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Abstract

In this paper, we propose a self-supervised single-

view pixel-level accurate depth estimation network, called

PLADE-Net. The PLADE-Net is the first work that shows

remarkable accuracy levels, exceeding 95% in terms of the

δ1 metric on the challenging KITTI dataset. Our PLADE-

Net is based on a new network architecture with neural

positional encoding and a novel loss function that bor-

rows from the closed-form solution of the matting Laplacian

to learn pixel-level accurate depth estimation from stereo

images. Neural positional encoding allows our PLADE-

Net to obtain more consistent depth estimates by letting

the network reason about location-specific image proper-

ties such as projection (and potentially lens) distortions.

Our novel distilled matting Laplacian loss allows our net-

work to predict sharp depths at object boundaries and more

consistent depths in highly homogeneous regions. Our

proposed method outperforms all previous self-supervised

single-view depth estimation methods by a large margin

on the challenging KITTI dataset, with unparalleled lev-

els of accuracy. Furthermore, our PLADE-Net, naively

extended for stereo inputs, outperforms the most recent

self-supervised stereo methods, even without any advanced

blocks like 1D correlations, 3D convolutions, or spatial

pyramid pooling. We present extensive ablation studies and

experiments that support our method’s effectiveness on the

KITTI, CityScapes, and Make3D datasets.

1. Introduction

Recent advances in deep learning have shown state-of-

the-art (SOTA) results on the challenging single-view depth

estimation (SVDE) and stereo disparity estimation (SDE)

tasks. In particular, self-supervised methods for SVDE have

reached performance levels similar or even superior to the

fully-supervised networks [16, 17, 14]. However, the previ-

ous SOTA self-supervised methods are unable to predict ac-

curate pixel-level depth estimates, which are often observed

along the object’s depth boundaries. Predicting pixel-level

accurate 3D geometries is essential for robotic grasping,

augmented reality, navigation, and 3D object detection.

In this paper, we present a pixel-level accurate depth es-

timation network (PLADE-Net) with neural positional en-

coding and a distilled matting Laplacian loss, both of which

allow for consistent depth estimates in homogeneous ar-

eas and sharp depth predictions along the object bound-

aries. Our PLADE-Net outperforms the most recent self-

supervised SOTA methods [16, 17, 14, 41, 1] (both mono

and stereo) by large margins, achieving unparalleled accu-

racy on the challenging KITTI dataset while keeping a low

number of parameters. This paper’s contributions are:

1. We propose to exploit and distill the closed-form solu-

tion of the matting Laplacian [28] for self-supervision,

leading to a novel loss function that allows for pixel-level
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accuracy in self-supervised single- and stereo-view DE.

2. We show that neural positional encoding (NPE) can be

usefully incorporated into CNNs for depth estimation, as

it allows the network to reason about camera distortions,

scene orientation, and non-local relationships.

3. We present PLADE-Net, a novel network architecture

that incorporates NPE. Our PLADE-Net incorporates

multi-scale inputs and a single-scale output, opposite to

single-scale inputs and multi-scale outputs in previous

works [11, 10, 16, 42]. Relative to previous works, our

PLADE-Net doubles the number of filter channels in the

early feature extraction layers, and halves the number of

filter channels in its bottleneck. These seemingly triv-

ial design choices, already make our PLADE-Net, even

without our newly proposed loss functions, to outper-

form the previous SOTA methods.

4. The PLADE-Net is the first work that shows unmatched

accuracy levels for SVDE, exceeding 95% in terms of δ1

metric on the challenging KITTI[9] dataset.

Figure 1 compares the depth estimate performances of the

most recent SOTA methods [42, 16, 14] with respect to

our PLADE-Net. As shown in the detailed view of the

estimated depth regions (dotted boxes numbered from 1©
to 4©), our PLADE-Net produces very precisely estimated

depths along the object boundaries. Simultaneously, the

SOTA methods fail by yielding inaccurate object depths that

partially leak into the background.

Our paper is organized as follows: In Section 2, we re-

view relevant self-supervised methods for our work; Section

3 presents our PLADE-Net with neural positional encoding

and a distilled matting Laplacian loss with in-depth expla-

nations; In Section 4, we provide extensive ablation studies

and experiments that support the effectiveness of our con-

tributions; We conclude our work in Section 5.

2. Related Works

Learning-based self-supervised single view depth esti-

mation (SVDE) is a relatively new problem and has rapidly

advanced since it was first proposed in the work of Garg

et al. [8]. Self-supervised SVDE is usually achieved by

exploiting the 3D information embedded in datasets that

contain multiple captures from the same scene. Previous

methods have successfully learned SVDE from stereo pairs

[8, 11, 34, 33, 35, 18, 42, 38, 47, 14] and video [46, 10,

16, 17, 15], by training their CNNs for the backward or

forward synthesis of the training image samples, given the

target view as input. Other works [11, 43, 26, 41, 1] have

addressed the less ill-posed problem of stereo depth esti-

mation (SDE), where the left and right views are available

during training and testing. As our proposed PLADE-Net

learns from stereo images, we only review the methods that

learn from stereo in this section for the sake of simplicity.

Learning SVDE from stereo. Among the top-

performing SVDE methods that learn from stereo we find

the works of [38, 42, 14]. The contemporary works of

Tosi et al. [38] and Watson et al. [42] proposed to guide

the training of their SVDE networks with distilled stereo

disparity estimates obtained from the classical approach of

semi-global matching (SGM) [20, 21]. While Watson et al.

[42] used the SGM disparity as a proxy label when the re-

sulting photometric loss is lower than the CNN-estimated

depth, Tosi et al. [38] distilled the SGM proxy label via

left-right (LR) consistency checks. Inspired by [38, 42], we

distill the matting Laplacian with both photometric and LR-

consistency checks in this work.

The recent work of Gonzalez and Kim [14], proposed

to “forget about the LiDAR”, by learning high-quality

depths with a multi-view occlusion module and exponen-

tially quantified disparity volumes. Additionally, they pro-

posed a two-stage training strategy to learn view synthe-

sis and refine their network, called FAL-net[14], for SVDE.

While their method obtains the SOTA metrics on the KITTI

[9] dataset, their approach is still far from generating pixel-

level accurate depths, as shown in Figure 1- 3©. Their sec-

ond stage loss functions cannot enforce sharp object depth

boundaries, as they are limited by the computed occlusions’

quality, leading to sub-optimal estimates.

Learning SDE. Interestingly, the less ill-posed prob-

lem of learning stereo disparity estimation (SDE) in a self-

supervised manner has been studied less extensively than

the single-view case. The most prominent works include

those of Wang et al. [41] and Aleotti et al. [1]. Wang et

al. [41] proposed to exploit spatiotemporal information by

learning SDE from stereo videos. Their “UnOS” learns op-

tical flow, stereo disparity, and camera pose by spatially

and temporally projecting the target views into the spa-

tiotemporal reference images and measuring the reconstruc-

tion errors to provide means of self-supervision. The work

of Aleotti et al. proposes to distill the disparity estimates

from a monocular disparity competition network to pro-

vide additional proxy labels for the SDE task. Aleotti et

al. achieve the SOTA by training existing networks [10, 3]

with their monocular proxy labels, which remove the well-

known stereo artifacts caused by occlusions [11, 20, 21, 1].

3. Method

We propose a novel Pixel-Level Accurate Depth Es-

timation network, called PLADE-Net, with neural posi-

tional encoding and a distilled matting Laplacian loss.

Architecture-wise, neural positional encoding is incorpo-

rated into our PLADE-Net to learn location-specific image

features. Training-wise, our PLADE-Net learns single-view

depth from stereo pairs in a two-stage training strategy fol-

lowing the previous work [14]. In the first stage of train-

ing, our PLADE-Net is trained for simple stereoscopic view
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synthesis with a combination of l1, perceptual [24], and

smoothness losses. In the second stage, our network is fine-

tuned with an occlusions-free reconstruction loss with the

multi-view occlusion module and other secondary smooth-

ness and mirror losses defined in [14]. More importantly, a

distilled matting Laplacian loss is newly proposed, allowing

the learning of highly accurate pixel-level depth estimates.

In the following subsections, we introduce an image (and

inverse depth) formation model (which follows the one de-

fined in [14]) and describe the intuition behind our main

contributions for neural positional encoding and a distilled

matting Laplacian loss. We then describe the details of our

network architecture and training loss functions in Subsec-

tions 3.4 and 3.5, respectively.

3.1. Stereoscopic Image Formation Model

We build our PLADE-Net based on the work of Gonza-

lez and Kim [14], as their method showed SOTA results for

learning single-view depth from stereo images. Therefore,

we adopt their image formation model in which the convo-

lutional neural network (CNN) outputs a disparity proba-

bility logit volume D
L
L for a given left input view IL. D

L
L

can be either progressively projected to the right-view and

soft-maxed channel-wise to form the right-from-left dispar-

ity probability volume D
PR
L or simply soft-maxed to gener-

ate the left disparity probability volume D
PL
L . D

PR
L can be

used for stereoscopic view synthesis by

I
′

R =
∑N

n=0 g (IL, dn)⊙ D
PR
Ln

, (1)

where ⊙ indicates the Hadamard product, g(·) denotes a

shifting of the input image to the left by dn pixels, and N
is the number of planes in the probability volume D

PR
L . On

the other hand, D
PL
L can be used to extract the disparity

map D
′

L, which is learned as a by-product from the view

synthesis task, as defined by

D
′

L =
∑N

n=0 dnD
PL
Ln

(2)

We also adopt the exponential disparity quantization in [14],

as it is well-posed for the depth estimation task. Exponen-

tial quantization takes into account the inverse relationship

between disparity and depth by distributing far- and close-

by quantization levels more evenly and is given by

dn = dmaxe
ln dmax/dmin(n/N−1), (3)

where dmax and dmin are the minimum and maximum dis-

parity hyper-parameters. For a fair comparison with [14],

we set dmax = 300 and dmin = 2 for all our experiments.

3.2. Neural Positional Encoding

It is well-known that convolutional neural networks on

their own are very well capable of encoding positional in-

formation [22]. However, since the local CNN filters are

Figure 2. An illustration of projection distortions in image borders.

Objects closer to the image borders appear stretched and closer,

like the three in (a) in comparison with the three in (b).

shared across spatial locations, a network, trained with ran-

domly cropped patches from the original image data, will

struggle to learn location-specific features, such as lens or

projection distortions, ground versus sky regions, and po-

tentially non-local relationships. In particular, projection

distortions make the objects near image borders appear to

be more stretched than those in the image centers, the de-

gree of which often depends on the camera focal length.

This is a potential source of confusion for the CNNs, as two

objects in the same distance to a camera will be projected

differently on the camera plane, depending on their relative

position to the resulting image, as illustrated in Figure 2.

The relative object size is an essential cue for depth es-

timation. It can affect the estimation accuracy if a network

does not have a means of understanding the locations of the

training patches in their original images. To provide the net-

work with a mechanism to account for the likelihood of ob-

jects being stretched when they are located close to the im-

age borders, we propose neural positional encoding (NPE)

for depth estimation. We realize NPE into our PLADE-Net

as the concatenation of deep positional features at each en-

coder stage. A deep positional feature map Fnpe is obtained

by processing the pixel location p = (x, y) information of

each patch with two fully-connected layers with exponen-

tial linear unit (ELU) activations, which is given by:

Fnpe(p) = elu(w2 · elu(w1 · p+ b1) + b2), (4)

where w1,2 and b1,2 are the learnable weights and biases

of our neural positional encoding layers. The operation

in Eq. 4 can be trivially realized with 1 × 1 convolutions

in available deep learning libraries. Note that in contrast

with [6], we do not concatenate x- and y-coordinates of p,

but do concatenate our deep positional feature maps into

the downstream convolutional layers in our PLADE-Net. It

should be noted again that, in our neural positional encod-

ing, p = (x, y) are the pixel locations of the patches relative

to their original images before cropping.

3.3. Distilling the Matting Laplacian

The closed-form solution to the matting Laplacian [28]

is a useful tool in classical low-level computer vision. It

can sharply segment an input image based on pixel inten-

sity and proximity in the input image, a roughly estimated

or user-defined segmentation map, and a confidence map.
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Figure 3. Matted disparity distillation process.

Figure 4. High-level overview of our proposed PLADE-Net.

Image matting and the matting Laplacian have been used to

refine depth estimates [30, 23, 2, 48], generating structurally

sharp but incorrectly labeled matted depth maps. We exploit

the strong features of the matting Laplacian to learn highly

accurate pixel-level depth in a self-supervised fashion, rem-

edying its weak points by distilling the matted depth maps

with photometric and left-right consistency [11] checks.

Our matting Laplacian distillation process is depicted in

Figure 3. Given an input image IL and its initial depth es-

timate D
′

L0 by our PLADE-Net, we generate a matted dis-

parity D
′

LM0 following [28]. As can be observed in Figure

3-(c), D
′

LM0 is very sharp, but many pixels are wrongly la-

beled, such as the tree at the left-hand side of IL, the biker

in the background, and the overall road depths. To remedy

this, we apply a 5× 5 local window mean scaling to obtain

the locally scaled matted disparity map D
′

LM , as shown in

Figure 3-(d). Then, we estimate a distillation mask ML via

photometric and left-right consistency checks as given by:

ML =
[∣

∣IL − g(IR,D
′

LM )
∣

∣ <
∣

∣IL − g(IR,D
′

L)
∣

∣

]

⊙
[
∣

∣D
′

LM − g(D′

RM ,D′

LM )
∣

∣ <
∣

∣D
′

L − g(D′

R,D
′

L)
∣

∣

]

,
(5)

where D
′

R0 and D
′

RM are the initial disparity estimate and

the locally scaled matted disparity map for the correspond-

ing right-view input image IR, respectively. g(·) works as a

backward-warping operation. In Eq. 5, if the inequalities in

both brackets are satisfied at a pixel location, the resulting

mask value at that location is 1, otherwise 0. The distilla-

tion map for the right view MR is obtained by swapping the

L and R sub-scripts in Eq. 5. Eq. 5 selects as a source for

self-supervisions the pixel depths in D
′

LM that (i) generate

better backward warped images and (ii) are more consis-

tent with their corresponding right view pixel depths. As

can be noted in the detailed view of the hand of the biker

in Figure 3-(e), the matted disparity becomes dramatically

sharper than the initial disparity estimate but has incorrect

values. The mean-scaled matted disparity is both sharper

and correctly scaled. As expected, the distillation mask is

active on the biker’s hand edges, which guides our network

to generate pixel-level accurate depth estimates.

3.4. Network Architecture

Our proposed PLADE-Net adopts the simple auto-

encoder backbone from [14], with residual blocks in the en-

coder side and nearest-upscale-based up-convolutions fol-

lowed by skip-connections in the decoder side. However,

we considerably change the learned feature maps’ distribu-

tion by doubling the extracted features in the shallow con-

volutional layers (from 32 to 64) and halving the number

of feature maps in the bottleneck (from 512 to 256). Our

PLADE-Net is depicted in Figure 4 and incorporates our

proposed NPE by concatenating (denoted by c©) deep posi-

tional features at each encoder stage’s input.

Contrary to the previous works [11, 10, 42, 16, 14] that

incorporate a single-scale input and multi-scale outputs, our

PLADE-Net adopts multi-scale inputs and a single scale

output. In our PLADE-Net, low-level features are extracted

from a bilinearly downscaled version of the input image IL

and concatenated into the second encoder stage’s input, as

depicted to the left-hand side of Figure 4. Our PLADE-Net

outputs a single-scale disparity logit volume D
L
L, which can

be employed for novel view synthesis and SVDE, as shown

to the right-hand side of Fig. 4 and described by (1) and (2).

Our PLADE-Net delivers higher performance with an

equal or lower number of parameters than the previous

works, with 15M versus 17M of the previous SOTA [14].

It is worth noting that our PLADE-Net achieves the SOTA

performance without the need for any advanced layer such

as attention, batch/group normalization, sub-pixel convolu-

tion, or spatial pyramid pooling. Detailed architecture layer

information can be found in the supplementary materials.

3.5. Loss Functions

Following the training strategy in [14], we train our

PLADE-Net in two stages. In the first stage, we focus on

learning stereoscopic view synthesis, which can be under-

stood as training the top output branch of our PLADE-Net

in Figure 4, which generates a synthetic right view. In the

second stage, we train our PLADE-Net with an occlusions-

free reconstruction loss. Still, more importantly, we incor-

porate additional loss functions that affect the lower output

branch in Figure 4, which generates a near pixel-accurate

disparity estimate. The total loss function (ls1) in the first

stage of training is a combination of l1, perceptual [24] (lp),
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Methods Data abs rel sq rel rmse rmselog δ
1

Effects of NPE in the 1st stage of training

w/o PE K+CS 0.075 0.317 2.990 0.111 0.938

PE K+CS 0.070 0.292 2.988 0.109 0.939

NPE K 0.071 0.318 3.236 0.113 0.934

NPE K+CS 0.070 0.291 2.910 0.107 0.942

Effects of NPE in the 2nd stage of training (adc=0.01, adm=0.25)

FAL-net [14] K+CS 0.071 0.287 2.905 0.109 0.941

w/o PE K+CS 0.074 0.298 2.842 0.108 0.942

PE K+CS 0.067 0.268 2.797 0.104 0.945

NPE K 0.066 0.274 2.881 0.105 0.944

NPE K+CS 0.066 0.263 2.726 0.102 0.949

Effects of ldc and ldm in the 2nd stage of training

adc=0, adm=0 K+CS 0.067 0.270 2.777 0.104 0.943

adc=0.01, adm=0 K+CS 0.067 0.267 2.775 0.104 0.945

adc=0, adm=0.25 K+CS 0.068 0.268 2.741 0.103 0.948

Table 1. Ablation studies of our PLADE-Net on KITTI[9]. Met-

rics are the lower the better and the higher the better .

and disparity smoothness (lds) losses, as given by

ls1 = l1 + αplp + αdslds, (6)

where αp and αds are empirically set to 0.01 and 0.0004, re-

spectively, to balance their contributions. The total loss ls2
for the second training stage adds our novel distilled mat-

ting Laplacian loss (ldm), a deep corr-l1 loss (ldc), and the

mirror loss (lm) in [14] to ls1, and is defined by:

ls2 = ls1 + lm + αdmldm + αdcldc, (7)

where αdm = 0.25 and αdc = 0.01 are empirically set

to weight the contributions of the distilled matting Lapla-

cian and the deep corr-l1 losses, respectively. In the second

stage, ls2 is computed for both left and right views, giving

the actual total loss of l = (lLs2 + lRs2)/2. We describe ls1
and lm in detail in our supplemental materials.

Deep Corr-l1 Loss. Inspired by [44], we explored train-

ing our PLADE-Net with a deep corr-l1 loss, to encourage

the generation of depth estimates with structural details sim-

ilar to the ones in the single-view input. However, we ob-

served marginal performance improvements and depth arti-

facts, as further shown in Section 4. Nevertheless, we ob-

served an affinity between the deep corr-l1 loss and our pro-

posed distilled matting Laplacian loss. Our deep corr-l1 loss

(ldc) penalizes the deep-auto-correlation difference between

the input image and the predicted depth map. Deep-auto-

correlation is obtained by measuring the auto-correlation of

the deep features of IL or D
′

L, extracted by the third max-

pool layer of a pre-trained VGG19 [37] for the image clas-

sification task, denoted by φ(·). ldc is then given by:

ldc = ||acorr(φ(D′

L), k)− acorr(φ(IL), k)||1, (8)

where acorr(·, k) is the auto-correlation operator on a k×k
window, empirically set to k = 3 in all our experiments.

Distilled Matting Laplacian Loss. We previously de-

tailed our matting Laplacian distillation process in Subsec-

tion 3.3. Given the locally scaled matted left disparity map

Figure 5. Ablation studies on our distilled matting Laplacian loss.

D
′

LM and distillation mask ML, our distilled matting Lapla-

cian loss ldm is simply given by:

ldm = (1/max(D′

L))||ML ⊙ (D′

L − D
′

LM )||1, (9)

where max(D′

L) is the maximum disparity value in the

scene and normalizes the loss between 0 and 1. By incor-

porating ML into Eq. (9), we can keep the highly detailed

matted depths while filtering out the incorrectly labeled pix-

els commonly present in image matting.

4. Experiments and Results

4.1. Datasets

KITTI[9]. To compare with a wider spectrum of recent

works, we utilize the Eigen train split [5] (K), which is a

subset of the KITTI [9] training set, consisting of 22,600

left-right training image pairs captured from a moving car.

Following the standard practice, we test our method on the

KITTI Eigen test split in its original [5] and improved [39]

versions, which contain 697 and 652 images with projected

LiDAR ground truths (GT), respectively. The improved

Eigen test split contains denser GTs by selectively accu-

mulating LiDAR points from 5 consecutive frames. Per-

formance is measured with the metrics defined in [5] (up

to 80m). Additionally, in our experiments, we propose a

“naive” stereo input extension of our PLADE-Net, which

is trained with a split obtained from the intersection of the

KITTI Eigen train set [5] and the KITTI Split [11]. The re-

sulting Stereo-Split excludes scenes from the KITTI Eigen

test split [5] and the KITTI2015 training set [32]. The

KITTI2015 [32] training set consists of 200 image pairs

with CAD-refined LiDAR GT and is the default benchmark

to evaluate self-supervised stereo networks.

CityScapes[4]. In most of our ablation studies, we

concurrently train the PLADE-Net variations with the

CityScapes [4] dataset (following the multi-dataset train-

ing procedure in [13, 14]) to ensure that they do not under-

perform due to the lack of enough data. The CityScapes [4]

dataset consists of 24,500 stereo pairs without depth GTs,

and similar to KITTI [9], it is captured from a driving per-

spective. We follow the car hood and border artifacts re-

moval procedures from [11, 13, 14].
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Figure 6. Stereo results on the KITTI2015[32] dataset.

Make3D[36]. To test the generalization power of our

PLADE-Net, we evaluate it on the Make3D [36] Test134

dataset, which is made of 134 high-resolution RGB outdoor

images with low-resolution depth GTs. We followed the

evaluation procedure defined in [11], with the C1 metrics

(up to 70m) defined in [29].

4.2. Implementation Details

Following the training procedure in [14], we trained our

PLADE-Net for 50 epochs in the first training stage and 10

epochs in the second stage with a batch size of 8 by the

Adam[25] optimizer with an initial learning rate of 1×10−4

and 5×10−5, respectively. The learning rate was reduced to

half at epochs [30, 40, 50] in the first training stage and

epochs [5, 10] in the second stage. Data augmentations on-

the-fly were incorporated into our network training. For a

fair comparison with previous works, we adopted random

resizing from 0.75 to 1.5, followed by 192 × 640 random

cropping, random left-right flipping, random gamma, ran-

dom brightness, and random individual color brightness. In-

ference was run at full image resolution.

4.2.1 Computing the Matting Laplacian

Computing the closed-form solution to the matting Lapla-

cian [28] is expensive, taking up to 30 (60) seconds in mat-

ting a KITTI [9] (CityScapes [4]) depth-RGB sample. For

this reason, we first generated a matted disparity comple-

mentary dataset instead of matting on-the-fly. We used our

PLADE-Net with one stage of training to build such a mat-

ted disparity dataset. We procured to apply the correspond-

ing spatial data augmentations (resizes, crops, and flips) to

the matted disparity samples during training. Our distilla-

tion process re-scales the matted disparity values, thus not

requiring to apply scaling factors during data sampling.

4.3. Ablation Studies

Table 1 shows our ablation studies on the improved

KITTI Eigen test split [39]. We first ablate the effects of our

Method abs rel sq rel rmse rmselog δ
1

δ
2

δ
3

Monodepth [11] 0.068 0.835 4.392 0.146 0.942 0.978 0.989

Lai et al. [26] 0.062 0.747 4.113 0.146 0.948 0.979 0.990

UnOS[41] 0.060 0.833 4.187 0.135 0.955 0.981 0.990

UnOS[41] (SV) 0.049 0.515 3.404 0.121 0.965 0.984 0.992

Aleotti et al. [1] - - 3.764 0.115 0.974 0.988 0.993

PLADE-NetS 0.053 0.323 2.758 0.100 0.965 0.989 0.995

PLADE-NetS 0.050 0.300 2.723 0.096 0.967 0.990 0.996

Table 2. Comparison of existing self-supervised SDE methods on

the KITTI2015 [32] training set. SV: Training from stereo videos.

Best and second-best metrics. Results capped to 80m.

Method Sup Data abs rel sq rel rmse

Liu et al. [29] D M3D 0.475 6.562 10.05

Laina et al. [27] D M3D 0.204 1.840 5.683

Monodepth2 [10] V K 0.322 3.589 7.417

Wang et al. [40] S K 0.387 4.720 8.090

Glez. and Kim [12] S K 0.323 4.021 7.507

Zhou et al. [45] V K 0.318 2.288 6.669

FAL-net [14] (PP) S K 0.284 2.803 6.643

FAL-net [14] (PP) S K+CS 0.254 2.140 6.139

PLADE-Net S K 0.276 2.635 6.546

PLADE-Net (PP) S K 0.265 2.469 6.373

PLADE-Net S K+CS 0.257 2.146 6.097

PLADE-Net (PP) S K+CS 0.253 2.100 6.031

Table 3. Results on Make3D [36]. All self-supervised methods

benefit from median scaling. M3D: Training on the Make3D[36].

Figure 7. Qualitative comparisons on the Make3D dataset [36].

NPE in the PLADE-Net for the first stage of training. As it

can be noted, the positional encoding (PE) that simply con-

catenates the pixel location (x, y) values directly into the

encoder stage can even yield slight performance improve-

ments in most metrics in comparison with the cases without

it (denoted as “w/o PE”). However, our PLADE-Net shows

substantial performance improvements in all metrics by in-

corporating our neural positional encoding (NPE).

The ablation studies on the effects of our NPE in the sec-

ond stage of training are shown in the second section of

Table 1. Interestingly, our PLADE-Net w/o PE gets stuck

in bad local minima, with marginal performance improve-

ments in the second training stage. In contrast, our PLADE-

Net with simple PE outperforms all previous SOTA meth-

ods in terms of δ1 accuracy. On the other hand, our PLADE-

Net with NPE exhibits the best performance by consider-
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Figure 8. Qualitative ablation studies on our proposed neural positional encoding (NPE) in our PLADE-Net.

able margins. Our PLADE-Net with NPE trained only with

the KITTI Eigen train split [5] shows the efficacy of robust

learning regardless of the training data size. The effects of

our NPE in both training stages (TS1 and TS2) are depicted

in Figure 8. Our PLADE-Net without NPE struggles to esti-

mate depths for objects close to the image borders, yielding

depth artifacts regardless of the training stage.

The third section of Table 1 and Figure 5 show respec-

tively the quantitative and qualitative ablation studies for

our proposed loss functions. As can be noted, our distilled

matting Laplacian loss is the main contributor to achieving

such high-performance. Our PLADE-Net trained with dis-

tilled matting Laplacian loss only (adc = 0, adm = 0.25)

achieves an δ1 accuracy of 94.8% while our PLADE-net

with deep corr-l1 loss only (adc = 0.01, adm = 0) ob-

tains the lower accuracy of 94.5%. In addition, training with

only deep corr-l1 loss induces depth artifacts seen as bright

spots in Figure 5-(d). Our PLADE-Net without our pro-

posed loss functions (adc = 0, adm = 0) shows the lowest

performance with the most blur depth estimates as shown

in Figure 5-(c). Interestingly, our PLADE-Net with (adc=0,

adm=0) still shows considerably better metrics than the pre-

vious SOTA FAL-net [14], demonstrating the effectiveness

of our NPE and design choices of multi-scale inputs and

more learned features on the shallow feature extractors, sug-

gesting that SVDE benefits from richer low-level features.

4.4. Resutls

Results on KITTI. Table 4 and Figure 9 present quan-

titative and qualitative comparisons among the previous

methods and our PLADE-Net on the KITTI Eigen test split

[5]. Our PLADE-Net clearly outperforms all previous self-

supervised methods in most metrics on the original Eigen

test split [5], and in all the metrics on the improved test split

[39]. Our PLADE-Net shows sharper and pixel-level ac-

curate depth estimates in complex and cluttered image re-

gions, as shown in every zoom-box of Figure 9. Quanti-

tatively, our PLADE-Net without any post-processing (PP),

even trained only on the KITTI (K) dataset, outperforms the

previous methods that were trained on KITTI + CityScapes

(K+CS). Following the PP step in [14], our method achieves

even higher accuracies and lower error metrics.

Results on KITTI (stereo) To further evaluate the ef-

fectiveness of our PLADE-Net, we define an stereo input

variant, the PLADE-NetS, which is evaluated and compared

with the SOTA methods on the KITTI2015 dataset. Our

stereo variant is a clone of the PLADE-net, with the differ-

ence that the PLADE-NetS “naively” incorporates the right-

view image information in a second encoder, whose bottle-

neck features are concatenated to the left view bottleneck

features. In our PLADE-NetS we do not incorporate any

advanced stereo matching layers such as 1D-Correlation or

3D convolutions, and still, our network manages to outper-

form the most recent self-supervised SOTA methods [1, 41]

in most metrics by a considerable margin, as indicated in

Table 2. Figure 6 shows that our network with stereo inputs

keeps generating very sharp and pixel-level accurate depth

estimates with clear object boundaries.

Results on Make3D. Table 3 compares our PLADE-

Net against the SOTA self-supervised methods on Make3D

[36]. Our approach generalizes the best among the self-

supervised methods under comparison and is very close to

the fully-supervised method of Laina et al. [27]. It is clear

in Figure 7 that our PLADE-Net generates sharper depth

estimates on the previously unseen Make3D dataset [36] in

comparison with the recent FAL-net [14] SOTA.

5. Conclusions

We showed that our PLADE-Net with neural positional

encoding (NPE) could generalize better than the conven-

tional CNN approaches. NPE allows our PLADE-Net to

learn location-specific features, which aid in predicting con-

sistent disparities in all image regions. Furthermore, our

proposed distilled matting Laplacian loss provides strong

self-supervision signals to learn sharp and pixel-level ac-

curate depth estimation. Our PLADE-Net outperforms all

previous self-, semi-, and fully-supervised methods on the

challenging KITTI dataset with remarkable accuracy lev-

els and exhibits superior generalization capacities on the

Make3D and CityScapes datasets.
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Figure 9. Qualitative comparisons on the KITTI Eigen test split [5]. Our PLADE-Net consistently estimates much more detailed depths.

Ref Methods PP Sup Data #Par abs rel sq rel rmse rmselog δ
1

δ
2

δ
3

Original Eigen Test Split [5]

[19] Gur et al. DoF K - 0.110 0.666 4.186 0.168 0.880 0.966 0.988

[31] Luo et al. D+S K - 0.094 0.626 4.252 0.177 0.891 0.965 0.984

[10] Monodepth2 V K 14 0.115 0.882 4.701 0.190 0.879 0.961 0.982

[16] PackNet V K 120 0.107 0.802 4.538 0.186 0.889 0.962 0.981

[15] Gordon et al. V K+CS - 0.124 0.930 5.120 0.206 0.851 0.950 0.978

[16] PackNet V CS→K 120 0.104 0.758 4.386 0.182 0.895 0.964 0.982

[17] Guizilini et al. V+Se CS→K 140 0.100 0.761 4.270 0.175 0.902 0.965 0.982

[33] SuperDepth S K - 0.112 0.875 4.958 0.207 0.852 0.947 0.977

[38] Tosi et al. ✔ SSGM K 42 0.111 0.867 4.714 0.199 0.864 0.954 0.979

[34] Refine&Distill S K - 0.098 0.831 4.656 0.202 0.882 0.948 0.973

[42] DepthHints ✔ SSGM K 35 0.096 0.710 4.393 0.185 0.890 0.962 0.981

[38] Tosi et al. ✔ SSGM CS→K 42 0.096 0.673 4.351 0.184 0.890 0.961 0.981

[47] Edge-of-depth ✔ S+Se K - 0.091 0.646 4.244 0.177 0.898 0.966 0.983

[14] FAL-net ✔ S K+CS 17 0.088 0.547 4.004 0.175 0.898 0.966 0.984

[14] FAL-net ✔ S K 17 0.094 0.597 4.005 0.173 0.900 0.967 0.985

our PLADE-Net S K 15 0.092 0.626 4.046 0.175 0.896 0.965 0.984

our PLADE-Net ✔ S K 15 0.089 0.590 4.008 0.172 0.900 0.967 0.985

our PLADE-Net S K+CS 15 0.090 0.577 3.880 0.170 0.903 0.968 0.985

our PLADE-Net ✔ S K+CS 15 0.087 0.550 3.837 0.167 0.908 0.970 0.985

Improved Eigen Test Split [39]

[7] DORN D K 51 0.072 0.307 2.727 0.120 0.932 0.984 0.995

[10] Monodepth2 V K 14 0.092 0.536 3.749 0.135 0.916 0.984 0.995

[16] PackNet (LR) V K 120 0.078 0.420 3.485 0.121 0.931 0.986 0.996

[16] PackNet V CS→K 120 0.071 0.359 3.153 0.109 0.944 0.990 0.997

[10] Monodepth2 S K 14 0.084 0.503 3.646 0.133 0.920 0.982 0.994

[42] DepthHints ✔ SSGM K 35 0.074 0.364 3.202 0.114 0.936 0.989 0.997

[14] FAL-net ✔ S K 17 0.071 0.281 2.912 0.108 0.943 0.991 0.998

[14] FAL-net ✔ S K+CS 17 0.068 0.276 2.906 0.106 0.944 0.991 0.998

our PLADE-Net S K 15 0.066 0.274 2.881 0.105 0.944 0.992 0.998

our PLADE-Net ✔ S K 15 0.066 0.272 2.918 0.104 0.945 0.992 0.998

our PLADE-Net S K+CS 15 0.066 0.263 2.726 0.102 0.949 0.992 0.998

our PLADE-Net ✔ S K+CS 15 0.065 0.253 2.710 0.100 0.950 0.992 0.998

our PLADE-NetS S K 15 0.036 0.094 1.791 0.060 0.988 0.998 0.999

our PLADE-NetS ✔ S K 15 0.035 0.091 1.748 0.058 0.989 0.998 1.000

Table 4. Evaluations on the KITTI Eigen test split [5]. Models are trained on the KITTI Eigen[5] train-split (K) and CityScapes[4] (CS).

CS→K indicates CS pre-training. K+CS indicates concurrent K and CS training. DoF and D denote depth-of-field and depth supervision.

S, SSGM, S+Se, V, V+Se indicate stereo, stereo + SGM, stereo + semantics, video, and video + semantics self-supervision. V methods

benefit from median-scaling. Best and second-best metrics. Methods that use post-processing (PP) are checked ✔. Results capped to 80m.
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