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Abstract

Open compound domain adaptation (OCDA) is a do-

main adaptation setting, where target domain is modeled as

a compound of multiple unknown homogeneous domains,

which brings the advantage of improved generalization to

unseen domains. In this work, we propose a principled

meta-learning based approach to OCDA for semantic seg-

mentation, MOCDA, by modeling the unlabeled target do-

main continuously. Our approach consists of four key steps.

First, we cluster target domain into multiple sub-target do-

mains by image styles, extracted in an unsupervised man-

ner. Then, different sub-target domains are split into inde-

pendent branches, for which batch normalization parame-

ters are learnt to treat them independently. A meta-learner

is thereafter deployed to learn to fuse sub-target domain-

specific predictions, conditioned upon the style code. Mean-

while, we learn to online update the model by model-

agnostic meta-learning (MAML) algorithm, thus to further

improve generalization. We validate the benefits of our ap-

proach by extensive experiments on synthetic-to-real knowl-

edge transfer benchmark, where we achieve the state-of-the-

art performance in both compound and open domains.

1. Introduction

Semantic segmentation with minimal supervision is one

of the most sought-after goals of image understanding [23,

56]. Unfortunately, the learned understanding in one do-

main does not generalize to the images from other do-

mains [4]. In such cases, domain adaptation aims at trans-

ferring the shared knowledge across different but related

domains [41], i.e., source and target, using the unlabeled

images from the target. When the target domain images

are collected in mixed, continually varying, and even un-

seen conditions, understanding images invites the problem

of open compound domain adaptation [35].

(b) Cluster/Split

(c) Fuse (d) Update

(a) Traditional Domain Adaptation

Figure 1: (a) The traditional unsupervised domain adapta-

tion (UDA) vs. (b,c,d) the proposed meta-based open com-

pound domain adaptation (MOCDA). Unlike the traditional

UDA, MOCDA treats target as a compound of multiple un-

known sub-domains. These sub-domains are discovered

and processed using the cluster and the split module (b).

The fuse module (c) then combines the sub-domain splits

as basis (dash lines). On open domains, MOCDA adapts

through online update during inference (blue arrow) in (d).

Meta-learning serves in the fuse and the update module.

The Open Compound Domain Adaptation (OCDA)

treats the target as a compound of multiple unknown sub-

domains. Such assumption has been shown to be very

promising by Liu et al. [35] for many practical settings of

image classifications. However, the method developed in

[35] does not fully exploit the same assumption for the task

of image segmentation. 1 In this work, we show that the

1OCDA [35] does not fully exploit the domain information for seg-
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homogeneous sub-domain assumption can be exploited ef-

fectively also for image segmentation. We propose a novel

meta-learning based approach to OCDA (abbreviated as

MOCDA) that consists of four modules: cluster; split; fuse;

and update, as illustrated in Fig. 1.

Similar to OCDA, the proposed MOCDA utilizes two

image sets for training from: a single labeled source do-

main; and a diverse unlabeled target domain, which is

assumed to be a compound of multiple unknown sub-

domains. Such an assumption is suitable for real challeng-

ing situations, where the target domain is a combination of

many factors including diverse weather, cities, and acqui-

sition time [45, 13, 40]. The considered learning setup not

only performs domain adaptation to the compound target

domain, but also has generalization potential to unseen open

domains. In this context, the process of domain adapta-

tion happens to exhibit a meta-behaviour [29, 3, 12], which

learned dynamically makes the open world semantic seg-

mentation possible. In this work, we show that the meta-

behaviour of OCDA can be learned using (a) a hypernet-

work for dynamic fusion of knowledge, and (b) the online

update. On the one hand, the update process – which is

carried out using the model-agnostic meta-learning strategy

– creates an opportunity for better open set generalization

with only one gradient step. On the other hand, the learned

dynamic fusion allows images to appear from the continu-

ous manifold of the compound target domain.

In essence, the proposed framework serves in following

four steps. (i) From target images, style codes are extracted

and grouped into multiple clusters. (ii) For each cluster,

a set of batch normalization (BN) parameters are learned.

(iii) Corresponding to each cluster, each image can have

different domain-specific predictions. The hypernetwork,

then, learns to fuse these predictions. (iv) Model-agnostic

meta-learning (MAML) [15] is exploited during hypertrain-

ing process, endowing the online update ability of the model

on open domain during inference stage. The key contribu-

tions of this paper can be summarized as follows:

• We propose a novel framework for semantic segmen-

tation in the OCDA setting. We use meta-learning in

the dynamic fusion and MAML strategy based online

update, to address the limitations of [35].

• We propose to model the compound target domain

continuously, taking the sub-target domain as the ba-

sis, which offers the advantage of adapting to target

domain and generalizing to unseen open domains.

• We demonstrate the adequacy of image style features,

learned in an unsupervised manner, for our meta-based

method MOCDA.

mentation task due to the inaccessibility of the domain encoder. Refer the

original paper [35] for details.

• The proposed method provides the state-of-the-art re-

sults in synthetic-to-real knowledge transfer bench-

mark datasets, for both compound and open domains.

2. Related Works

Unsupervised Domain Adaptation and Generalization.

Our work is related to domain adaptation [51, 41, 57, 18,

60, 44] and domain generalization [29, 28, 33, 30] works.

Unsupervised domain adaptation aims at training a model

on the labeled source domain and transferring the learned

knowledge to the unlabeled target domain. The traditional

unsupervised domain adaptation works [38, 16, 39, 59] typ-

ically focus on solving adaptation problem from a single

source domain to a single target domain. Even though being

effective in several tasks, the single target domain assump-

tion is still restricted in many practical applications. Re-

cently, multiple-target domain adaptation problem [12, 17]

has received increasing research interests. The problem in-

vestigates knowledge transfer to multiple unlabeled target

domains. Yet another important aspect not prioritized by

the classical domain adaptation methods is the knowledge

transfer to unseen but related open domains [35, 19, 31].

Cross-Domain Semantic Segmentation. In order to im-

prove the adaptation and the generalization ability of the

semantic segmentation model [7, 63, 50, 37, 9, 8], cross-

domain semantic segmentation topic is extensively studied,

both in the domain adaptation setting [68, 53, 71, 11, 10, 62]

and in the domain generalization setting [61, 14, 19, 47, 35].

Most works either assume the target domain as a single do-

main [53, 68, 52, 22, 11, 10, 71], or a composition of mul-

tiple known domains [19, 67, 69, 47], with an exception of

OCDA [35]. OCDA assumes target domain as a composi-

tion of multiple unknown domains, which is more realistic

in practice. [35] follows a different approach for seman-

tic segmentation compared to the classification task. The

curriculum learning therefore is based on the average class

confidence scores, rather than the neatly learned domain-

focused factors in case of the classification task. Neverthe-

less, the experimental setup of our work is inspired by [35].

Concurrently, [43] develops the image translation based

method for the OCDA problem, which is complementary

to our method. Besides the open domain in [35, 43], our

work further explores the generalization ability of the model

when facing more diverse extended open domains.

Meta-Learning for Domain Adaptation/Generalization.

Meta-learning addresses the problem of learning to learn

and has been successfully applied to various applications in-

cluding image classification [20], image restoration [24], vi-

sual tracking [5], and network compression [32]. The prin-

ciple of meta-learning [54, 21] has also been investigated

for the task domain adaptation [46, 27, 12] and generaliza-

tion [29, 3, 14], with the algorithmic advances [2, 15, 48].

Our work can be related to those works in terms of gen-
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eral methodology. Among those works, the ones most re-

lated are [12] and [66]. The similarities are : 1) both of

[12] and our MOCDA study the domain adaptation problem

when there are multiple unknown target domains through

meta-learning. 2) both of [66] and our MOCDA aims at im-

proving the domain generalization performance for seman-

tic segmentation model, with the help of MAML strategy.

However, we have significant differences in the following

aspects: 1) [12] utilizes the meta-learner for clustering the

target domain into different sub-target domains, and the tar-

get domain is modeled as a union of multiple sub-target do-

mains. And [12] does not include the open domain. How-

ever, our meta-hypernetwork is utilized to fuse the knowl-

edge from different clusters, to model the target domain as a

continuous compound target domain. 2) [66] does not study

the domain adaptation problem, and only focus on the do-

main generalization. The MAML strategy in [66] is only

used during training stage on the well labeled source do-

main. By contrast, MOCDA utilizes the MAML strategy in

both of the well labeled source domain and the unlabeled

target domain during the training stage. During inference,

the MAML strategy is exploited for online update.

3. The MOCDA Model

Preliminaries. We consider that the labeled source do-

main S is composed of the source images xs, and the cor-

responding semantic labels ys, i.e., S = {(xs,ys)|xs ∈
R

H×W×3,ys ∈ R
H×W }, where H,W are height and

width of the image, respectively. In OCDA, the unlabeled

target domain T consists of target images xi
t from mul-

tiple homogeneous sub-target domains, T i = {xi
t|x

i
t ∈

R
H×W×3}, i = 1, . . . N , where N is number of sub-target

domains. In the context of this work (and also in OCDA),

these sub-target domains are unknown. Therefore, the im-

ages xi
t from some unknown sub-target domain T i are sim-

ply denoted as xt, for notation convenience and clarity.

In this section, we propose the MOCDA model for se-

mantic segmentation. The MOCDA model is composed of

four modules: cluster, split, fuse, and update. The Clus-

ter module extracts and clusters the style code from the

target domain images automatically, dividing the target do-

main into multiple sub-target domains. The Split module

adopts the compound-domain specific batch normalization

(CDBN) layer to process different sub-target domain im-

ages using different branches. The Fuse module exploits a

hypernetwork to predict the weights corresponding to each

branch adaptively, conditioned on the style code of the input

image. The final output of the network is the weighted com-

bination of the outputs of different branches. The MAML

method is utilized to train the Fuse module, so as to make

the model be adapted quickly in Update module. Finally,

the Update is carried out online during the inference time

with one-gradient step, which is found to be beneficial

for open domains. The framework overview is shown in

Fig. 2a. In the following, we provide the details of all four

modules, separately.

3.1. Cluster: Style Code Extraction and Clustering

The aim of the cluster module is to cluster the tar-

get domain T into different sub-target domains T k, k =
1, . . . ,K, serving the OCDA’s assumptions of unknown

multiple sub-target domains of the target domain. As shown

in [35, 26], the major differences of the target domain im-

ages due to varying conditions, such as the weather, light-

ing, and inter-dataset, can be effectively reflected by the

style of the images. Our cluster module consists of two

mappings; Ec(·) and El(·). Ec(·) maps the target do-

main T to the style code domain Ct = {ct|ct ∈ R
l} as

Ec : T → Ct, where l is the dimension of the style code.

More specifically, the target domain image xt is mapped to

a low-dimension style code ct = Ec(xt). Then a clustering

algorithm, K-means [36], is adopted to automatically clus-

ter the style code domain Ct, partitioning into K clusters

with centroids {ckt }. We use the mapping El(·) to assign

xt to one of the sub-target domains, represented by the set

K = {k|k = 1, . . . ,K}, as El : T → K. Here, we adopt

the nearest neighbor strategy for El(·). More specifically,

each target image is assigned to the nearest cluster, using

the Euclidean distance between style codes of the image and

the centroids, given by,

El(xt) := argmin
k

‖ct − ckt ‖. (1)

The key of our cluster module is to find an adequate map-

ping Ec(·). In this work, the unsupervised image translation

framework MUNIT [26] is trained to translate between the

source domain S and the target domain T . During the trans-

lation training process, the style code encoder of MUNIT is

trained to extract the style code from images unsupervis-

edly. The trained style encoder of MUNIT is used as Ec(·).
Then, the target domain T is clustered into K sub-target

domains T k, where the number of sub-target domains K is

a hyperparameter. Using the nearest neighbour search, re-

fer Eq. (1), each target image xt is assigned to one of the

sub-target domains T k. Henceforth, the image xt assigned

image kth cluster is denoted as xk
t .

3.2. Split: Domain­Specific Batch Normalization

In [6], the domain-specific batch normalization (DSBN)

is shown to be beneficial for the unsupervised domain adap-

tation (UDA), by separating the batch normalization layer

for the source and target domain.

Similar to DSBN for UDA, the aim of our split mod-

ule is to separate the multiple sub-target domain-specific

information from the domain-invariant information. We

propose DSBN for OCDA (abbreviated as CDBN), to con-

duct such separation for source domain S and the multiple
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Figure 2: (a) The overview of MOCDA framework demonstrating four modules; (i) Cluster, (ii) Split, (iii) Fuse, and (iv)

Update. (b) Illustration of compound domain modeling, taking K = 3 for example. The sub-target domain P (f̃t
1
|xt, 1),

P (f̃t
2
|xt, 2) and P (f̃t

3
|xt, 3) is taken as basis. The cluster/split module models the compound target domain as the union

set of three points, i.e., red, green and blue points. But the fuse module models the compound target domain P (f̃t|xt) as the

vector H(ct) = [H(ct)
(1), H(ct)

(2), H(ct)
(3)]′, composing the purple half quarter-spherical surface.

(clustered) sub-target domains {T k}. Note that DSBN for

UDA learns only two sets of BN parameters (with possi-

ble extension given more labeled domains). However, the

proposed CDBN learns K + 1 sets of BN parameters for

source domain and multiple unlabeled sub-target domains,

i.e., BS , B
1
T , ..., B

K
T , formulated as,

BS(xs, µs, σs, βs, γs) = γs
xs − µs

σs

+ βs, (2)

Bk
T (x

k
t , µ

k
t , σ

k
t , β

k
t , γ

k
t ) = γk

t

xk
t − µk

t

σk
t

+ βk
t , (3)

where k is the sub-target domain label, k = 1, ...,K. Our

split module replaces BN layers by CDBN. As shown in

Fig. 2a, our split module includes the multi-branch seman-

tic segmentation network G = {Gs, G1, ..., GK} and the

discriminator D. Gk is formed by selecting the k-th branch

Bk of the CDBN layer. Through the adversarial learning,

the discriminator D aligns the prediction distributions of

source domain and that of the sub-target domains, in the

output space. Therefore, the full optimization objective of

the split module includes the semantic segmentation loss

and the adversarial loss, presented below.

Semantic Segmentation Loss. We train the seman-

tic segmentation network G with a standard cross entropy

loss, using the source domain image xs and the associated

ground truth label ys,

Lseg(G) = −
1

HW

HW∑

n=1

M∑

m=1

y(n,m)
s log(Gs(xs)

(n,m)), (4)

where (n,m) represents (pixel, class) indices for M classes.

Multi-Branch Adversarial Loss. Recall the cluster

module, each target image xt is assigned to a unique sub-

target domain label k, i.e., xk
t . Here in the split module, the

image xk
t is processed using only the corresponding branch

Gk, i.e., Gk(x
k
t ). Our multi-branch adversarial loss is an

extension of the adversarial loss [58], which aligns the pre-

diction distributions of the source domain Gs(xs), and the

sub-target domains {Gk(x
k
t )}. The multi-branch adversar-

ial loss Lsadv and the corresponding discriminator training

loss Lsd are formulated as,

Lsadv(G) = −
∑K

k=1 Exk
t
∼P

Tk
log(D(Gk(x

k
t ))

(n,1)),(5)

Lsd(D) = −Exs∼PS
log(D(Gs(xs))

(n,1)) (6)

−
∑K

k=1 Exk
t
∼P

Tk
log(D(Gk(x

k
t ))

(n,0)),

where PS and PTk are the underlying data distributions of

S and Tk, respectively. The following full optimization ob-

jective is used for training our split module,

Lsplit(G) = Lseg(G) + λ1Lsadv(G), (7)

where λ1 is a trades-off parameter. During the training pro-

cess, we alternatively optimize the discriminator D and the

generator G with the objective in the Eq. (6) and the Eq.

(7), respectively.

3.3. Fuse: HyperNetwork for Branches Fusion

The cluster and split module discretizes the target do-

main into a few clusters, providing an initial discrete model-

ing of the target domain. The fuse of the discretized modes

forms continuous manifold, the sample on which reflects
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the continuous change of the target domain and might cor-

respond to an unseen domain. In the fuse module, we learn

to combine the sub-target domain to model the compound

target domain continuously.

Compound Domain Modelling. Here we model the

target domain T in the corresponding feature domain F ,

which is mapped by F : T → F . Let P (f̃t
k
|xt, k) be

the feature distribution corresponding to image xt when as-

sumed to be from the kth cluster. Then the distribution of

the feature f̃t of the image xt, i.e., P (f̃t|xt), is expressed

as,

P (f̃t|xt)=

K∑

k=1

P (f̃t
k
, k|xt)=

1

N

K∑

k=1

P (k|xt)P (f̃t
k
|xt, k)

(8)

where N =
∫
f̃t

k

∑K

k=1 P (f̃t
k
|xt, k)P (k|xt)df̃t

k
. P (k|xt)

describes the probability distribution of the sub-target do-

main’s label of image xt. By taking the sub-target do-

main distributions P (f̃t
k
|xt, k) as basis, the compound

target domain can be modeled with the vector, i.e.,

{[P (1|xt), ..., P (k|xt), ..., P (K|xt)]
′}.

HyperNetwork for Branches Fusion. In essence,

the cluster and split module can be seen as modeling

the sub-target domain label distribution as P (k|xt) =
1, if El(xt) = k and P (k|xt) = 0, if El(xt) 6= k. It mod-

els the compound target domain as the discretized points

in the vector space, as illustrated in Fig. 2b. In order to

model the compound target domain in the continuous space,

in our fuse module, we adopt the categorical distribution for

P (k|xt), i.e.,

P (k|xt) = wk, with,

K∑

k=1

wk = 1, wk > 0, (9)

where w = [w1, ..., wk, ..., wK ]⊤ is the K-dimensional cat-

egorical vector, whose element wk represents the probabil-

ity that the target image xt belongs to the sub-target domain

Tk. Then the hypernetwork H(·) is adopted to learn the

P (k|xt), by taking the style code ct of the image sample xt

as input, i.e., [w1, ..., wk, ..., wK ]⊤ = H(ct). Substituting

the H(ct) in Eq. (8), the feature distribution P (f̃t|xt) can

be derived as,

P (f̃t|xt) ∼
K∑

k=1

H(ct)
(k)P (f̃t

k
|xt, k). (10)

where H(ct)
(k) is the kth element of H(ct). Eq. (10) shows

that the compound target domain is modeled in the contin-

uous vector space, H(ct), taking the sub-target domain dis-

tributions P (f̃t
k
|xt, k) as basis, as illustrated in Fig. 2b.

From above, it is shown that H(ct) weights the different

sub-target domain distribution differently to get the com-

pound target domain distribution. Here we adopt the net-

work G as our mapping F . Following [25], we reweight

each feature sample f̃t
k
= Gk(xt) with H(ct), so that the

feature sample from dominant sub-target domain has higher

weight, whereas the sample from non-dominant sub-target

domain has lower weight. The final prediction can be rep-

resented as,

ỹt =
K∑

k=1

H(ct)
(k)Gk(xt). (11)

By combining Eq. (11) and Eq. (5), the adversarial loss for

the fuse module Lfadv and the corresponding discriminator

training loss Lfd can be formulated as,

Lfadv(G,H) = −Ext∼PT
log(D(ỹt)

(n,1)) (12)

Lfd(D) = −Exs∼PS
log(D(Gs(xs))

(n,1)) (13)

−Ext∼PT
log(D(ỹt)

(n,0)).

The optimization objective of our fuse module is a combi-

nation of Eq. (4) and Eq. (12), which is given by,

Lfuse(G,H) = Lseg(G) + λ2Lfadv(G,H), (14)

where λ2 is the hyperparameter to balance between the ad-

versarial loss and the segmentation loss. During the training

process, we alternatively optimize the discriminator D and

the generator G, the hypernetwork H with the objective in

the Eq. (13) and the Eq. (14), respectively. In our MOCDA

model, the training of the fuse module is combined with the

MAML strategy, which is explained further in Section 3.4

and Algorithm 1.

3.4. Update: MAML based Online Update

In the previous OCDA work [35], the open set is only

treated as a testing set to verify the generalization ability

of the model. In contrast, in our work, the open set is also

used for updating the model online during testing, for better

generalization to the unseen domain, realized by MAML.

MAML. The MAML strategy [15] aims at learning the

optimal model parameters θ∗, which eases the adaptation

process for new tasks. In each iteration of MAML, there

are two training loops; inner and outer. Let the data of inner

and outer loops beDin andDout, respectively. In each train-

ing iteration, the model parameters θ are first updated with

the inner loop loss Lin and data Din. The updated model

is then evaluated on the outer loop loss Lout and data Dout,

to test the generalization ability of the updated model. Fur-

thermore, the evaluation performance Lout is also adopted

during update, to better generalize the model. This nested

training fashion mimics the training and testing phase of the

model. In order to endow adaptation ability, the optimiza-

tion objective of MAML is formulated as,

θ∗ = argmin
θ

Lout(θ − α∇Lin(θ, Din), Dout), (15)

8348



where α is the learning rate for updating the model.

MAML for OCDA. In our addressed problem of OCDA

for semantic segmentation, images from the set {xo} of

the unseen open domain O are available only during test-

ing. We adopt the MAML algorithm in our MOCDA during

training to be combined with the fuse module. MAML then

offers us the advantage of quick adaptation to the open set

during testing, by means of online update within one gradi-

ent step.

In the inner loop, we sample data from the target domain

T , i.e., Din = {xt}. Meanwhile, in order to update the

model without supervision, we use the unsupervised self-

entropy loss[62] Lent as the inner loop loss Lin – which

mimics the model update process during testing, given by,

Lin = Lent = −
1

HW

HW∑

n=1

C∑

c=1

ỹt
(n,c) log ỹt

(n,c)
. (16)

In the outer loop, the data is sampled from both source do-

main S and the target domain T , i.e., Dout = {xs,ys,xt}.
In order to evaluate the model’s performance on different

domains and in different way, the outer loop loss Lout uses

the optimization objective of the fuse module in Eq. (14)

and the self-entropy loss in Eq. (16), such that,

Lout = Lfuse + δLent, (17)

where δ is the hyperparameter to balance between the fuse

module loss and the unsupervised self-entropy loss. The

MAML algorithm used during OCDA training is presented

in Algorithm 1. Similarly, the MAML used during the on-

line update, of OCDA testing, is given in Algorithm 2.

3.5. Training Protocol of MOCDA

In total, our MOCDA model is trained in the multi-stage

way, consisting of three steps: i) training the MUNIT model

for style code extraction and clustering, ii) training with the

CDBN layer in split module, iii) the CDBN layer is frozen,

adding the hyper-network and the fuse module, and train-

ing the hypernetwork H and fine-tuning the semantic seg-

mentation network G with MAML strategy as described in

Algorithm 1. Then during testing stage, our whole model,

except for CDBN layer, is online updated with the MAML

strategy as clarified in Algorithm 2.

4. Experiments

In this section, we demonstrate the benefits of our

MOCDA model under the open compound domain adaptive

semantic segmentation setting. We compare our MOCDA

model with other state-of-the-art (SOTA) methods on both

of the target domain and the open domain. In order to fur-

ther prove the effectiveness of our MOCDA model for open

domain with online update, we introduce more diverse and

challenging extended open domains to test the model per-

formance additionally.

Algorithm 1 MAML algorithm for OCDA (Training)

Require: Source data S = {(xs,ys)}, target data

T = {xt}, segmentation network G, hypernetwork H , dis-

criminator D, the learning rate α of G,H , and the learning

rate ζ of discriminator D.

1: Initialize the parameters θGH and θD, respectively of

the segmentation network G, hypernetwork H , and the

discriminator D;

2: while not done do

3: Sample Din from T ⊲ Inner Loop

4: θ+GH ← θGH − α∇θGH
Lin(Din, θGH);

5: Sample Dout from S and T ⊲ Outer Loop

6: θGH ← θGH − α∇θGH
Lout(Dout, θ

+
GH);

7: θD ← θD − ζ∇θDLfd(Dout, θD);
8: end while

Algorithm 2 MAML algorithm for OCDA (Testing)

Require: Data {xo} from the unseen novel domainO, seg-

mentation network G, hypernetwork H .

1: Use trained parameters θGH of the segmentation net-

work, G and the hypernetwork H , from the training

phase;

2: F ← 0
3: for i = 1, ..., n do

4: Sample the ith image xi
o from {xo};

5: ỹi
o ← G(xi

o);

6: θGH ← θGH − η∇θGH
Lent(ỹi

o, θGH)
7: end for

4.1. Experiments Setup

Following [35], we adopt the synthetic image dataset

GTA5 [49] or SYNTHIA-SF [53] as the source domain, the

rainy, snowy, and cloudy images in BDD100K[64] as the

target domain, while the overcast images in BDD100K are

utilized as the open domain. Besides, more diverse images

from other real image datasets, Cityscapes[13], KITTI[1]

and WildDash [65] are introduced as extended open do-

mains. We adopt the the DeepLab-VGG16 model [7, 55]

with the batch normalization layer as the segmentation net-

work. The cluster numbers K is set as 4. The segmentation

network and discriminator structure is the same as [58]. The

hyperparameter λ1 and λ2 in Eq.(14) and Eq.(7) are set as

0.001. The hyperparameter δ in Eq.(17) is set as 0.0001.

4.2. GTA5 to BDD100K

Comparison with SOTA. In Table 1, we present our

open compound domain adaptation results, in comparison

with other SOTA methods. For fair comparison, all of

the methods adopt the DeepLab-VGG16 model with the

batch normalization layer. Compared with our baseline

method AdaptSegNet[58], our split module achieves 3.1%
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(a) Clustering visualization (b) Example images of different clusters
Cluster “1” Cluster “2” Cluster “3” Cluster “4”

1

2

3

4

Figure 3: Visualization of clustering results. (a) is the t-

SNE visualization of the style code extracted by the cluster

module, (b) is example images from different clusters.

Source Compound Open Avg

GTA→ Rainy Snowy Cloudy Overcast C C+O

Source Only[35] 16.2 18.0 20.9 21.2 18.9 19.1

Source Only ∗ 19.7 18.4 20.5 22.5 19.7 21.0

AdaptSegNet[35] 20.2 21.2 23.8 25.1 22.1 22.5

AdaptSegNet[58] ∗ 21.6 20.5 23.9 27.1 22.3 24.4

CBST[71] 21.3 20.6 23.9 24.7 22.2 22.6

IBN-Net[42] 20.6 21.9 26.1 25.5 22.8 23.5

PyCDA [34] 21.7 22.3 25.9 25.4 23.3 23.8

OCDA [35] 22.0 22.9 27.0 27.9 24.5 25.0

Ours (Split) 23.5 23.5 27.8 29.5 25.4 27.1

Ours (Fuse) 24.4 27.5 30.1 31.4 27.7 29.4

Table 1: Semantic segmentation performance compari-

son with SOTA: GTA→ BDD100K with DeepLab-VGG16

backbone. The results are reported on mIoU over 19

classes. ∗ means our reproduced result.

and 2.4% gain on the target domain and the open domain,

respectively. Compared with the SOTA method OCDA[35],

our split module performance outperforms by 0.9% on the

target domain and by 1.6% on the open domain. It proves

the effectiveness of our cluster module and the split mod-

ule, for sub-target domain discovery and sub-target domain-

specific information disjointing. The clustering visualiza-

tion is shown in Fig. 3. Then by adopting the meta-learning

with the hypernetwork and the MAML training strategy in

the fuse module, our MOCDA model achieves the state-of-

the-art performance, which improves the split module per-

formance by 2.3% from 25.4% to 27.7%, and by 1.9% from

29.5% to 31.4% on the target domain and the open domain,

respectively. It proves the advantage of our MOCDA model

on fusing the different sub-target domains knowledge, mod-

eling the target domain continuously through the hypernet-

work, and adopting the MAML training strategy. The qual-

itative comparison of the semantic segmentation results on

the target domain is shown in Fig. 4.

Online Update. Another meta-learning paradigm in our

MOCDA model, besides the fuse module, is the MAML

algorithm based online update during testing stage. From

Table 2, it is shown that our MOCDA model without on-

line update outperforms the baseline method AdaptSegNet

[58] on both of the open domain and the extended open do-

main by 5.6% in average. It proves the effectiveness of

our cluster, split and fuse module for open domain gener-

alization. By further using the MAML based online up-

date strategy described in Algorithm 2 during the testing

Source Open Extended Open
Avg

GTA→ BDD Cityscapes KITTI WildDash

Source[35] 21.2 – – – –

Source∗ 22.5 19.3 24.1 16.0 20.5

AdaptSegNet[35] 25.1 – – – –

AdaptSegNet[58] ∗ 27.1 22.0 23.4 17.5 22.5

w/o Online Update 31.4 30.4 29.8 20.6 28.1

w/ Online Update 31.4 31.1 30.9 21.6 28.8

Gain of Online Update – +0.7 +1.1 +1.0 +0.7

Table 2: Open domain semantic segmentation performance

comparison w/ or w/o online update: GTA→ BDD100K

with DeepLab-VGG16 backbone. The results are reported

on mIoU over 19 classes. ∗ means our reproduced result.

stage, our MOCDA model performance on all the open do-

mains improves by 0.7% in average, from 28.1% to 28.8%.

Our model w/ or w/o online update has the same perfor-

mance on the open domain, BDD100K overcast image. It

is due to that the BDD100K overcast image is still from the

BDD100K dataset, and the style gap between the overcast

image and the target domain image is very narrow, whose

visualization is shown in supplementary. The benefit from

our cluster, split and fuse module has been able to handle

the narrow style gap and have good generalization perfor-

mance already. The performance gain, 0.7%, 1.1% and

1.0% on the extended open domains where the style gap

is much larger, Cityscapes, KITTI and WildDash dataset,

proves that the MAML based meta-learning paradigm, in

Algorithm 1 for training and Algorithm 2 for testing, en-

dows the fast adaptation ability to our model to generalize

better on open domains. The qualitative comparison, w/ or

w/o online update, on the open domains are shown in Fig. 4.

Ablation Study. We show the comparison of ablations

and different variants of our model in Table 3. From Table

3, it is shown that all the modules, the cluster/split module

(Lsplit), the fuse module (Lfadv) and the MAML training

strategy are helpful to our whole MOCDA model. The clus-

ter and split module has been proven to be helpful in the

comparison with AdaptSegNet[58] and other SOTA meth-

ods. Here we show the effectiveness of our meta-learning

paradigm, the hypernetwork and the MAML training strat-

egy through the ablations and variants methods comparison.

Firstly, in order to prove the validity of our hypernetwork,

we build the baseline methods of the branch fusion in non-

adaptive way; 1), averagely fuse for prediction during the

testing stage of the split module. 2), averagely fuse during

the training and testing stage of the fuse module. 3) use the

style code distance from different clusters to weight differ-

ent branches during the training and testing stage of the fuse

module. It is shown that our hypernetwork based branch

fusion strategy performance, 27.1%, outperforms all other

non-adaptive fusion strategy, 23.1%, 26.1%, 26.6%. It ben-

efits from the advantage of adaptive weights predicted from

the hypernetwork conditioned on the image sample style

code. Secondly, by comparing the performance of train-
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Lseg Ladv Lsadv Lfadv Lent MAML mIoU

X 18.9

X X 22.3

X X 25.4

X X 23.1†

X X 26.1‡

X X 26.6§

X X 27.1

X X X 27.3

X X X X 27.7

Table 3: Different ablations and variants comparison

for OCDA, tested on BDD100k target domain based on

DeepLab-VGG16 with batch normalization layer backbone.

The results are reported on mIoU over 19 classes. † repre-

sents the average fusion only during testing. ‡ represents

the average fusion of different branches during training and

testing. § represents the style code distance weighted fusion

during training and testing.

ing the fuse module using the Lout in the Eq. (17) and

purely using the Lfuse in Eq.(14), it is shown that there

is 0.2% performance gain by adding the unsupervised en-

tropy loss, from 27.1% to 27.3%. By further introduce the

MAML training strategy in Algorithm 1 for the fuse mod-

ule, as done in our MOCDA model, the performance can be

further improved to 27.7%. It proves that the MAML train-

ing strategy is not only helpful to the open domain general-

ization as described above, but also is beneficial to improve

the adaptation performance of the model on the target do-

main. It results from that MAML training strategy mimics

the training and testing procedure with the outer loop and

inner loop and makes the model more domain adaptive.

4.3. SYNTHIA­SF to BDD100K

In this section, SYNTHIA-SF is used as the source do-

main. Following [70], we only take 11 main classes in the

SYNTHIA-SF dataset to measure the semantic segmenta-

tion performance, which are road, sidewalk, building, wall,

fence, pole, light, vegetation, sky, person and car.

Comparison with SOTA. In Table 4, we report the

quantitative comparison results between our MOCDA

model and other SOTA methods for the open compound

domain adaptation setting, from the SYNTHIA-SF to the

BDD100K. From Table 4, it is shown that our MOCDA

model outperforms MinEnt [62] and AdaptSegNet [58] on

both of the target domain and the open domain. It further

verifies the effectiveness of our MOCDA model for OCDA.

Online Update. In Table 5, the performance of our

MOCDA model for the open domain and the extended open

domain are shown. Our MOCDA model w/o online update

outperforms the AdaptSegNet method by 2.2% in average

on all the open domains. By further utilizing the online up-

date in the open domain, the peformance can be further im-

proved by 1.1% in average, from 30.1% to 31.2%. It further

Source Compound Open Avg

SYNTHIA-SF→ Rainy Snowy Cloudy Overcast C C+O

Source Only 16.5 18.2 21.4 20.6 19.2 19.8

MinEnt[62] 21.8 22.6 26.2 25.7 23.9 24.7

AdaptSegNet[58] 24.9 26.9 30.7 30.3 28.0 29.0

Ours (Split) 25.2 27.9 32.4 31.8 29.1 30.3

Ours (Fuse) 26.6 30.0 33.0 32.6 30.4 31.4

Table 4: Semantic segmentation performance comparison

with SOTA: SYNTHIA-SF→ BDD100K with DeepLab-

VGG16 backbone. The results are reported on mIoU over

11 classes. The best results are denoted in bold.

Source Open Extended Open
Avg

SYNTHIA-SF→ BDD Cityscapes KITTI WildDash

Source 20.6 24.7 20.7 17.3 20.8

AdaptSegNet[58] 30.3 35.9 24.7 20.7 27.9

w/o Online Update 32.6 29.9 33.2 24.5 30.1

w/ Online Update 32.6 32.2 34.2 25.8 31.2

Gain of Online Update – +2.3 +1.0 +1.3 +1.1

Table 5: Open domain semantic segmentation performance

comparison w/ or w/o online update: SYNTHIA-SF→
BDD100K with DeepLab-VGG16 backbone. The results

are reported on mIoU over 11 classes.
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Figure 4: Qualitative comparison of semantic segmentation

results on the target domain, including the rainy, snowy and

cloudy weather, and on the open domains, KITTI, Wild-

Dash and Cityscapes.

proves the validity of the online update for the open domain.

5. Conclusion

In this paper, we address the problem of open com-

pound domain adaptation, and propose a meta-learning

based model, MOCDA. MOCDA is composed of four mod-

ules, cluster, split, fuse and update module. Meta-learning

serves in fuse and update module for continuously modeling

the compound target domain and online update. The exten-

sive experiments show that our model achieves the state-of-

the-art performance on different benchmarks, proving the

effectiveness of our proposed MOCDA model.
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