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Figure 1: ContactOpt pipeline. Left: A pose estimator generates a hand pose. Middle: DeepContact estimates where contact

should occur (target contact). Right: The hand pose is optimized to achieve target contact via a contact model (DiffContact).

Abstract

Physical contact between hands and objects plays a crit-

ical role in human grasps. We show that optimizing the

pose of a hand to achieve expected contact with an ob-

ject can improve hand poses inferred via image-based meth-

ods. Given a hand mesh and an object mesh, a deep model

trained on ground truth contact data infers desirable con-

tact across the surfaces of the meshes. Then, ContactOpt

efficiently optimizes the pose of the hand to achieve desir-

able contact using a differentiable contact model. Notably,

our contact model encourages mesh interpenetration to ap-

proximate deformable soft tissue in the hand. In our evalua-

tions, our methods result in grasps that better match ground

truth contact, have lower kinematic error, and are signifi-

cantly preferred by human participants. Code and models

are available online1.

1. Introduction

The availability of data, hand and body models, and

learning algorithms has fueled a growing interest in cap-

turing, understanding, and simulating hand-object interac-

tions [5, 15, 17, 49, 51, 60]. Recent algorithms can pre-

dict hand and object pose increasingly accurately from an

image. However, inferred poses continue to exhibit suffi-

1https://github.com/facebookresearch/contactopt

cient error to cause unrealistic hand-object contact, making

downstream tasks in simulation, virtual reality, and other

applications challenging.

A key issue is that physical contact is sensitive to small

changes in pose. For example, less than a millimeter change

in the pose of a fingertip normal to the surface of an object

can make the difference between the object being held or

dropped on the floor. In addition to physical implausibility,

lack of contact and other small-scale phenomena can reduce

the perceptual realism of rendered poses.

In this paper we present ContactOpt, an algorithm that

improves the quality of hand-object contact by refining hand

pose. When given a hand mesh and an object mesh, Con-

tactOpt infers where contact is likely to occur and then op-

timizes the hand pose to achieve this contact.

As shown in Figure 1, ContactOpt consists of two main

components, DeepContact and DiffContact. DeepContact

is a network that takes the hand and object meshes as input

and estimates regions of likely contact. DiffContact is a dif-

ferentiable function that takes the hand and object meshes as

input and outputs contact based on current geometry. Con-

tactOpt uses gradient-based optimization to find pose, trans-

lation, and rotation parameters for the MANO hand model

[41] that improve the match between current contact from

DiffContact and target contact from DeepContact.

Notably, ContactOpt takes into account soft tissue defor-
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mation in the hand. The inner surface of a human hand un-

dergoes significant deformation when making contact with

objects. For example, the finger pad can deform 2-3 mm,

and the palm can deform 5 mm under normal grasping

forces [36]. DiffContact permits up to 2 mm of interpene-

tration between the hand and object meshes without penalty.

In addition, ContactOpt’s gradient-based optimization uses

a loss function that only penalizes penetration greater than

this threshold. This allows for contact to occur across wide

areas of the hand, rather than only at single points.

We conducted two types of evaluations to assess Con-

tactOpt’s performance. For the first type of evaluation,

we evaluated ContactOpt’s ability to refine hand pose es-

timates with small inaccuracies in dataset annotations. This

presents methodological challenges due to limits in the pre-

cision of dataset ground truth annotations. To overcome

this, we used the ContactPose dataset, which has both pose

estimates and measured contact data obtained via thermal

imagery. We had ContactOpt refine these hand pose es-

timates with respect to ground truth contact. The refined

hand poses better matched ground truth contact and were

preferred by human participants, demonstrating that Con-

tactOpt can improve state-of-the-art pose estimates from ex-

isting datasets.

For the second type of evaluation, we evaluated Contact-

Opt’s ability to refine hand pose estimates with large in-

accuracies. We used ContactOpt to refine hand pose esti-

mates from an existing RGB hand pose estimation network

(Hasson et al. [19]) applied to the HO-3D dataset [17].

ContactOpt’s refined hand poses had lower kinematic error,

were preferred by human participants, and matched more

closely to previously observed hand contact patterns (Fig-

ure 2). ContactOpt also outperformed RefineNet [51] (an

end-to-end grasp refinement network) with respect to both

measures. This demonstrates ContactOpt’s value as a post-

processing stage for existing hand-object pose estimation

algorithms for which it has not been specifically trained.

Since ContactOpt operates on hand and object meshes, it

has the potential to improve the output of recent image-

based estimation methods while avoiding some types of

generalization issues associated with operating on images.

In summary, our contributions follow:

• We show that methods that explicitly consider hand-

object contact can improve hand pose estimates at both

coarse (≈cm) and fine (≈mm) spatial scales, resulting

in improved visual realism and lower kinematic error.

• We present DeepContact, a deep network that esti-

mates where contact is likely to occur across the sur-

faces of inaccurately aligned hand and object meshes.

• We present DiffContact, a differentiable contact model

that estimates where contact is occurring between hand

and object meshes.

Inferred Poses ContactOpt

Figure 2: Frequency of hand contact calculated with poses

inferred with an image-based pose estimator [19] (left) and

after refinement with ContactOpt (right). Note the increase

in contact on the finger pads and across the index finger.

• We present ContactOpt, an algorithm that performs

gradient-based optimization to improve hand-object

contact by refining hand pose.

2. Related Work

In this work, we use likely contact and a contact model to

improve the pose of a hand grasping an object. Applications

in computer vision, animation, and robotics have driven in-

terest in hand-object interaction tracking from different an-

gles, e.g., recovering poses from input images or generat-

ing grasps based on object pose and geometry. Information

about contact is playing an increasingly important role for

hand-object interaction tracking, grasp generation and mul-

tiple other related applications.

Datasets of hand-object contact. Recently, there has

been a focus on collecting datasets that include interac-

tions between hands and objects. FreiHand [60] uses mul-

tiple cameras to extract high-quality annotations using the

MANO model, but does not include the object pose. HO-

3D [17] optimizes simultaneously for both hand and object

poses from RGB-D sensors. FHAB [14] leverages a unique

magnetic tracking system to infer the pose of a hand and

object even under occlusion. GRAB [51] uses professional

optical motion capture to collect a dataset of people grasp-

ing and manipulating objects. The work additionally infers

contact from the proximity of hand and object. However,

these estimates may be noisy due to the very high pose ac-

curacy necessary to infer accurate contact.

Datasets for contact directly measured on objects [3, 25]

and hands [49] are complementary to datasets on hand-

object poses. The ContactPose dataset [5] is unique in cap-

turing both ground truth thermal contact maps, as well as

hand and object pose. The participants held a static grasp

for each of 25 objects while being captured using multi-

ple RGB-D cameras. The object was tracked using motion
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capture, and the hand pose was estimated by aggregating

predictions across time from an RGB hand pose estimator.

A thermal camera measured the body heat transferred from

the participant’s hand to the object, providing ground truth

contact. The dataset shows that contact occurs across large

sections of the hand, as opposed to only at the fingertips. A

limitation of the method is that the 3D hand pose accuracy

is bounded by the accuracy of the hand pose estimation, so

there may be discrepancies between the contact map and the

MANO hand mesh.

Image-based hand-object pose estimation. There is an

extensive body of work on estimating the pose of the

hand using a variety of input modalities, including: gloves

with markers or sensors [15, 18, 57], depth/RGB-D in-

put [2, 31, 45, 46, 48, 50, 52, 54, 55, 58], and RGB or

monochrome images [7, 12, 30, 44, 58, 60], with an in-

creasing focus on hand-object interaction [12, 16, 17, 19,

20, 23, 33, 34, 40, 45, 53]. Researchers have long real-

ized that inferring and enforcing contact is important for

hand-object interaction tracking [40, 56], and it remains a

challenging task, particularly in the absence of depth data.

For RGB-D hand tracking, hand-object contact modeled as

finger-tip to object distance was part of the energy function

during optimization with Gaussian Mixture Models in [45].

For image-based prediction, skeletal hand poses [12, 53]

or MANO [41] hand model parameters [19, 20] are pre-

dicted jointly with object geometry or pose in an end-to-end

manner. Despite sharing a joint latent space, since the out-

put representations for the hand and object are decoupled,

there can be relative errors in the poses, leading to unre-

alistic grasps. Even though contact can be encouraged at

training time, these networks have no method of enforcing

alignment at test time. Our work complements these exist-

ing methods by leveraging the strength of their joint hand-

object pose prediction, but uses explicit contact inference

and enforcement to achieve higher quality grasps.

Grasp synthesis. Robotic grasp generation shares many

similarities to pose refinement. Generally, the robot at-

tempts to find a stable grasp with high robustness to per-

turbations. Various input modalities have been explored

for learned grasp detectors, including depth [27, 29] and

RGB [8, 26, 37, 43]. Some methods use physics simulation

[11, 28] or analytical heuristics [42] to find stable grasps.

The majority of robotic grasping work focuses on simple

grippers with sparse contact points, however some research

has investigated manipulation with anthropomorphic hands

[1].

Similarly, generating plausible grasps for a human hand

has also been explored. In GanHand [10], a dataset of af-

fordances and grasps was proposed to generate plausible

human grasps based on input images. The works that are

most similar to ours are ContactGrasp [4] and GRAB [51].

In ContactGrasp [4], dense ground truth contact maps from

ContactDB are used to generate plausible grasps for a given

object geometry. However, this requires pre-recorded con-

tact maps, and because the ContactDB dataset lacks ground

truth hand poses, they cannot compare against ground truth

or condition on images as we do. In GRAB [51] the authors

leverage their collected data to generate compelling grasps

for a variety of objects. They propose RefineNet, which

improves the quality of a grasp given an initial pose. This

has similarities to our approach, but it performs end-to-end

pose updates rather than optimization, and considers fixed

contact patterns as opposed to contact estimated separately

for each grasp. The method does not explicitly consider

object geometry, and because it is fully learned, may have

less ability to generalize. We show comparisons against this

approach when applied to image-based inference tasks in

Sec. 4.

Contact in human pose. Aside from hand-object inter-

action, contact is informative for full human body poses

given human-environment interaction [9, 32]. Inferred con-

tact constraints are used in [39] to improve body pose es-

timation from videos to mitigate artifacts such as feet slid-

ing. Coarse contact points are used in generating human

poses interacting with scenes [21, 47, 59]. Our work lever-

aging fine-grain contact information to improve hand pose

in hand-object interaction tracking is related to and likely

applicable to context-aware full-body pose estimation and

generation.

3. Methods

We represent the grasp with an object mesh O and a

MANO [41] hand mesh H. H is described by parameters

P =
(

θ, β, tH , RH
)

, consisting of pose, shape, translation,

and rotation w.r.t. the object respectively. Pose θ is rep-

resented as a 15-dimensional PCA manifold, which lowers

the high-dimensional joint angle representation to a com-

pressed space of typical hand poses.

Given a noisy estimate of P (which typically comes

from an image-based algorithm), we seek a better grasp by

exploiting the hand-object contact information. Figure 1

shows an overview of our approach. In the following sec-

tions, we describe our learned contact map estimation mod-

ule DeepContact (Section 3.1) and our differentiable con-

tact model DiffContact (Section 3.2) that is iteratively up-

dated according to the optimized hand pose to reproduce the

estimated contact (Section 3.3).

3.1. DeepContact: Learning to Estimate Contact

Given an object mesh O and and hand mesh H with po-

tentially inaccurate pose P, DeepContact learns to infer tar-

get contact on the hand ĈH and object ĈO.

31473



DeepContact

Ground Truth 

Contact

a) b) c)

i)

ii)

iii)
 2mm

Figure 3: a) Example of multiple hand poses from Perturbed ContactPose, all generated from a single dataset sample. b) Top:

DeepContact predicts contact maps for the hand and object as if they were aligned. Bottom: Ground truth poses and thermal

contact. c) When a human finger contacts an object, point contacts are rare (i). More commonly, the soft tissue in the finger

conforms to the surface (ii) resulting in a large area of contact. While the MANO mesh does not locally deform to match the

surface, we can encourage the optimizer to create matching area-based contact by marking vertices as being in contact even

when they are 2 mm inside the surface (iii).

We represent the meshes H and O as point clouds, and

use PointNet++ [38] to predict contact. The object point-

cloud contains 2048 points randomly sampled from the ob-

ject. The hand point cloud contains all 778 vertices of the

MANO mesh. We employ the “mesh” features, training

loss, and discrete contact representation of Brahmbhatt et

al. [5]. The “mesh” features capture distances from the hand

to the object, as well as normal information. Additionally,

we include a binary per-point feature indicating whether the

point belongs to the hand or the object. The network pre-

dicts contact as a classification task, where the range [0, 1] is

split into 10 bins. We train DeepContact with the standard

binary cross-entropy loss.

Similarly to GrabNet [51], we train this module on a

dataset of randomly perturbed hand poses from the Con-

tactPose dataset, which we call Perturbed ContactPose.

The hand mesh is modified by adding noise to the param-

eters ∆θ ∼ N (0, 0.5), ∆tH ∼ N (0, 5) cm, and ∆RH ∼
N(0°, 15°). Object contact is supervised with ground-truth

thermal contact from ContactPose. To generate the tar-

get hand contact map, we run DiffContact (section 3.2).

By applying multiple perturbations to each grasp, a train-

ing/testing split of 22K / 1.4K grasps is generated.

Figure 3a shows example perturbations, and Figure 3b

shows an example contact prediction. Hand and object

poses that are farther from a particular grasp tend to result

in larger and more diffuse areas of predicted contact.

3.2. DiffContact: Differentiable Contact Model

DiffContact estimates the contact maps, CO(P) and

CH(P), based on the current meshes O,H(P). This is

done in a differentiable way, allowing optimization of the

hand parameters P.

We propose a contact model using virtual capsules, as

shown in Figure 4a. Our virtual capsules have useful attrac-

tion extended beyond the surface (which a binary proximity

would not) and approximate soft hand tissue deformation.

More concretely, we place a virtual capsule at every ob-

ject vertex v
O
i and orient it along the object surface nor-

mal nO
i . This capsule has a principal line segment defined

by v
O
i + αnO

i , α ∈ [−cbot, ctop]. Let φ(x) be the Eu-

clidean distance from a 3D point x to this line segment.

The contact is defined to be uniformly 1 for points such that

φ(x) < crad and falls off proportionally with distance out-

side crad as crad

φ(x) .

Let vH
j (P) be the hand vertex at pose P with the small-

est distance φ to the object vertex v
O
i . The contact value at

the object vertex v
O
i is expressed as:

CO

(

v
O
i ;P

)

= min

(

crad

φ(vH
j (P))

, 1

)

. (1)

The same procedure can be used to calculate the con-

tact map on the hand surface. We choose an asymmetric

cbot > ctop such that the region considered “in contact” ex-

tends farther inside the mesh than outside, which approxi-

mates soft hand tissue deformation as shown in Figure 3c.

In our experiments, ctop = 0.5 mm, cbot = 1 mm, and

crad = 1 mm. As the total capsule depth inside the ob-

ject is cbot + crad = 2 mm, this conservatively matches the

2−3 mm finger pad deformation found in the biomechanics

literature [6, 13].

Figure 4b shows an example of object contact com-

puted with this model. Because the generated contact has

a gradual dropoff, this provides gradients for optimiza-

tion. Additionally, the resulting contact maps have dif-
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Figure 4: a) Virtual capsules are placed on each vertex of the object, aligned with the vertex normal. If any hand vertices are

inside the capsule, the object point is marked as being in full contact. b) Left: Hand and object from ContactPose dataset.

Center: Ground truth thermal contact. Right: Contact estimated from DiffContact. c) Optimization of hand pose to match

target contact. From left to right: hand pose at selected iterations during optimization.

fuse edges, which appear visually similar to thermal contact

maps [3, 5]. The generated contact is an area instead of a

single point.

3.3. Contact Optimization

To align the meshes, the hand mesh parameters P are it-

eratively optimized (Figure 4c) to minimize the difference

between the current contact maps CH(P), CO(P) com-

puted using DiffContact, and the target contact maps ĈH ,

ĈO as predicted by DeepContact, or from ground truth ther-

mal contact.

The contact loss for the object surface is:

EO(P) =

{

λ|CO(P)− ĈO| if CO(P) < ĈO

|CO(P)− ĈO)| otherwise
(2)

Here we use λ > 1 to penalize “missing” contacts (where

the target contact is higher than the value estimated by Dif-

fContact) more heavily than “unexpected” contacts. This is

based on the empirical observation that it is visually worse

for the hand to “hover” over the object than to be slightly

interpenetrating. We apply a corresponding loss EH(P) to

penalize differences between the target hand contact map

ĈH and CH(P). We use λ = 3 in both cases.

We also include an explicit penetration term that penal-

izes penetrations beyond cpen. This discourages heavy in-

tersection where vertices on the back of the hand register as

in contact. For each object vertex v
O
i , object surface normal

n
O
i , and nearest hand vertex v

H
j (P), the penetration loss is

defined as

Epen(P) =
∑

i

max
(

0, (vO
i − v

H
j (P)) · nO

i − cpen
)

(3)

where cpen = 2 mm. The final loss is

E(P) = EH(P) + λOEO(P) + λpenEpen(P) (4)

The loss is minimized by the ADAM optimizer [24] us-

ing gradients computed with PyTorch automatic differenti-

ation [35]. We use a learning rate of 0.01 and optimize for

250 iterations. Optimizing a batch of 64 hand-object pairs

takes 4 s (amortized runtime 62 ms). We scale the gradients

for the different components of P. See the supplementary

material for more details.

Random restarts. Since the contact optimization is local,

a poor initialization (e.g. initial hand position on the wrong

side of an object) can result in the optimizer settling into

a bad local minimum. We avoid this by applying the pose

optimization to several perturbations of the provided pose

and select the result with the lowest loss.

4. Evaluation

We evaluate how well ContactOpt improves poses with

small inaccuracies and with large inaccuracies using the

ContactPose and HO-3D datasets. In each case, the refined

hand mesh is evaluated using the following metrics.

• Intersection Volume (cm3): Intersection volume of H

and O, calculated from their mesh intersection. Stan-

dard deviation across the dataset is also shown.

• Mean Per-Joint Position Error (MPJPE) (mm): Av-

erage L2 per-joint kinematic error with respect to the

ground truth hand [22].

• Contact Coverage (%): Percentage of hand points be-

tween -2 mm and +2 mm of the object surface (i.e.,

approximately in contact with the object).

• Contact Precision/Recall (%): Quantifies how well

the contact from the refined hand mesh matches the

thermal contact map. A binary object contact map is

obtained by considering the object points within ±2

51475
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Figure 5: Examples of contact inaccuracy in dataset ground

truth annotations: (a) ContactPose [5] (alignment offset),

(b) HO-3D [17] (hand self-penetration, hand-object gap),

and (c) FHAB [14] (hand-object penetration).

mm of the hand surface to be in contact. Precision and

recall are calculated by comparing this to the thermal

contact map thresholded at 0.4, following [5].

• Perceptual Evaluation (%): Nine evaluators who

were unfamiliar with the research were recruited to

judge the relative quality of grasps in two-alternative

forced choice tests (2AFC). Each participant was

shown two hand-object pairs and asked to judge

“Which looks more like the way a person would grasp

the object?”. In pilot studies, we found that non-

experts had difficulty comparing grasps with small dif-

ferences, so pairs with less than a 5 mm MPJPE differ-

ence were removed. For each method, the evaluators

judged 75 pairs of grasps with an equal number ran-

domly selected for each object. The mean and 95%

confidence intervals are shown. More details of this

evaluation can be found in the supplementary material.

4.1. Refining Small Inaccuracies

We use the ContactPose dataset to evaluate the ability of

ContactOpt to improve poses with small inaccuracies. Re-

cent hand-object interaction datasets use a variety of tech-

niques to capture hand and object pose, such as magnetic

trackers, multi-view reconstruction from RGB-D cameras,

or motion capture systems. Despite using high quality sen-

sors, errors on the centimeter-level are not uncommon (Fig-

ure 5).

However, when considering the realism of grasps, mil-

limeters matter. Gaps between the hand and object result in

unstable grasps and can be visually unsatisfying. Similarly,

unrealistic penetration can violate basic assumptions of in-

tact hands and objects. Notably, millimeters of Euclidean

error can result in a physically implausible grasp.

ContactOpt can be used to resolve these types of er-

rors when applied to already high-quality poses provided

by dataset annotations.

Refining ContactPose Dataset Poses: Millimeter-scale re-

finement is demonstrated by refining the ContactPose an-

notated hand meshes. Rather than estimating target contact

using DeepContact, the ground truth thermal contact map is

used. As ground truth hand contact is not available, hand

contact is not used. Table 1 and Figure 7 show the results of

this experiment.

Both contact recall and precision metrics increase,

demonstrating that ContactOpt improves the self-

consistency between ground truth contact and mesh

poses. Both unwanted contact as well as excess contact are

reduced (Figure 6).

However, it is difficult to quantify the holistic quality of

a grasp. We perform a perceptual evaluation where human

participants choose the most natural-looking grasp. Contact

maps are not shown to the participants. As shown in Ta-

ble 1, participants favored the refined grasps at over a 2:1

ratio. ContactOpt is able to consistently resolve cases of

millimetric penetration or under-shoot and pull the fingers

into realistic contact with the object, which is likely noticed

by the participants.

This demonstrates that contact and accurate poses can be

used together to achieve higher quality than is possible with

pose alone.

4.2. Refining Large Inaccuracies

We evaluate the ability of ContactOpt to improve poses

with large inaccuracies in two ways. First, we use perturbed

poses from the ContactPose dataset. Second, we use poses

estimated from images.

4.2.1 Refining Perturbed ContactPose

We test the full ContactOpt pipeline on Perturbed Contact-

Pose (Section 3.1), which contains poses with an MPJPE of

∼80 mm. This tests the ability to improve hand poses with

large errors. Results are shown in Figure 8 and Table 1.

Despite being initialized from a heavily misaligned hand

pose, the pipeline is still able to reduce kinematic error

(MPJPE) by almost 70% and improves perceptual grasp

quality. Additionally, the refined meshes are more consis-

tent with the ground truth contact maps, even though they

are not provided to the algorithm.

However, some kinematic error remains. Qualitatively,

this is because the objects have many valid grasp modes (i.e.

grasping an apple in any rotation), and it is not possible to

recover the correct one from the inaccurate initial pose. Al-

though most refined meshes are visually high quality, often

a slight translation results in a large kinematic error.

4.2.2 Refining Image-Based Pose Estimates

We evaluate ContactOpt in refining the predictions from an

image-based pose estimator. In this task, 3D hand and ob-

ject pose are often estimated using CNNs. For approaches

that operate on single-frame RGB images, errors in the

multiple-centimeter range are typical, leading to physically

implausible grasps. Note that in this setting, there are no
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Figure 6: Distance of hand points to ob-

ject surface, before and after refinement of

ContactPose. Note that unrealistic deep in-

terpenetrations (negative) have been mostly

eliminated while the fraction of vertices near

the surface of the object [−2, 2] mm has in-

creased.
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Figure 7: Top: Original meshes from ContactPose with misalignment be-

tween hands and contact maps. Bottom: After refinement using ContactOpt.

See Sec. 4.1.

Dataset
ContactOpt Intersection MPJPE Score (%) ↑
Refinement Volume (cm3) ↓ (mm) ↓ Perceptual Coverage Precision Recall

ContactPose [5]
× 2.45 ± 1.99 - 30.6 ± 3.8 6.9 64.6 34.0

X 1.35 ± 0.90 8.06 69.4 ± 3.8 8.9 75.9 50.0

Perturbed × 8.46 ± 16.49 79.89 - 2.3 9.9 11.5

ContactPose X 12.83 ± 8.00 25.05 - 19.7 38.7 54.8

Table 1: Effect of ContactOpt refinement on the ContactPose ground-truth (top 2 rows) and Perturbed ContactPose dataset

(bottom 2 rows). The precision and recall scores quantify (Sec. 4) agreement with the measured contact map. ContactOpt

improves both perceptual quality and contact agreement.

image-based constraints placed on the optimization, thus al-

lowing greater freedom of pose refinement.

We use the baseline pose estimation network from Has-

son et al. (2020) [19] and retrain it on a training split of

the HO-3D dataset. As the network’s object predictions

are often unstable, the object class and pose are taken from

ground truth. Additionally, poses where the ground truth is

not in contact are filtered out. More details can be found in

the supplementary material.

We demonstrate that DeepContact is able to generalize

well to new datasets. Despite being trained on the Perturbed

ContactPose dataset, it can still improve estimates on HO-

3D, which has both different objects and features dynamic

grasps. Generally, since hand and object geometry is mostly

consistent across datasets, the domain gap is smaller than

modalities such as RGB, where learned methods often must

be completely retrained. We qualitatively find that Deep-

Contact is able to transfer hand contact more reliably than

object contact, as the hand representation (MANO) is con-

sistent across datasets.

Results from this task are found in Table 2. Human eval-

uators favored the refined grasps over the initial grasp esti-

mates by a ratio of almost 6:1. Additionally, the frequency

of contact across the hand for the refined grasps (Figure 2)

is similar to ground truth frequencies of contact, while the

frequency of contact for originally inferred grasps does not

resemble normal grasping patterns.

As the dataset contains shapes with many grasp modes

(i.e. boxes may be grasped anywhere along the edge), Deep-

Contact has difficulty predicting the correct grasp location

from a low quality inferred grasp. Figure 8 shows a refined

grasp with high perceptual quality but a large MPJPE error

metric. Despite this, ContactOpt is still able to lower the

mean kinematic joint error by 20%.

Comparing to Baseline Refinement: We also compare

ContactOpt to a baseline hand pose refinement method. Re-

fineNet [51] is an end-to-end model trained on the GRAB

dataset to refine initial coarse grasp proposals. Given a hand

and object mesh, the network predicts pose, rotation, and

translation updates. As RefineNet is an iterative method, it

is benchmarked with 3 iterations (following the paper) and

10 iterations.
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Figure 8: Application of ContactOpt to poses from Perturbed ContactPose and image-based pose estimates. The leftmost

column presents an example where the refined grasp is of higher perceptual quality, but as DeepContact estimated a different

grasp mode, the grasp has high kinematic error. More examples are available in the supplementary material.

Method
Intersection MPJPE Score (%) ↑

Volume (cm3) ↓ (mm) ↓ Perceptual Coverage

Image Pose Estimator [19] 15.3 ± 21.1 57.7 reference 4.4

RefineNet (n=3) [51] 13.8 ± 19.0 56.3 69.6 ± 3.5 5.3

RefineNet (n=10) [51] 11.6 ± 18.5 64.1 - 3.9

ContactOpt (ours) 6.0 ± 6.7 48.1 85.2 ± 2.7 14.7

HO-3D Ground Truth [17] 1.9 ± 2.8 - - 2.5

Table 2: Effect of RefineNet and ContactOpt algorithms on the hand pose predicted by Hasson et al. [19] on the HO-3D

dataset. The perceptual studies compare refined poses against the original image-based estimates. The ContactOpt refinement

achieves the lowest MPJPE and is favored by human evaluators.

Ablating Random Restarts: The effect of random restarts

on kinematic error is shown in Table 3. Due to the non-

convexity of the optimization objective, performing random

initializations with perturbations to translation improves the

performance of ContactOpt.

nrestart 1 4 8

MPJPE (mm) 53.6 51.2 48.1

Table 3: MPJPE vs number of random restarts, tested on

image-based pose estimates. Compare to Table 2

5. Conclusion

We introduce ContactOpt, a method to refine coarsely

aligned hand and object meshes. DeepContact estimates

likely contact on both the hand and the object. DiffCon-

tact then estimates contact based on the current mesh pose.

The error between these two estimates is used to optimize

hand pose to achieve the target contact.

We show that ContactOpt is able to improve both

dataset-quality meshes when ground truth thermal contact

is provided, as well as pose estimations from images, even

when tested on a novel object set. In our experiments, opti-

mized grasps achieved lower kinematic error and were pre-

ferred by human evaluators.
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