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Abstract

Hidden features in neural network usually fail to learn

informative representation for 3D segmentation as supervi-

sions are only given on output prediction, while this can be

solved by omni-scale supervision on intermediate layers. In

this paper, we bring the first omni-scale supervision method

to point cloud segmentation via the proposed gradual Re-

ceptive Field Component Reasoning (RFCR), where target

Receptive Field Component Codes (RFCCs) are designed

to record categories within receptive fields for hidden units

in the encoder. Then, target RFCCs will supervise the de-

coder to gradually infer the RFCCs in a coarse-to-fine cat-

egories reasoning manner, and finally obtain the semantic

labels. Because many hidden features are inactive with tiny

magnitude and make minor contributions to RFCC predic-

tion, we propose a Feature Densification with a centrifu-

gal potential to obtain more unambiguous features, and it is

in effect equivalent to entropy regularization over features.

More active features can further unleash the potential of our

omni-supervision method. We embed our method into four

prevailing backbones and test on three challenging bench-

marks. Our method can significantly improve the backbones

in all three datasets. Specifically, our method brings new

state-of-the-art performances for S3DIS as well as Seman-

tic3D and ranks the 1st in the ScanNet benchmark among

all the point-based methods. Code is publicly available at

https://github.com/azuki-miho/RFCR.

1. Introduction

Semantic segmentation of point cloud in which we need

to infer the point-level labels is a typical but still challenging
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Figure 1: Illustration of Receptive Field Component Rea-

soning for a point cloud in ScanNet v2 from top to bottom.

The Receptive Field Component Code (RFCC) indicates the

category components in the receptive field. In the decod-

ing stage, the segmentation problem is decomposed into a

much easier global context recognition problem (predict-

ing the global RFCCs, see the top of figure) and a series of

receptive field component reasoning problems. During rea-

soning, the target RFCCs generated in the encoder are used

as the groundtruth in the decoder to guide the network to

gradually reason the RFCCs in a coarse-to-fine manner, and

finally obtain the semantic labels.

task in 3D vision. Meanwhile, this technique can be widely

used in many applications like robotics, autonomous driv-

ing, and virtual/augmented reality.

To handle point cloud segmentation, previous works usu-
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ally introduced well-designed encoder-decoder architecture

to hierarchically extract global context features in the en-

coding stage, and distribute contextual features to points in

the decoding stage to achieve point-wise labeling [5, 31,

38]. However, in the typical encoder-decoder framework,

network is merely supervised by labels of points in the fi-

nal layer [36, 31, 9], while ignoring a critical fact that, hid-

den units in other layers lack direct supervision to extract

features with informative representation. In other words,

multi-scale/omni-scale supervision is indeed necessary.

In 2D vision, CVAE [28] attempted to give a multi-scale

prediction and supervision to extract useful features in seg-

mentation task. CPM [35] and MSS-net [14] tried to add

intermediate supervision periodically and layer-wise loss,

respectively. PointRend [16] proposed to segment image in

low-resolution, and iteratively up-sample the coarse predic-

tion and fine-tune it to obtain final result, thus prediction at

different scales can be supervised together.

However, so far, no one succeed in applying multi-scale,

let alone omni-scale supervision to 3D semantic segmen-

tation, due to the irregularity of point cloud. Unlike in

image domain, it is hard to up-sample the hidden features

to the original resolution through simple tiling or interpo-

lation, because there is no fixed mapping relationship be-

tween sampled point cloud and original point cloud espe-

cially when the sampling is random [36, 9]. Additionally,

the common up-sampling methods using nearest neighbors

cannot trace the encoding relationship, thus introducing im-

proper supervisions to the intermediate features (referring

Sec 4.4 for discussion). More recently, SceneEncoder [37]

provided a method to supervise the center-most layer to ex-

tract meaningful global features, but lots of other layers re-

main unhandled.

To solve this problem, we propose an omni-scale super-

vision method via gradual Receptive Field Component Rea-

soning. Instead of up-sampling the hidden features to the

original resolution, we design a Receptive Field Compo-

nent Code (RFCC) to effectively trace the encoding rela-

tionship and represent the categories within receptive field

for each hidden unit. Based upon this, we generate the target

RFCCs at different layers from semantic labels in the en-

coding stage to supervise the network at all scales. Specif-

ically, in the decoding stage, the target RFCCs will super-

vise the network to predict the RFCCs at different scales,

and the features (hints) from skip link can help further de-

duce RFCCs within more local and specific receptive fields.

In this way, the decoding stage is transferred into a gradual

reasoning procedure, as shown in Figure 1.

Inspired by SceneEncoder [37], for each sampled point

in any layer of encoder, according to the existence of cat-

egories in its receptive field, a multi-hot binary code can

be built, designated as target Receptive Field Component

Code (RFCC). The target RFCCs at different layers are gen-

erated alongside the convolution and down-sampling, thus

they can precisely record the existing categories in corre-

sponding receptive fields without any extra annotations. In

Figure 1, we show the target RFCCs at various layers for

a point cloud in the decoding stage, where the network will

first recognize the global context (inferring the categories of

objects existing in the whole point cloud). Then, contextual

features will be up-sampled iteratively to gradually reason

the RFCCs in a coarse-to-fine manner. By comparing the

target RFCCs and the predicted RFCCs, the omni-scale su-

pervision can be realized. It is noteworthy that even the

network reasons the RFCCs gradually, the training and in-

ference of network is implemented in a end-to-end manner.

Additionally, to further unleash the potential of omni-

scale supervision, more active features (features with large

magnitude) are required to make unambiguous contribu-

tion to the RFCC prediction. Contrarily, in traditional net-

works [36, 31, 37], lots of units are inactive with tiny

magnitude, such that having minor contribution to the fi-

nal prediction. The principle underlying the above ob-

servations comes from entropy regularization [6, 18] over

features, where greater number of active dimensionalities

would bring low-density separation between positive fea-

tures and negative features, generating more unambiguous

features with certain signals. Consequently, in point cloud

scenario, more certainty in features can help the training of

the network to better reason the RFCCs at various scales

and finally predict the semantic labels. Motivated by this,

we proposed a Feature Densification method with a well-

deigned potential function to push hidden features away

from 0. Moreover, this potential is in effect equivalent to

a entropy loss over features (detailed deduction is shown in

Sec 3.4), leading to a simple but highly effective regulariza-

tion for intermediate features.

To evaluate the performance and versatility of our

method in point cloud semantic segmentation task, we

embed our method into four prevailing backbones (de-

formable KPConv, rigid KPConv [31], RandLA [9], and

SceneEncoder [37]), and test on three challenging point

cloud datasets (ScanNet v2 [2] for indoor cluttered rooms,

S3DIS [1] for large indoor space, and Semantic3D [7] for

large-scale outdoor space). In all the three datasets, we out-

perform the backbone methods and almost all the state-of-

the-art point-based competitors. What’s more, we also push

the state-of-the-art of S3DIS [1] and Semantic3D [7] ahead.

2. Related Work

Point Cloud Semantic Segmentation. PointNet [25]

proposed to directly concatenate global features to point-

wise features before several Multi-Layer Perceptrons

(MLPs) to finish the semantic segmentation. Later, Point-

Net++ [26], SubSparseConv [5] and KPConv [31] utilized

an encoder-decoder architecture with skip links for better
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fusion of local and global information. Joint tasks like

instance segmentation and edge detection are also intro-

duced to enhance the performance of semantic segmenta-

tion through additional supervision [24, 43, 10]. SceneEn-

coder [37] designed a meaningful global scene descriptor to

guide the global feature extraction. These methods directly

utilized semantic labels to supervise the output features or

features in the center-most layer.

Compared with previous works, we propose an omni-

scale supervision method for point cloud semantic segmen-

tation via a gradual Receptive Field Component Reasoning.

Multi-scale Supervision. In 2D Vision, CVAE [28] pro-

posed to give multi-scale prediction in the segmentation

task. RMI [44] proposed to predict and supervise the

neighborhood of each pixel rather than the pixel itself.

PointRend [16] segmented the images in a coarse-to-fine

fashion, i.e. give low-resolution prediction, and iteratively

up-sample and fine-tune it to obtain the original-resolution

prediction. CPM [35] and MSS-net [14] added intermediate

supervision periodically and layer-wise loss, respectively.

Compared with these methods, we design a Receptive

Field Component Code (RFCC) to represent receptive field

component and dynamically generate target RFCCs to give

omni-scale supervision to the network rather than simply

up-sample the features to the original resolution or down-

sample the ground truth. Thanks to the omni-scale supervi-

sion, the network can infer the RFCCs gradually and finally

obtain RFCCs in the original resolution which is also the

semantic labels.

Entropy Regularization. Entropy Regularization [6]

minimized the prediction entropy in semi-supervised classi-

fication task to obtain unambiguous final features. This idea

is introduced into the deep neural network for self-training

by [18], and the final features with tiny magnitude will be

pushed away from 0 to make deterministic contribution to

the final prediction. In these methods, final features with

positive values will be greater and negative features will be

smaller due to the entropy loss.

Compared with their methods, our Feature Densification

introduce the entropy regularization [6, 18] into the hidden

features rather than just the final features to obtain more

active hidden features which can directly contribute to the

RFCC prediction.

3. Methods

In the following parts, we will first give an overview of

our method in Sec 3.1. Then, we will introduce the Recep-

tive Field Component Codes (RFCCs) and the target RFCCs

that we generate at various layers in Sec 3.2. In Sec 3.3,

how to use these target RFCCs to supervise the network,

and make the gradual Receptive Field Component Reason-

ing, would be explained. At last, we will show the strategy

of Feature Densification for more active features in Sec 3.4.

3.1. Overview

The framework of our gradual Receptive Field Com-

ponent Reasoning (RFCR) is shown in Figure 2. In our

method, we generate target Receptive Field Component

Codes (RFCCs) at different layers alongside the convolu-

tion and sampling of features (Figure 2 (a)) in the encod-

ing stage. In the decoding stage, the network will reason

the RFCCs at different layers, and the corresponding target

RFCCs will give omni-scale supervision on the predicted

RFCCs (Figure 2 (b)). Consequently, the semantic seg-

mentation task can be treated as a coarse-to-fine receptive

field component reasoning procedure after recognizing the

global context (predicting categories of objects existing in

the point cloud). Additionally, we introduce Feature Densi-

fication through a centrifugal potential to obtain more active

features for omni-scale RFCC prediction (Figure 2 (c)).

3.2. Receptive Field Component Code

For a point cloud, it is easy to define the label of a point

in the original point cloud. Nevertheless, it is non-trivial

to give a label to a point in any down-sampled point cloud

which receives information from points inside its receptive

field. In our method, we design a Receptive Field Com-

ponent Code (RFCC) to represent all categories within the

receptive field of sampled points in the encoder. The target

RFCCs are generated alongside the convolution and sam-

pling of features in the encoding stage. In other words,

sharing sampling is used between the encoding stage (left

part of top branch in Figure 2) and RFCC generation (Fig-

ure 2 (a)), thus the generated target RFCCs can precisely

record the category components in the receptive fields, even

though the sampling of point cloud is a random process.

Implementation. Our RFCC is designed to be a multi-

hot label for every point in any layer of encoder. Specifi-

cally, in the semantic segmentation task where we need to

classify each point into C categories, the RFCC will be a

1×C binary vector. Given the i-th point in the l-th layer of

the encoder pli, the target RFCC gli represents the categories

of objects existing in the receptive field of pli, and each el-

ement gli[k] indicates the existence of category k. Based

upon this definition, we can first assign the one-hot label of

input point pi to the RFCC g1i in the input layer, because the

receptive field of point pi only contains pi itself:

g1i = one-hot(yi), (1)

where yi is the label of point pi in the original point cloud.

As illustrated in Figure 2 (a), we can obtain gli from the
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Figure 2: Framework of gradual Receptive Field Component Reasoning. (a) shows the target Receptive Field Component

Codes (RFCCs) is generated alongside the common encoding procedure. (b) indicates the network will predict the RFCCs in

a coarse-to-fine manner. (c) represents the centrifugal potential which pushes hidden features away from 0. In our network,

the target RFCCs will supervise the RFCC predictions, and the learnt feature can reason RFCCs in more local and specific

receptive fields as more and more local features (clues) are provided through skip links. The prediction activation function

will be Softmax for the final layer and Sigmoid otherwise.

RFCCs in the previous layer gl−1
i alongside the 3D Convs:

gli[k] = ∨
j∈N (i)

{gl−1
j [k]} (2)

where k ∈ [1, C] indicates the channel index, and j is the in-

dex of point in pli’s receptive field at the (l−1)-th layer. That

is to say, pli receives features from pl−1
j in the 3D Convs

thanks to the sharing sampling. ∨ represents the logical OR

(disjunction) operation. It is noteworthy that the genera-

tion of RFCCs only occurs in the encoder, rather than the

decoder. The generation of RFCCs is iterated until reach-

ing the center-most layer L. Typically, the scene descrip-

tor is only a naturally deduced global supervisor when the

center-most layer contains only one point [37]. Besides, g2i
can also be treated as a simplified version of neighborhood

multi-dimension distribution in RMI [44], which exploits

the semantic relationship among neighboring points.

3.3. RFCC Reasoning

The decoder of network is to infer the category of each

input point in the task of semantic segmentation. In our

method, as shown in Figure 2 (b), we decompose this com-

plex problem into a much easier global context recognition

problem (predicting gLi ) and a series of gradual receptive

field component reasoning problem (reasoning gl−1
i from

gli gradually with additional features αl
i from skip link and

finally obtain the semantic labels g1i ).

As shown in Figure 2, βl
i is the features of sampled point

pli in decoder. For each layer of decoder except the last one,

we apply a shared Multi-Layer Perceptron (MLP) Ml and

a sigmoid function σ to βl
i to predict the RFCCs g̃li:

g̃li = σ(Ml(βl
i)). (3)

Then, the target RFCC gli generated in the encoding stage

is directly used to guide g̃li prediction through layer-wise

supervision Ll
R:

Ll
R = −

1

C|P l|

|P l|
∑

i=1

C
∑

k=1

Ll
R(i, k), (4)

where

Ll
R(i, k) = gli[k]log(g̃

l
i[k])+(1−gli[k])log(1− g̃li[k]), (5)

P l denotes the sampled point cloud in the l-th layer of en-

coder, and |P l| corresponds the number of points in P l.

According to Eq. (3), the center-most features βL
i which

contain global information will learn to recognize the global

context, i.e., predict g̃Li with largest receptive field. Mean-

while, gLi will be used to regularize this prediction to help

βL
i learn a better representation. Then, for the following

layer of decoder, βL which learns informative representa-

tion to predict g̃Li will be up-sampled and concatenated with

αL−1
i from the skip link. After that, the concatenated fea-

tures will be used to extract more distinguishable βL−1
i via

3D Convs, and the extracted features βL−1
i will be used to

reason the RFCCs g̃L−1
i of more local and specific recep-

tive field. This procedure is iterated until l = 2. The whole
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RFCC reasoning loss can be simply expressed by

LR =
1

L− 1

L
∑

l=2

Ll
R. (6)

In the last layer, we can simply utilize the MLPs and soft-

max to predict the g̃1i , and cross entropy loss is used to su-

pervise the output features in the original scale.

3.4. Feature Densification

Due to the large amounts of supervision introduced by

the gradual Receptive Field Component Reasoning, more

active features with unambiguous signals are required.

However, there are many inactive hidden units with tiny

magnitude in the traditional network (detailed experiment

is shown in Sec 4.4). Therefore, we introduce a centrifugal

potential to bring low-density separation between positive

features and negative features (i.e. push features away from

0) as shown in Figure 2 (c):

Φ(β̄) = −log
1

1 + e−|β̄|
, (7)

where β̄ = a(β) and a can be an identity function or a sim-

ple perceptron. We can see the negative gradient of potential

function over feature is:

−
∂Φ(β̄)

∂β̄
= sign(β̄)

e−|β̄|

1 + e−|β̄|
(8)

which have the same sign as the feature. This indicates pos-

itive features will become greater and negative features will

be smaller given this potential. Additionally, features with

smaller absolute value will receive larger gradient accord-

ing to this formula.

Meanwhile, this centrifugal potential can be imple-

mented by a simple entropy loss:

Ll
F (i, k) = Φ(β̄l

i,k)

= −log 1

(1+e
−|β̄l

i,k
|
)

=

{

−log(σ(β̄l
i,k)) β̄l

i,k ≥ 0

−log(1− σ(β̄l
i,k)) β̄l

i,k < 0
,

(9)

where β̄l
i,k is the k-th channel of β̄l

i .

If we take the following notation:

t̃li,k = σ(β̄l
i,k)

tli,k = 1 if β̄l
i,k ≥ 0, 0 if β̄l

i,k < 0,
(10)

we can reformulate Eq. (9) into

Ll
F (i, k) = −[tli,klog(t̃li,k)+ (1− tli,k)log(1− t̃li,k)]. (11)

So, our centrifugal potential can be treated as entropy

regularization [18] over hidden features which can decrease

ambiguity of features in the intermediate layers. On the

other side, our omni-scale supervision can directly benefit

from more active features with certain signal introduced by

the Feature Densification. That is because more unambigu-

ous features can participate into the RFCC predictions and

help learning better representation of hidden layer, improv-

ing the semantic segmentation performance.

The total loss for Feature Densification can be summa-

rized by

LF =
1

L− 1

L
∑

l=2

1

|P l|Kl

|P l|
∑

i=1

Kl

∑

k=1

Ll
F (i, k), (12)

and Kl represents the number of features’ channel in β̄l
i .

In a nutshell, all the supervision can be concluded by

L = LS + λ1LR + λ2LF . (13)

where λ1 and λ2 are two adjustable hyper-parameters while

LS represents the common cross entropy loss for semantic

segmentation. In our experiment, we simply set λ1 and λ2

to 1, and we find it can perform well in most cases.

4. Experiments

To show the effectiveness of our method and prove our

claims, we embed our method into four prevailing meth-

ods (deformable KPConv, rigid KPConv [31], RandLA [9]

and SceneEncoder [37]), and conduct experiments on three

popular point cloud segmentation datasets (ScanNet v2 [2]

for cluttered indoor scenes, S3DIS [1] for large-scale indoor

rooms and Semantic3D [7] for large outdoor spaces). First,

we introduce these three datasets in Sec 4.1. Next, imple-

mentation details and hyper-parameters used in our exper-

iments are described in Sec 4.2. Then, we give the metric

used to evaluate the performance as well as the quantitative

and qualitative results in Sec 4.3. Finally, we conduct more

ablation studies to prove our claims in Sec 4.4.

4.1. Datasets

ScanNet v2. In the task of ScanNet v2 [2], we need to

classify all the points into 20 different semantic categories.

This dataset provides 1, 513 scanned scenes with point-level

annotations, 1, 201 scanned scenes for training, and 312
scanned scenes for validation. Another 100 scanned scenes

are published without any annotations for testing. We need

to make prediction on the test set and submit our final result

to ScanNet server for testing.

S3DIS. S3DIS [1] provides point clouds of 271 rooms

with comprehensive annotations in 6 large-scale indoor ar-

eas from 3 different buildings. There are 273 million points

in total, and all these points are categorized into 13 classes.

Following [25, 31], we take Area 5 as the test set and rooms

in the remaining areas for training.
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Semantic3D. Semantic3D [7] is a large-scale outdoor

point cloud dataset with online benchmark. It contains more

than 4 billion points from diverse urban scenes, and all the

points are classified into 8 categories. The whole dataset

includes 15 point clouds for training and another 15 point

clouds for testing. For easy evaluation, Semantic3D pro-

vides the task of Semantic3D reduced-8, where 15 large-

scale point clouds are used for training and 4 down-sampled

point clouds are used for testing.

4.2. Implementation

All the experiments can be conducted on a single GTX

1080Ti with 3700X CPU and 64 GB RAM. We apply our

method to a common backbone deformable KPConv [31]

and evaluate the performance on all three datasets. To show

the versatility of our method, we also embed our method

into three other backbones (one for each dataset).

ScanNet. We separately choose deformable KPConv [31]

and SceneEncoder [37] as our backbones and apply our

method. When we take deformable KPConv as our back-

bone, we randomly sample spheres with radius equal to 2
meters from scenes in the training set during training proce-

dure, and the batch size is set to 10. When we take SceneEn-

coder as our backbone and train our model, we randomly

sample 8 3m×1.5m×1.5m cubes from training scenes for

every batch like SceneEncoder [37]. After training, we sep-

arately predict the results of the test set using these two

trained models and submit them to the online benchmark

server for testing [2].

S3DIS. We insert our methods into deformable KP-

Conv [31] and RandLA [9] respectively and treat them as

our backbones. When we take deformable KPConv as our

backbone, we randomly sample spheres with 2m radius

from original point clouds, and the batch size is set to 5.

We randomly sample 40, 960 points from entire rooms for

each training sample and set the batch size to be 6 when tak-

ing RandLA [9] as the backbone. Rooms in Area-1,2,3,4,6

are used for training. After training, we test the model on

the whole S3DIS Area-5 set.

Semantic3D. Deformable KPConv and rigid KPConv

proposed in [31] are taken as our backbones to evaluate

our method on Semantic3D reduced-8 task [7]. Because

Semantic3D is a large-scale outdoor space dataset, point

cloud is randomly sampled into a sphere with 3m radius

for deformable KPConv backbone and 4m radius for rigid

KPConv backbone. Every time, 10 samples are fed into the

network for training and testing. We need to submit the final

predictions to the Semantic3D server for testing [7].

Method mIoU(%)

PointNet++ (NIPS’17) [26] 33.9
PointCNN (NIPS’18) [21] 45.8
3DMV (ECCV’18) [3] 48.4
PointConv (CVPR’19) [36] 55.6
TextureNet (CVPR’19) [11] 56.6
HPEIN (ICCV’19) [13] 61.8
SPH3D-GCN (TPAMI’20) [20] 61.0
FusionAwareConv (CVPR’20) [41] 63.0
FPConv (CVPR’20) [22] 63.9
DCM-Net (CVPR’20) [27] 65.8
PointASNL (CVPR’20) [38] 66.6
FusionNet (ECCV’20) [40] 68.8

SceneEncoder (IJCAI’20) [37] 62.8
SceneEncoder + Ours 65.9

KPConv deform (ICCV’19) [31] 68.4
KPConv deform + Ours 70.2

Table 1: Results of indoor scene semantic segmentation

segmentation on ScanNet v2.

4.3. Metric and Results

Metric. For better evaluation of segmentation perfor-

mance, we take mean Intersection over Union (mIoU)

among categories as our metric like many previous

works [4, 25, 31].

The results of semantic segmentation on ScanNet v2 [2]

are reported in Table 1, where we achieve 70.2% mIoU and

rank first in this benchmark among all point-based meth-

ods. Here, we take deformable KPConv as our baseline and

1.8% improvement is achieved in mIoU. To show the gen-

eralization ability of our method, we also apply our method

to SceneEncoder [37]. As shown in Table 1, 3.1% improve-

ment in mIoU is achieved. Additionally, we provide the

qualitative results of our baseline (deformable KPConv) and

our method in Figure 3. The red dashed circles indicate the

obvious qualitative improvements.

We report the segmentation results on S3DIS Area-5 [1]

in Table 2. In this dataset, we also take deformable KP-

Conv as our backbone and achieve 68.73% mIoU in S3DIS

Area-5 task which pushes the state-of-the-art performance

ahead. Deformable KPConv is also treated as our baseline

for its good performance. Meanwhile, we also apply our

method to RandLA and the improvement over these back-

bones is also obvious (i.e., 2.67% mIoU). Figure 4 gives

the visualization results of our method and the qualitative

improvement over the baseline (deformable KPConv).

In Table 3, we show the results of our method and other

prevailing methods on Semantic3D [7]. In this task, we

achieve 77.8% in mIoU, outperforming all the state-of-the-

art competitors. When taking deformable KPConv as our

backbone, our method improves it by 4.7%. Then we take

rigid KPConv as our backbone, and our method can also

bring 3.0% improvement in mIoU. We present the visual re-
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Input Ground Truth
KPConv deform

(Baseline)
Ours

Figure 3: Visualization results on the validation dataset of

ScanNet v2. The images from the left to right are input

point clouds, semantic labels, predictions given by our base-

line and our method, respectively.

Method mIoU(%)

PointNet (CVPR’17) [25] 41.09
RSNet (CVPR’18) [12] 51.93
PointCNN (NIPS’18) [21] 57.26
ASIS (CVPR’19) [34] 54.48
ELGS (NIPS’19) [33] 60.06
PAT (CVPR’19) [39] 60.07
SPH3D-GCN (TPAMI’20) [20] 59.5
PointASNL (CVPR’20) [38] 62.6
FPConv (CVPR’20) [22] 62.8
Point2Node (AAAI’20) [8] 62.96
SegGCN (CVPR’20) [19] 63.6
DCM-Net (CVPR’20) [27] 64.0
FusionNet (ECCV’20) [40] 67.2

RandLA (CVPR’20) [9] 62.42
RandLA [9] + Ours 65.09

KPConv deform (ICCV’19) [31] 67.1
KPConv deform + Ours 68.73

Table 2: Results of indoor scene semantic segmentation on

S3DIS Area-5.

sults of our method and the baseline (deformable KPConv)

on the validation set of Semantic3D in Figure 5. The dark

blue dashed circles indicate the qualitative improvements.

4.4. Ablation Study

In this section, we conduct more experiments to evaluate

the effectiveness of the proposed gradual Receptive Field

Component Reasoning (RFCR) method from different as-

pects. Without loss of generality, our ablation studies are

mainly conducted on the task of Semantic3D reduced-8 and

deformable KPConv [31] is chosen as backbone.

Gradual Receptive Field Component Reasoning. To

conduct ablation studies on different parts of gradual Recep-

tive Field Component Reasoning in the semantic segmenta-

tion, we firstly only give the omni-supervision in the decod-

Input Ground Truth
KPConv deform

(Baseline)
Ours

Figure 4: Visualization results on the test dataset of the

S3DIS Area-5. The left-most images are input point clouds

and the following images are segmentation ground truth,

predictions of baseline and our method separately.

Method mIoU(%)

SegCloud (3DV’17) [29] 61.3
RF MSSF (3DV’18) [30] 62.7
SPG (CVPR’18) [17] 73.2
ShellNet (ICCV’19) [42] 69.4
GACNet (CVPR’19) [32] 70.8
FGCN (CVPR’20) [15] 62.4
PointGCR (WACV’20) [23] 69.5
RandLA (CVPR’20) [9] 77.4

KPConv rigid (ICCV’19) [31] 74.6
KPConv rigid + Ours 77.6

KPConv deform (ICCV’19) [31] 73.1
KPConv deform + Ours 77.8

Table 3: Results of outdoor space semantic segmentation on

Semantic3D (reduced-8).

Input Ground Truth
KPConv deform

(Baseline)
Ours

Figure 5: Visualizations on validation set of Semantic3D.

Inputs, semantic labels, results of our baseline and our

method are presented separately from the left to the right.

ing procedure to guide the network reason Receptive Field

Component Codes (RFCCs) gradually without the loss for

Feature Densification (FD). Then, we add the centrifugal

potential to obtain more active features for RFCC predic-

tion, and the results are reported in Table 4. The results

indicate the Receptive Field Component Reasoning can im-

prove the segmentation performance by 2.9% alone, and FD
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Method mIoU

KPConv deform 73.1
+ RFCR 76.0

+ FD 77.8

Table 4: Ablation study on impact of different parts of grad-

ual Receptive Field Component Reasoning.

Method mIoU

KPConv deform 73.1

KPConv deform + OvU + FD 76.2
KPConv deform + RFCR[one-hot] + FD 76.4

KPConv deform + RFCR + FD 77.8

Table 5: Ablation study on omni-scale supervision strategy.

can further bring 1.8% improvement. We also conduct abla-

tion studies on the effects of supervisions at different scales

and provide the details in supplementary materials.

Omni-supervision via Up-sampling. Multi-scale super-

vision is usually used in 2D segmentation via up-sampling

the low-resolution prediction. Even we cannot up-sample

the point cloud through simple tiling or interpolation, we at-

tempt to up-sample the intermediate predictions iteratively

using the nearest neighbors. Then, semantic labels are used

to supervise all the up-sampled predictions. Same as our

method, all scales are supervised and Feature Densifica-

tion is also used to provide more unambiguous features

for intermediate prediction. We report the result of Omni-

supervision via Up-sampling (OvU) in Table 5 and compare

it with our method. It shows inferior performance (76.2%)

because the up-sampling method using nearest neighbors

cannot trace the proper encoding relationship.

One-hot RFCC. In previous works like PointRend [16],

they give one-hot predictions at low resolutions, and these

predictions will be up-sampled to be supervised by the one-

hot labels at original resolution. So, it is intuitive to take an

one-hot RFCC for the major category in the receptive field

to supervise the prediction. However, the category informa-

tion of some points will be ignored in this way. Compared

with this method, we take a multi-hot label for every sam-

pled point at all the scales, and no labels will be ignored in

the supervision of down-sampled points. In order to show

the benefit of multi-hot labels, we replace the multi-hot la-

bels with one-hot labels which represent the majority of cat-

egories in the receptive fields, and all other settings remain

the same. We report the results in Table 5. We can see one-

hot RFCC which ignores the minor category cannot fully

represent the information in the receptive field, thus hav-

ing sub-optimal performance (76.4%) in the segmentation

which is 1.4% lower than multi-hot RFCC.

Feature Densification. As stated in Sec 3.4, active fea-

tures will be densified by centrifugal potential given the loss

in Eq. (12). The distribution of features’ magnitude after

training can be visualized by the bar chart shown in Fig-

ure 6. As indicated in this figure, features are pushed away

from 0 and more unambiguous features are available for the

Receptive Field Component Reasoning, thus improving the

segmentation performance (Table 4).
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Figure 6: Visualization of features’ magnitude in the decod-

ing layers. The green chart bars represent the distribution of

features’ absolute value after adding Feature Densification

while the red chart bars represent the distribution of fea-

tures’ absolute value in the original network.

5. Conclusion

In this paper, we propose a gradual Receptive Field

Component Reasoning method for omni-supervised point

cloud segmentation which decomposes the hard segmenta-

tion problem into a global context recognition task and a se-

ries of gradual Receptive Field Component Code reasoning

steps. Additionally, we propose a complementary Feature

Densification method to provide more active features for

RFCC prediction. We evaluate our method with four pre-

vailing backbones on three popular benchmarks and outper-

form almost all the state-of-the-art point-based competitors.

Furthermore, our method brings new state-of-the-art perfor-

mance for Semantic3D and S3DIS benchmarks. Even our

method brings large improvements to many backbones for

point cloud segmentation, it is more suitable for networks

with encoder-decoder architecture.
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