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Abstract

We propose MaxUp, a simple and effective technique

for improving the generalization performance of machine

learning models, especially deep neural networks. The idea

is to generate a set of augmented data with some random

perturbations or transforms, and minimize the maximum,

or worst case loss over the augmented data. By doing so,

we implicitly introduce a smoothness or robustness regu-

larization against the random perturbations, and hence im-

prove the generation performance. For example, in the case

of Gaussian perturbation, MaxUp is asymptotically equiv-

alent to using the gradient norm of the loss as a penalty to

encourage smoothness. We test MaxUp on a range of tasks,

including image classification, 3D point cloud classifica-

tion, and adversarial certification, on which MaxUp con-

sistently outperforms the baseline methods, without intro-

ducing substantial computational overhead. In particular,

we improve ImageNet classification from the top-1 accuracy

85.5% without extra data to 85.8%.

1. Introduction

A central theme of machine learning is to alleviate the

issue of over-fitting and improve the generalization perfor-

mance on testing data. This is often achieved by leveraging

important prior knowledge of the models and data of inter-

est. For example, the regularization-based methods intro-

duce penalty on the complexity of the model, which often

amount to enforcing certain smoothness properties. Data

augmentation techniques, on the other hand, leverage im-

portant invariance properties of the data (such as the shift

and rotation invariance of images) to improve the perfor-

mance. Novel approaches that exploit important knowledge

of the models and data hold the potential of substantially

improving the performance of machine learning systems.

We propose MaxUp, a simple yet powerful training

method to improve the generalization performance and alle-

viate the over-fitting issue. Different from standard methods

that minimize the average risk on the observed data, MaxUp

generates a set of random perturbations or transforms of

each observed data point, and minimizes the average risk

of the worst augmented data of each data point. This al-

lows us to enforce robustness against the random perturba-

tions and transforms, and hence improve the generalization

performance. MaxUp can easily leverage arbitrary state-of-

the-art data augmentation schemes [e.g. 5, 6, 8, 26, 33] and

substantially improves over them by minimizing the worst

(instead of average) risks on the augmented data, without

adding significant computational ahead.

Theoretically, in the case of Gaussian perturbation, we

show that MaxUp effectively introduces a gradient-norm

regularization term that serves to encourage the smoothness

of the loss function, which does not appear in standard data

augmentation methods that minimize the average risk.

MaxUp can be viewed as a “lightweight” variant of

adversarial training against adversarial input perturbations

[e.g. 16, 24], but is mainly designed to improve the gener-

alization on the clean data, instead of robustness on per-

turbed data (although MaxUp does also increase the ad-

versarial robustness in Gaussian adversarial certification as

we shown in our experiments (Section 4.3)). In addition,

compared with standard adversarial training methods such

as projected gradient descent (PGD) [16], MaxUp is much

simpler and computationally much faster, and can be easily

adapted to increase various robustness defined by the corre-

sponding data augmentation schemes.

We test MaxUp on several challenging tasks: image

classification, point cloud classification, certified defense

against adversarial examples [4], and language modeling

(see Appendix). We find that MaxUp can leverage differ-

ent state-of-the-art data augmentation methods and boost

their performance to achieve new state-of-the-art on a range

of tasks, datasets, and neural architectures. In particular,

we set up strong results on ImageNet classification with-

out extra data, which improves the 85.5% top-1 accuracy of

[28] to 85.8%. For the adversarial certification task, we find

Maxup allows us to train better certified robust classifiers

than prior arts such as the PGD-based method by [18].
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2. Main Method

We start with introducing the main idea of MaxUp, and

then discuss its effect of introducing smoothness regulariza-

tion in Section 2.1.

ERM Giving a dataset Dn = {xi}ni=1 ⊂ R
d, learning of-

ten reduces to a form of empirical risk minimization (ERM):

min
θ

Ex∼Dn
[L(x,θ)] , (1)

where θ is a parameter vector of interest (e.g., the weights of

a neural network), and L(x,θ) denotes the loss associated

with data point x (x can include both label and feature). A

key issue of ERM is the risk of over-fitting, especially when

the data information is insufficient.

MaxUp We propose MaxUp to alleviate over-fitting. The

idea is to generate a set of random augmented data and min-

imize the maximum loss over the augmented data.

Formally, for each data point x in Dn, we generate a set

of perturbed data points {x′
i}mi=1 that are similar to x, and

estimate θ by minimizing the maximum loss over {x′
i}:

MaxUp: min
θ

Ex∼Dn

[

max
i∈[m]

L(x′
i,θ)

]

. (2)

This loss can be easily minimized with stochastic gradient

descent (SGD). Note that the gradient of the maximum loss

is simply the gradient of the worst copy, that is,

∇θ

(

max
i∈[m]

L(x′
i,θ)

)

= ∇θL(x
′
i∗ ,θ), (3)

where i∗ = argmaxi∈[m] L(x
′
i,θ). This yields a simple

and practical algorithm shown in Algorithm 1.

In our work, we assume the augmented data {x′
i}mi=1 is

i.i.d. generated from a distribution P(·|x). The P(·|x) can

be based on small perturbations around x, e.g., P(·|x) =
N (x, σ2I), the Gaussian distribution with mean x and

isotropic variance σ2. The P(·|x) can also be constructed

based on data transformations that are widely used in the

data augmentation literature, such as random crops, equal-

izing, rotations, and clips for images [see e.g 5, 6, 8].

2.1. MaxUp as a Smoothness Regularization

We provide a theoretical interpretation of Maxup as in-

troducing an extra gradient-norm regularization over stan-

dard data augmentation to encourage smoothness. Different

from the maximum loss (2) in MaxUp, typical data augmen-

tation methods minimize the average loss, that is,

min
θ

Ex∼Dn

[

1

m

m
∑

i=1

L(x′
i,θ)

]

. (4)

It turns out the key difference between (2) and (7) is that (2)

implicitly introduces an additional smoothness regulariza-

tion. To set up notation, we define

Lmax
P,m (x,θ) = EP(·|x)

[

max
i∈[m]

L(x′
i,θ)

]

,

Lavg
P,m(x,θ) = EP(·|x)

[

1

m

m
∑

i=1

L(x′
i,θ)

]

,

(5)

where Lmax
P,m (x,θ) and Lavg

P,m(x,θ) denote the expected

MaxUp and typical average risk on data point x with m aug-

mented copies. By the unbiasedness of averaging, MaxUp

with m = 1 is equivalent to the average loss in exapectation,

that is, Lmax
P,1 (x,θ) = Lavg

P,m(x,θ), ∀m. The theorem be-

low shows that MaxUp with m > 1 effectively introduces a

gradient-norm regularization over the averaging-based data

augmentation without explicitly calculating the gradient.

Theorem 1 (MaxUp as Gradient-Norm Regularization).

Assume L(x,θ) is second-order differentiable w.r.t. x ∈
R

d. Assume the variance of P(·|x) is bounded by σ2.

1) We have for every positive integer m,

Lmax
P,m (x,θ) = Lavg

P,m(x,θ) + Φ(x,θ) + O(σ2),

with c−
P,m ‖∇xL(x,θ)‖ ≤ Φ(x,θ) ≤ c+

P,m ‖∇xL(x,θ)‖ ,
(6)

where c+
P,m ≥ c−

P,m ≥ 0 are two non-negative coefficients.

We have c−
P,m > 0 if α⊤x′

1 is not deterministic for any

α ∈ R
d with ‖α‖ = 1. Here ‖·‖ can be any notion of

vector norm in R
d.

2) If P(·|x) = N (µ, σ2I) and ‖·‖ is the L2 norm, then

the inequality in (6) becomes equality, and c+
P,m = c−

P,m ≍
σ
√
logm, where ≍ denotes asymptotical equality.

Therefore, unless m = 1 or P(·|x) is deterministic along

some direction, MaxUp effectively introduces an extra

Lipschitz-like regularization cP,m ‖∇xL(x,θ)‖2 over the

standard data augmentation, which encourages the smooth-

ness of L(x,θ) w.r.t. the input x. The strength of the reg-

ularization is controlled by cP,m, which increases with the

number of samples m. Please refer to appendix for details.

Proof of Theorem 1. Let x′′
1 be an independent copy of x′

1.

Using Taylor expansion, we have

Lmax
P,m (x,θ)

= E

[

max
i∈[m]

L(x′
i,θ)

]

= Lavg
P,m(x,θ) + E

[

max
i∈[m]

(L(x′
i,θ)− L(x′′

1 ,θ))

]

= Lavg
P,m(x,θ) + E

[

max
i∈[q]
〈∇xL(x,θ), x

′
i − x′′

1〉
]

+O(σ2).
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Algorithm 1 MaxUp with Stochastic Gradient Descent

Input: Dataset Dn = {xi}ni=1; transformation distribution P(·|x); number of augmented data m; initialization θ0; SGD

parameters (batch size, step size η, etc).

Repeat

Draw a mini-batchM from Dn, and update θ via

θ ← θ − ηEx∼M

[

∇θ

(

max
i∈[m]

L(x′
i,θ)

)]

,

where {x′
i}mi=1 are drawn i.i.d. from P(·|x) for each x in the mini batchM. See Equation 3.

Until Convergence.

Define g := ∇xL(x,θ), and α = g/ ‖g‖. The second

term becomes

E

[

max
i∈[m]

g⊤(xi − x′′
1)

]

= ‖g‖E
[

max
i∈[m]

(g/ ‖g‖)⊤(xi − x′′
1)

]

= ‖g‖E
[

max
i∈[m]

α⊤(xi − x′′
1)

]

.

Define

c+
P,m = sup

α : ‖α‖=1

E

[

max
i∈[m]

α⊤(x′
i − x′′

1)

]

,

c−
P,m = inf

α : ‖α‖=1
E

[

max
i∈[m]

α⊤(x′
i − x′′

1)

]

.

This yields

c−
P,m ‖g‖ ≤ E

[

max
i∈[m]

g⊤(xi − x′′
1)

]

≤ c+
P,m ‖g‖ .

Obviously, we have c+
P,m ≥ c−

P,m ≥ c−
P,1 = 0.

Consider c−
P,m = infα : ‖α‖=1 E

[

maxi∈[m] α
⊤(x′

i − x′′
1)
]

.

Because {α : ‖α‖ = 1} is compact and the objective is

lower bounded by zero, there must be an α∗ such that

c−
P,m = E

[

maxi∈[m] α
⊤
∗ (x

′
i − x′′

1)
]

. Following Lemma 1

below, we must have c−
P,m > 0, because otherwise

α⊤
∗ x

′
i would be a deterministic random variable, which

contradicts with the assumption.

Assume xi is a Gaussian distributionN (µ, σ2I) and ‖·‖
is the L2 norm. Define zα = α⊤(x′

i−x′′
1), then zα follows

standard Gaussian distribution, independent of the value of

α, and hence the inequality becomes equality.

In addition, from the results of [13, 17], when P(· | x) is

N (µ, σ2I), we have c+
P,m = c−

P,m ≍ σ
√
logm.

Lemma 1. Assume Z, Z1, . . . , Zm are i.i.d. random vari-

ables, and m ≥ 2. If E[maxi∈[m] Zi] = E[Z], then Z
equals some constant with probability one.

Proof. Let Y = maxi∈[m] Zi. Then we have Y ≥ Z1 de-

terministically, and hence

E[Y ] ≥ E[Z1] = E[Z].

Therefore, if E[Y ] = E[Z], we must have Y = Z1 w.r.t.

probability one, which implies that Z1 = Z2 = · · · = Zm

with probability one. This suggests that var(Z) = 0 =
E[(Z1 − Z2)

2]/2 = 0 and hence Z equals to a constant

deterministically.

3. Related Methods and Discussion

MaxUp is closely related to both data augmentation and

adversarial training. It can be viewed as an adversarial vari-

ant of data augmentation, in that it minimizes the worst (or

worse) case loss on the perturbed data, instead of an av-

erage loss like typical data augmentation methods. MaxUp

can also be viewed as a “lightweight” variant of adversarial

training, in that the maximum loss is calculated by simple

random sampling, instead of more accurate gradient-based

optimization for finding the adversarial loss, such as pro-

jected gradient descent (PGD).

MaxUp is much simpler and faster than the PGD-based

adversarial training, and is more suitable for our purpose of

alleviating over-fitting on clean data (instead of adversarial

defense). Furthermore, PGD-based adversarial training is

usually believed to do hurt to generalization. We now elab-

orate on these connections in depth.

3.1. Data Augmentation

Data augmentation has been widely used in machine

learning, especially on image data which admits a rich

set of transforms (e.g. translation, rotation, random crop-

ping for image). Recent augmentation techniques, such as

MixUp [33], CutMix [31] and manifold MixUp [26] have

been found highly useful in training deep neural networks,

especially in achieving state-of-the-art results on important

image classification benchmarks such as SVHN, CIFAR

and ImageNet. More recently, more advanced methods have

been developed to find the optimal data augmentation poli-
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cies using reinforcement learning or adversarial generative

network [e.g. 2, 3, 5, 6, 35].

MaxUp can easily leverage these advanced data augmen-

tation techniques to achieve good performance. The key

difference, however, is that MaxUp in (2) minimizes the

maximum loss on the augmented data, while typical data

augmentation methods minimize the average loss, that is,

min
θ

Ex∼Dn

[

1

m

m
∑

i=1

L(x′
i,θ)

]

, (7)

which we refer to as standard data augmentation through-

out the paper. It turns out (2) and (7) behave very differ-

ent as regularization mechanisms, in that (7) does not in-

troduce the gradient-norm regularization as (2), and hence

does not have the benefit of having gradient-norm regular-

ization. This is because the first-order term in the Taylor

expansion is canceled out due to the averaging in (7).

Specifically, let P(·|x) be any distribution whose expec-

tation is x and L(x,θ) is second-order differentiable w.r.t

x. Define the expected loss related to (7) on data point x:

L̂P,m(x,θ) := E{x′

i
}m

i=1
∼P(·|x)m

[

1

m

m
∑

i=1

L(x′
i,θ)

]

. (8)

Then with a simple Taylor expansion, we have

L̂P,m(x,θ) = L(x,θ) +O(σ2),

which misses the gradient-norm regularization term when

compared with MaxUp decomposition in Theorem 1.

Note that the MaxUp update is computationally faster

than the solving (7) with the same m, because we only need

to backpropagate on the worst augmented copy for each

data point (see Equation 3), while solving (7) requires to

backpropagate on all the m copies at each iteration.

3.2. Adversarial Training

Adversarial training has been developed to defense vari-

ous adversarial attacks on the data inputs [16]. It estimates

θ by solving the following problem:

min
θ

Ex∼Dn

[

max
x′∈B(x,r)

L(x′,θ)

]

, (9)

where B(x, r) represents a ball centered at x with radius r
under some metrics (e.g. ℓ0, ℓ1, ℓ2, or ℓ∞ distances). The

inner maximization is often solved by running projected

gradient descent (PGD) for a number of iterations.

MaxUp in (2) can be roughly viewed as solving the in-

ner adversarial maximization problem in (9) using a “mild”,

or “lightweight” optimizer by randomly drawing m points

from P(·|x) and finding the best. Such mild adversarial op-

timization increases the robustness against the random per-

turbation it introduces, and hence enhance the generaliza-

tion performance. Adversarial ideas have also been used

to improvement generalization in a series of recent works

[e.g., 28, 36].

Different from our method, typical adversarial training

methods, especially these based PGD [16], tend to solve the

adversarial optimization much more aggressively to achieve

higher robustness, but at the cost of scarifying the accuracy

on clean data. There has been shown a clear trade-off be-

tween the accuracy of a classifier on clean data and its ro-

bustness against adversarial attacks [see e.g., 19, 25, 30, 34].

By using a mild adversarial optimizer, MaxUp strikes a bet-

ter balance between the accuracy on clean data and adver-

sarial robustness.

Besides, MaxUp is much more computationally efficient

than PGD-based adversarial training, because it does not in-

troduce additional back-propagation steps as PGD. In prac-

tice, MaxUp can be equipped with various complex data

augmentation methods (in which case P(·|x) can be dis-

crete distributions), while PGD-based adversarial training

mostly focuses on perturbations in ℓp balls.

3.3. Online Hard Example Mining

Online hard example mining (OHEM) [20] is a train-

ing method originally developed for region-based objective

detection, which improves the performance of neural net-

works by picking the hardest examples within mini batches

of stochastic gradient descent (SGD). It can be viewed as

running SGD for minimizing the following expected loss

min
θ

EM

[

max
x∈M

L(x,θ)

]

,

which amounts to randomly picking a mini-batchM at each

iteration and minimizing the loss of the hardest example

within M. By doing so, OHEM can focus more on the

hard examples and hence improves the performance on bor-

derline cases. This makes OHEM particularly useful for

class-imbalance tasks, e.g. object detection [20], person re-

identification [15].

Different with MaxUp, the hardest examples in OHEM

are selected in mini-batches consisting of independently se-

lected examples, with no special correlation or similarity.

Mathematically, it can be viewed as reweighing the data

distribution to emphasize harder instances. This is sub-

stantially different from MaxUp, which is designed to en-

force the robustness against existing random data augmen-

tation/perturbation schemes. Furthermore, standard PGD

algorithm breaks the generalization and cannot improve the

accuracy.

4. Experiments

We test our method using both image classification and

3D point cloud classification for which a variety of strong

regularization techniques and data augmentation methods
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Method Top-1 error Top-5 error

Vanilla [11] 76.3 -

Dropout [21] 76.8 93.4

DropPath [14] 77.1 93.5

Manifold Mixup [26] 77.5 93.8

AutoAugment [5] 77.6 93.8

Mixup [33] 77.9 93.9

DropBlock [9] 78.3 94.1

CutMix [31] 78.6 94.0

MaxUp+CutMix 78.9 94.2

Table 1. Summary of top1 and top5 accuracies on the validation

set of ImageNet for ResNet-50.

have been proposed. We show that MaxUp can outperform

all of these methods on the most challenging datasets (e.g.

ImageNet, ModelNet40) and state-of-the-art models (e.g.

ResNet, EfficientNet, DGCNN). We then apply our method

to adversarial certification via Gaussian smoothing [4], for

which we find that MaxUp can outperform both the aug-

mented data baseline and PGD-based adversarial training

baseline. Further, we accelerate MaxUp with low-resolution

image for image classification tasks. The low-resolution ap-

proach, can also be applied to video, point cloud and other

data format.

For all the tasks, if training from scratch, we first train

the model with standard data augmentation with 5 epochs

and then switch to MaxUp.

Time and Memory Cost MaxUp only slightly increase

the time and memory cost compared with standard train-

ing. During MaxUp, we only need to find the worst in-

stance out of the m augmented copies through forward-

propagation, and then only back-propagate on the worst in-

stance. Therefore, the additional cost of MaxUp over stan-

dard training is m forward-propagation, which introduces

no significant overhead on both memory and time cost. Us-

ing low-resolution images during the first forward pass, we

can further reduce the additional time cost introduced by

MaxUp.

4.1. ImageNet

We evaluate MaxUp on ILSVRC2012, a subset of Im-

ageNet classification dataset [7]. This dataset contains

around 1.3 million training images and 50,000 validation

images. We follow the standard data processing pipeline

including scale and aspect ratio distortions, random crops,

and horizontal flips in training. During the evaluation, we

only use the single-crop setting.

Implementation Details We test MaxUp with P(·|x) de-

fined by the CutMix data augmentation technique [31] (re-

ferred to as MaxUp+CutMix). CutMix randomly cuts and

pasts patches among training images, while the ground

truth labels are also mixed proportionally to the area of the

patches. MaxUp+CutMix applies CutMix on one image for

m times (cutting different randomly sampled patches), and

select the worst case to do backpropagation.

We test our method on ResNet-50, ResNet-101 [11],

as well as recent energy-efficient architectures, including

ProxylessNet [1] and EfficientNet [22]. We resize the im-

ages to 600 × 600 and 845 × 845 for EfficientNet-B7 and

EfficientNet-B8, respectively [22], for which we process the

images with the data processing pipelines proposed by [23].

For the other models, the input image size is 224 × 224.

To save computation resources, we only fine-tune the pre-

trained models with MaxUp for a few epochs. We set m = 4
for MaxUp in the ImageNet-2012 experiments unless indi-

cated otherwise. This means that we optimize the worst

case in 4 augmented samples for each image.

For ResNet-50, ResNet-101 and ProxylessNets, we train

the models for 20 epochs with learning rate 10−5 and batch

size 256 on 4 GPUs for 20 epochs. For EfficientNet, we fix

the parameters in the batch normalization layers and train

the other parameters with learning rate 10−4 and batch size

1000 for 5 epochs.

As shown in Table 2, for ResNet-50 and ResNet-101,

we achieve the best results among all the data augmentation

method. For EfficientNet-B8, we further improve the state-

of-the-art result on ImageNet with no extra data.

ResNet-50 on ImageNet Table 1 compares a num-

ber of state-of-the-art regularization techniques with

MaxUp+CutMix on ImageNet with ResNet-50.1 We can

see that MaxUp+CutMix achieves better performance com-

pared to all the strong data augmentation and regularization

baselines. From Table 1, we see that CutMix gives the best

top1 error (78.6%) among all the augmentation tasks, but

our method further improves it to 78.9%. DropBlock out-

performs all the other methods in terms of the top5 error,

but by augmenting CutMix with MaxUp, we improve the

94.1% top5 error rate obtained by DropbBlock to 94.2%.

More Results on Different Architectures Table 2 shows

the result of ImageNet on ResNet-101, ProxylessNet-

CPU/GPU/Mobile [1] and EfficientNet. We can see

that MaxUp consistently improves the results in all these

cases. On ResNet-101, it improves the 79.83% baseline

to 80.26%. On ProxylessNet-CPU and ProxylessNet-GPU,

MaxUp enhances the 75.32% and 75.08% top1 accuracy

to 75.65% and 75.42%, respectively. On ProxylessNet-

Mobile, we improve the 76.71% top1 accuracy to 77.17%.

For EfficientNet-B7, CutMix enhances the original top1

accuracy 85.0% [by 22] to 85.22%. MaxUp further im-

1All the FLOPS and model size reported in this paper is calculated by

https://pypi.org/project/ptflops.
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Model Model Size FLOPs +CutMix (%) +MaxUp+CutMix (%)

ResNet-101 44.55M 7.85G 79.83 80.26

ProxylessNet-CPU 7.12M 481M 75.32 75.65

ProxylessNet-GPU 4.36M 470M 75.08 75.42

ProxylessNet-Mobile ×1.4 6.86M 603M 76.71 77.17

EfficientNet-B7 66.35M 38.20G 85.22∗ 85.45∗

Fix-EfficientNet-B8 87.42M 101.79G 85.57∗ 85.80∗

Table 2. Top1 accuracies of different models on the validation set of ImageNet 2012. The “∗” indicates that MaxUp is applied to the

pre-trained model and trained for 5 epochs.

proves the top1 accuracy to 88.45%. On Fix-EfficientNet-

B8, MaxUp obtains the state-of-the-art 85.80% top1 accu-

racy. The previous state-of-the-art top1 accuracy, 85.50%,

is achieved by EfficientNet-L2.

4.2. CIFAR10 and CIFAR100

We test MaxUp equipped with Cutout [8] on CIFAR-

10 and CIFAR-100, and denote it by MaxUp+Cutout.

We conduct our method on several neural architectures,

including ResNet-110 [11], PreAct-ResNet-110 [12] and

WideResNet-28-10 [32]. We set m = 10 for WideResNet

and m = 4 for the other models. We use the public code2

and keep their hyper-parameters.

Implementation Details For CIFAR-10 and CIFAR-100,

we use the standard data processing pipeline (mirror+ crop)

and train the model with 200 epochs. All the results re-

ported in this section are averaged over five runs.

We train the models for 200 epochs on the training set

with 256 examples per mini-batch, and evaluate the trained

models on the test set. The learning rate starts at 0.1 and is

divided by 10 after 100 and 150 epochs for ResNet-110 and

PreAct-ResNet-110. For WideResNet-28-10, we follow the

settings in the original paper [32], where the learning rate is

divided by 10 after 60, 120 and 180 epochs. Weight decay

is set to 2.5 × 10−4 for all the models, and we do not use

dropout.

Model + Cutout + MaxUp+Cutout

ResNet-110 94.84 ± 0.11 95.41 ± 0.08

PreAct-ResNet-110 95.02 ± 0.15 95.52 ± 0.06

WideResNet-28-10 96.92 ± 0.16 97.18 ± 0.06

Table 3. Test accuracy on CIFAR10 for different architectures.

Results The results on CIFAR-10 and CIFAR-100 are

summarized in Table 3 and Table 4. We can see that the

models trained using MaxUp+Cutout significantly outper-

form the standard Cutout for all the cases.

2https : / / github . com / junyuseu / pytorch - cifar -

models

Model + Cutout + MaxUp+Cutout

ResNet-110 73.64 ± 0.15 75.26 ± 0.21

PreAct-ResNet-110 74.37 ± 0.13 75.63 ± 0.26

WideResNet-28-10 81.59 ± 0.27 82.48 ± 0.23

Table 4. Test accuracy on CIFAR100 for different architectures.

m ResNet-110 WideResNet-28-10

1 73.64 ± 0.15 81.59 ± 0.27

4 75.26 ± 0.21 81.82 ± 0.22

10 75.19 ± 0.13 82.48 ± 0.23

20 74.37 ± 0.18 82.43 ± 0.24
Table 5. Test accuracy on CIFAR100 with ResNet-110 and

WideResNet-28-10, when the sample size m varies.

On CIAFR-10, MaxUp improves the standard Cutout

baseline from 94.84% ± 0.11% to 95.41% ± 0.08% on

ResNet-110. It also improves the accuracy from 95.02% ±
0.15% to 95.52%± 0.06% on PreAct-ResNet-110.

On CIFAR-100, MaxUp obtains improvements by a

large margin. On ResNet-110 and PreAct-ResNet-110,

MaxUp improves the performance of Cutout from 73.64%±
0.15% and 74.37% ± 0.13% to 75.26% ± 0.21% and

75.63% ± 0.26%, respectively. MaxUp+Cutout also im-

proves the standard Cutout from 81.59% ± 0.27% to

82.48%± 0.23% on WideResNet-28-10 on CIFAR-100.

Ablation Study We test MaxUp with different sample

size m and investigate its impact on the performance on

ResNet-100 (a relatively small model) and WideResNet-28-

10 (a larger model).

Table 5 shows the result when we vary the sample size in

m ∈ {1, 4, 10, 20}. Note that MaxUp reduces to the naı̈ve

data augmentation method when m = 1. As shown in Ta-

ble 5, MaxUp with all m > 1 can improve the result of

standard augmentation (m = 1). Setting m = 4 or m = 10
achieves best performance on ResNet-110 , and m = 10
obtains best performance on WideResNet-28-10. We can

see that the results are not sensitive once m is in a proper

range (e.g., m ∈ [4 : 10]), and it is easy to outperform the

standard data augmentation (m = 1) without much tuning

of m. Furthermore, for models with more parameters, we
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ℓ2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75
[4] (%) 60 43 34 23 17 14 12 10 8 6 4

[18] (%) 74 57 48 38 33 29 25 19 17 14 12

Ours (%) 74 57 49 40 35 31 27 22 19 17 15

Table 6. Certified accuracy on CIFAR-10 of the best classifiers by different methods, evaluated against ℓ2 attacks of different radiuses.

can use stronger regularization (larger m).

4.3. Adversarial Certification

Modern image classifiers are known to be sensitive to

small, adversarially-chosen perturbations on inputs [10].

Therefore, for making high-stakes decisions, it is of crit-

ical importance to develop methods with certified robust-

ness, which provide (high probability) provable guarantees

on the correctness of the prediction subject to arbitrary at-

tacks within certain perturbation ball.

Recently, [4] proposed to construct certifiably robust

classifiers against ℓ2 attacks by introducing Gaussian

smoothing on the inputs, which is shown to outperform all

the previous ℓ2-robust classifiers in CIFAR-10. There has

been two major methods for training such smoothed classi-

fiers: [4] trains the classifier with a Gaussian data augmen-

tation technique, while [18] improves the original Gaussian

data augmentation by using PGD (projected gradient de-

scent) adversarial training, in which PGD is used to find

a local maximal within a given ℓ2 perturbation ball.

In our experiment, we use MaxUp with Gaussian per-

turbation (referred to as MaxUp+Gauss) to train better

smoothed classifiers than the methods by [4] and [18]. Like

how MaxUp improves upon standard data augmentation, it

is natural to expect that our MaxUp+Gauss can learn more

robust classifiers than the standard Gaussian data augmen-

tation method in [4].

Training Details We applied MaxUp to Gaussian aug-

mented data on CIFAR-10 with ResNet-110 [11]. We fol-

low the training pipelines described in [18]. We set a batch

size of 256, an initial learning rate of 0.1 which drops by a

factor of 10 every 50 epochs, and train the models for 150

epochs.

Evaluation After training the smoothed classifiers, we

evaluation the certified accuracy of different models under

different ℓ2 perturbation sets. Given an input image x and

a perturbation region B, the smoothed classifier is called

certifiably correct if its prediction is correct and has a guar-

anteed lower bound larger than 0.5 in B. The certified accu-

racy is the percentage of images that are certifiably correct.

Following [18], we calculate the certified accuracy of all the

classifiers for various radius and report the best results over-

all of the classifiers. We use the codes provided by [4] to

calculate certified accuracy.3

Following [18], we select the best hyperparameters

with grid search. The only two hyperparameters of our

MaxUp+Gauss are the sample size m and the variance σ2

of the Gaussian perturbation, which we search in m ∈
{5, 25, 50, 100, 150} and σ ∈ {0.12, 0.25, 0.5, 1.0}. In

comparison, [18] requires to search a larger number of

hyper-parameters, including the number of steps of the

PGD, the number of noise samples, the maximum ℓ2 pertur-

bation, and the variance of Gaussian data augmentation dur-

ing training and testing. Overall, [18] requires to train and

evaluate over 150 models for hyperparmeter tuning, while

MaxUp+Gauss requires only 20 models.

Results We show the certified accuraries on CIFAR-10 in

Table 6 under ℓ2 attacks for each ℓ2 radius. We find that

MaxUp outperforms [4] for all the ℓ2 radiuses by a large

margin. For example, MaxUp can improve the certified ac-

curacy at radius 0.25 from 60% to 74% and improve the

4% accuracy on radius 2.75 to 15%. MaxUp also outper-

forms the PGD-based adversarial training of [18] for all the

radiuses, boosting the accuracy from 14% to 17% at radius

2.5, and from 12% to 15% at radius 2.75.

In summary, MaxUp clearly outperforms both [4] and

[18]. MaxUp is also much faster and requires less hyperpa-

rameter tuning than [18]. Although the PGD-based method

of [18] was designed to outperform the original method by

[4], MaxUp+Gauss further improves upon [18], likely be-

cause MaxUp with Gaussian perturbation is more compat-

ible with the Gaussian smoothing based certification of [4]

than PGD adversarial optimization.

4.4. Point Cloud Classification

Implementation To further verify the performance of our

algorithm, we conduct experiments on 3D point cloud clas-

sification. We test all the baselines and proposed algorithm

on one popular dataset, ModelNet40 [27] using the state-

of-the-art model architecture Dynamic graph convolutional

neural network (DGCNN) [29]. In existing points process-

ing networks, data augmentation mainly include random ro-

tation about the gravity axis, random scaling, and random

jittering [29].

We choose different hyper-parameters (e.g. number of

particles, number of neighbours) and different data augmen-

3https://github.com/locuslab/smoothing
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Model Dataset Augmentation
Standard +MaxUp +MaxUp (Low R)

Acc(%) Time Acc(%) Time Acc(%) Time

ResNet-110 CIFAR-10 Cutout 94.8±0.1 36s 95.4±0.1 58s 95.4±0.1 47s

ResNet-110 CIFAR-100 Cutout 73.6±0.2 36s 75.3±0.2 58s 75.0±0.1 48s

WideResNet-28-10 CIFAR-10 RandAugment 97.1±0.1 72s 97.5±0.1 106s 97.5±0.1 89s

WideResNet-28-10 CIFAR-100 RandAugment 83.1±0.1 72s 83.8±0.1 106s 83.7±0.1 89s

ResNet-50 ImageNet CutMix 78.6±0.0 3.6h 78.9±0.0 5.2h 78.9±0.0 4.4h

Table 7. Top1 accuracies of different models on the validation set of ImageNet 2012 or on test set of CIFAR-100/10. ‘Low R’ denotes low

resolution, ‘Standard’ denotes the standard data augmentation method, ‘Acc’ denotes accuracy and ‘Time’ denotes per epoch training time

estimated on one NVIDIA TITAN V VOLTA.

#Part #N Type Standard (%) MaxUp (%)

1024 20 Gaussian 86.8±0.6 88.9±0.4

2048 20 Gaussian 88.4±0.5 90.4±0.5

2048 40 Gaussian 92.0±0.5 92.3±0.4

1024 20 Jitter 88.1±0.6 89.2±0.5

2048 20 Jitter 89.1±0.5 90.4±0.4

2048 40 Jitter 92.2±0.5 92.4±0.5

Table 8. The results on ModelNet40. ‘#Part’ denotes the number

of particles, ‘#N’ denotes the number of neighbours, and ‘Type’

denotes the type of data augmentation.

tation methods (e.g. Gaussian noise, random jittering) to

verify the performance under different settings. For Gaus-

sian blur, we use N (0, 0.05).

Results Table 8 shows that using MaxUp can consistently

outperform the standard data augmentation results with dif-

ferent data augmentation and hyper-parameters on Mod-

elNet40. When the number of particles is 1024 and the

number of neighbours of the KNN (K-Nearest Neighbor)

is 20, MaxUp can improve the standard data augmenta-

tion by a large margin. When using Gaussian noise, it im-

prove 86.8%±0.6% accuracy to 88.9%±0.4%. When us-

ing radfom jittering, it improve 88.1%±0.6% accuracy to

89.2%±0.5%.

4.5. Accelerating Training for Image

A remained problem for MaxUp is that, although it

only requires extra forward pass, MaxUp still includes non-

negligible additional time cost. Here, we propose a heuristic

approach to address this problem in practice. For image-

related tasks, we use low-resolution images when select-

ing the worst case among sampled augmented images. This

strategy can also be applied to video, 3D images and point

cloud data.

Implementation We directly followed all the settings in

Section 4.3 and 4.2. The only difference is that we use low-

resolution down-sampled image to select the worst case. We

set the resolution to 16 and 96 for CIFAR and ImageNet,

respectively.

Results As shown in Table 7, by using low-resolution im-

age, we include almost no extra training cost compared

to standard data augmentation method. Besides, com-

pared to standard MaxUp, the low-resolution solution can

achieve almost the same performance on the tested cases.

For example, when training ResNet-50 on ImageNet, us-

ing low-resolution image to select hard augmented exam-

ples achieves the same accuracy as MaxUp while acquiring

less training time. For this case, it reduces the 5.2 hours per

epoch to 4.4 hours per epoch.

These results indicates that, for image, the proposed

MaxUp can be accelerated with using low-resolution im-

ages during selection. For other kinds of data type, e.g.

point cloud, video, we can also use sub-sampled particles,

sub-sampled spatial-temporal pairs.

5. Conclusion

In this paper, we propose MaxUp, a simple and efficient

training algorithms for improving generalization, especially

for deep neural networks. MaxUp can be viewed as a in-

troducing a gradient-norm smoothness regularization for

Gaussian perturbation, but does not require to evaluate the

gradient norm explicitly, and can be easily combined with

any existing data augmentation methods. We empirically

show that MaxUp can improve the performance of data aug-

mentation methods in image classification, language model-

ing, and certified defense. Especially, we achieve the SOTA

performance with extra data on ImageNet when this work is

done.
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asymptotic lower bound on the minimax regret

of learning with expert advice. arXiv preprint

arXiv:1511.02176, 2015.
[18] Hadi Salman, Greg Yang, Jerry Li, Pengchuan

Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien

Bubeck. Provably robust deep learning via adversari-

ally trained smoothed classifiers. NeurIPS, 2019.
[19] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras,

Kunal Talwar, and Aleksander Madry. Adversarially

robust generalization requires more data. In NeurIPS,

pages 5014–5026, 2018.
[20] Abhinav Shrivastava, Abhinav Gupta, and Ross Gir-

shick. Training region-based object detectors with on-

line hard example mining. In CVPR, pages 761–769,

2016.
[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfit-

ting. JMLR, pages 1929–1958, 2014.
[22] Mingxing Tan and Quoc V Le. Efficientnet: Rethink-

ing model scaling for convolutional neural networks.

ICML, 2019.
[23] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and
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