ML-Forgetting

can exploit this to create better core-weights and a correspond-

ingly better linearized model. This improves both the accuracy of

the model and makes forgetting easier, as seen from the accuracy-

forgetting curves in the plot.

this 30% of the data) as core data and 100% of the Aircrafts

as the user data, performs much better than simply using

ImageNet as core. In Figure 5 (right), we also show that in-

creasing the percentage of user distribution in the core data

improves the test accuracy of the Mixed-Linear model.

9. Conclusion

We provide a practical forgetting procedure to remove

the influence of a subset of the data from a trained im-

age classification model. We achieve this by linearizing

the model using a mixed-privacy setting which enables us

to split the weights into a set of core and forgettable user

weights. When asked to delete all the user data, we can

simply discard the user weights. The quadratic nature of the

training loss enables us to efficiently forget a subset of the

user data without compromising the accuracy of the model.

In terms of the time-complexity, we only need 2-3 passes

over the dataset per forgetting query for removing informa-

tion from the weights rather than the 50 re-training epochs,

thus, providing a 16⇥ or more speed-up per request (see

Figure 2). We test the forgetting procedure against various

read-out functions, and show that it performs comparably to

a model re-trained from scratch (the ideal paragon). Finally,

we also provide theoretical guarantees on the amount of re-

maining information in the weights and verify the behav-

ior of the information bounds empirically through extensive

evaluation in Figure 2.

Our forgetting procedure heavily relies on the strongly

convex nature of the loss landscape which is induced by L2

regularization (increasing it improves forgetting but com-

promises accuracy). The quality of forgetting also relies on

the subset of data to be forgotten, however, we will leave

this for the future work. Even though we provide a forget-

ting procedure for deep networks by linearizing them with-

out compromising their accuracy, directly removing infor-

mation from highly non-convex deep networks efficiently

still remains an unsolved problem at large.

799

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep

learning with differential privacy. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 308–318. ACM, 2016.

[2] Alessandro Achille, Aditya Golatkar, Avinash Ravichan-

dran, Marzia Polito, and Stefano Soatto. Lqf: Linear

quadratic fine-tuning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2021.

[3] Alessandro Achille and Stefano Soatto. Where is the Infor-

mation in a Deep Neural Network? arXiv e-prints, page

arXiv:1905.12213, May 2019.

[4] Raef Bassily, Mikhail Belkin, and Siyuan Ma. On expo-

nential convergence of sgd in non-convex over-parametrized

learning. arXiv preprint arXiv:1811.02564, 2018.

[5] Thomas Baumhauer, Pascal Schöttle, and Matthias Zep-

pelzauer. Machine unlearning: Linear filtration for logit-

based classifiers. arXiv preprint arXiv:2002.02730, 2020.

[6] Lucas Bourtoule, Varun Chandrasekaran, Christopher

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,

David Lie, and Nicolas Papernot. Machine unlearning. arXiv

preprint arXiv:1912.03817, 2019.

[7] Jonathan Brophy and Daniel Lowd. Dart: Data addition and

removal trees. arXiv preprint arXiv:2009.05567, 2020.

[8] Yinzhi Cao and Junfeng Yang. Towards making systems for-

get with machine unlearning. In 2015 IEEE Symposium on

Security and Privacy, pages 463–480. IEEE, 2015.

[9] Kamalika Chaudhuri and Claire Monteleoni. Privacy-

preserving logistic regression. Advances in neural informa-

tion processing systems, 21:289–296, 2008.

[10] Kamalika Chaudhuri, Claire Monteleoni, and Anand D

Sarwate. Differentially private empirical risk minimiza-

tion. Journal of Machine Learning Research, 12(Mar):1069–

1109, 2011.

[11] Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-

dations of differential privacy. Foundations and Trends R� in

Theoretical Computer Science, 9(3–4):211–407, 2014.

[12] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Va-

sudevan. Formalizing data deletion in the context of the right

to be forgotten. arXiv preprint arXiv:2002.10635, 2020.

[13] Antonio Ginart, Melody Guan, Gregory Valiant, and

James Y Zou. Making ai forget you: Data deletion in ma-

chine learning. In Advances in Neural Information Process-

ing Systems, pages 3513–3526, 2019.

[14] Ryan Giordano, William Stephenson, Runjing Liu, Michael

Jordan, and Tamara Broderick. A swiss army infinitesimal

jackknife. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1139–1147, 2019.

[15] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.

Eternal sunshine of the spotless net: Selective forgetting in

deep networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9304–

9312, 2020.

[16] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.

Forgetting outside the box: Scrubbing deep networks of

information accessible from input-output observations. In

European Conference on Computer Vision, pages 383–398.

Springer, 2020.

[17] Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-

entropy vs. squared error training: a theoretical and experi-

mental comparison. In Interspeech, volume 13, pages 1756–

1760, 2013.

[18] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256

object category dataset. 2007.

[19] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van

Der Maaten. Certified data removal from machine learning

models. In Hal Daumé III and Aarti Singh, editors, Pro-

ceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning

Research, pages 3832–3842. PMLR, 13–18 Jul 2020.

[20] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.

On calibration of modern neural networks. In Doina Precup

and Yee Whye Teh, editors, Proceedings of the 34th Interna-

tional Conference on Machine Learning, volume 70 of Pro-

ceedings of Machine Learning Research, pages 1321–1330,

International Convention Centre, Sydney, Australia, 06–11

Aug 2017. PMLR.

[21] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster,

generalize better: Stability of stochastic gradient descent. In

Maria Florina Balcan and Kilian Q. Weinberger, editors, Pro-

ceedings of The 33rd International Conference on Machine

Learning, volume 48 of Proceedings of Machine Learning

Research, pages 1225–1234, New York, New York, USA,

20–22 Jun 2016. PMLR.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[23] Like Hui and Mikhail Belkin. Evaluation of neural architec-

tures trained with square loss vs cross-entropy in classifica-

tion tasks. In International Conference on Learning Repre-

sentations, 2021.

[24] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and

James Zou. Approximate data deletion from machine learn-

ing models. In Arindam Banerjee and Kenji Fukumizu,

editors, Proceedings of The 24th International Conference

on Artificial Intelligence and Statistics, volume 130 of Pro-

ceedings of Machine Learning Research, pages 2008–2016.

PMLR, 13–15 Apr 2021.

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-

ral tangent kernel: Convergence and generalization in neural

networks. In Advances in neural information processing sys-

tems, pages 8571–8580, 2018.

[26] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Fei-Fei Li. Novel dataset for fine-grained image

categorization: Stanford dogs.

[27] Pang Wei Koh and Percy Liang. Understanding black-box

predictions via influence functions. In Doina Precup and

Yee Whye Teh, editors, Proceedings of the 34th Interna-

tional Conference on Machine Learning, volume 70 of Pro-

ceedings of Machine Learning Research, pages 1885–1894,

International Convention Centre, Sydney, Australia, 06–11

Aug 2017. PMLR.

800

[28] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Be-

ing bayesian, even just a bit, fixes overconfidence in ReLU

networks. In Hal Daumé III and Aarti Singh, editors, Pro-

ceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning

Research, pages 5436–5446. PMLR, 13–18 Jul 2020.

[29] Alex Krizhevsky et al. Learning multiple layers of features

from tiny images. Technical report, Citeseer, 2009.

[30] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du,

Wei Hu, Ruslan Salakhutdinov, and Sanjeev Arora. En-

hanced convolutional neural tangent kernels. arXiv preprint

arXiv:1911.00809, 2019.

[31] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew

Blaschko, and Andrea Vedaldi. Fine-grained visual classi-

fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[32] Baharan Mirzasoleiman, Amin Karbasi, and Andreas

Krause. Deletion-robust submodular maximization: Data

summarization with “the right to be forgotten”. In Interna-

tional Conference on Machine Learning, pages 2449–2458,

2017.

[33] Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as fea-

tures for deep representation learning. In International Con-

ference on Learning Representations, 2020.

[34] Vidya Muthukumar, Adhyyan Narang, Vignesh Subrama-

nian, Mikhail Belkin, Daniel Hsu, and Anant Sahai. Clas-

sification vs regression in overparameterized regimes: Does

the loss function matter? arXiv preprint arXiv:2005.08054,

2020.

[35] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.

Descent-to-delete: Gradient-based methods for machine un-

learning. In Algorithmic Learning Theory, pages 931–962.

PMLR, 2021.

[36] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick

Jaillet. Variational bayesian unlearning. Advances in Neural

Information Processing Systems, 33, 2020.

[37] Barak A Pearlmutter. Fast exact multiplication by the hes-

sian. Neural computation, 6(1):147–160, 1994.

[38] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. Cnn features off-the-shelf: an astound-

ing baseline for recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition work-

shops, pages 806–813, 2014.

[39] David Marco Sommer, Liwei Song, Sameer Wagh, and Pra-

teek Mittal. Towards probabilistic verification of machine

unlearning. arXiv preprint arXiv:2003.04247, 2020.

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011.

[41] Yinjun Wu, Edgar Dobriban, and Susan Davidson. Delta-

grad: Rapid retraining of machine learning models. In In-

ternational Conference on Machine Learning, pages 10355–

10366. PMLR, 2020.

801

