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Abstract

We propose a new type of full-body human avatars,

which combines parametric mesh-based body model with

a neural texture. We show that with the help of neural

textures, such avatars can successfully model clothing and

hair, which usually poses a problem for mesh-based ap-

proaches. We also show how these avatars can be cre-

ated from multiple frames of a video using backpropaga-

tion. We then propose a generative model for such avatars

that can be trained from datasets of images and videos of

people. The generative model allows us to sample random

avatars as well as to create dressed avatars of people from

one or few images. The code for the project is available at

saic-violet.github.io/style-people.

1. Introduction

Creating realistically-looking and articulated human

avatars is a challenging task with many applications in

telepresence, gaming, augmented and virtual reality. In re-

cent years, sophisticated and powerful models of “naked”

people that model shape of the body including facial and

hand deformations have been developed [33, 50]. These

models are based on mesh geometry and are learned from

several existing datasets of body scans. Clothing and hair

literally add an extra layer of complexity on top of body

modeling, they are even more challenging for appearance

modeling, and accurate 3D data for these elements are

scarce and hard to obtain. And yet creating realistic avatars

is not possible without modeling of these elements.

Here, we propose a new approach that we call neural

dressing that allows to create 3D realistic full body avatars

from videos and in a few-shot mode (from one or sev-

eral images). Similarly to previous works, this approach

uses deformable meshes (specifically, SMPL-X model [33])

to model and animate body geometry in 3D. On top of

the body mesh, the approach superimposes a multi-channel

neural texture [44] that is processed by a rendering network

∗equal contribution

in order to generate images of a full-body avatar with cloth-

ing and hair. Our first contribution is thus to show that the

combination of deformable mesh models and neural tex-

tures (neural dressing) can model appearance of full-body

avatars with loose clothing and hair well and to account for

the geometry missing in parametric body models.

As our second contribution, we build a generative model

of full-body avatars. The key component of the new model

is a generative network for neural body texture. The gener-

ative network is derived from StyleGANv2 [21] generator.

To build the complete model, we thus incorporate neural

texture synthesis, mesh rendering, and neural rendering into

the joint generation process, which is trained in an adversar-

ial fashion on a large-scale dataset of full-body images. We

also address the need to ensure that avatars have consistent

appearance across variety of poses and camera positions.

This is ensured by adding an additional discriminator net-

work and by modifying the training process accordingly.

Using the resulting generative model, we can sample

new realistic 3D “artificial humans” (StylePeople – Fig-

ure 1). Furthermore, the availability of a generative model

allows us to build avatars for existing people by fitting the

model to a single image or few images of a given person.

As the generative model is heavily over-parameterized, we

investigate how the fitting process can be regularized. In

the experiments, we then compare our model to previous

approaches to few-shot avatar modeling.

2. Related work

An early generative model for people in clothing [24]

translates renderings of a parametric body model to human

parsing (semantic segmentation) maps, which are subse-

quently translated into human images. The pose-guided hu-

man image generation [29] methods synthesize human im-

ages in new poses or with new clothes from a single image

by either relying on feature warping in pose-to-image trans-

lation [41, 11, 10, 14] or on predicting surface coordinates

in the source and target frames [5] and sampling RGB tex-

ture maps [31, 13]. In [30] the textures are transfered from

clothing images to 3D garments worn on top of SMPL [28]
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Figure 1. Style people, i.e. random samples from our generative models of human avatars (truncation factor 0.8) . Each avatar is shown

from two different viewpoints. The samples show diversity in terms of clothing and demographics. Loose clothing and hair are present.

using only shape information and ignoring texture.

In a video-to-video setting, [48] trains a system that

transforms a sequence of body poses into corresponding

temporally-consistent monocular videos. Likewise, [39]

proposes to translate renderings of body joints to clothed

body surface coordinates and use the latter to sample the

learnable RGB texture stack achieving better visual quality.

The geometry-texture decomposition helps occlusion rea-

soning and generalization to unseen poses, however surface

coordinate regression mistakes result in visual artifacts, es-

pecially for the face and hands. Our approach goes one step

further by switching from body coordinate regression to fit-

ting a deformable model to images, improving alignment

and geometric consistency.

The works [3, 2, 4, 7, 25, 16] take a single or multiple

images of a person and produce a texture and displacement

map for a body model, which later can be rendered from

any viewpoint and in arbitrary pose. However the quality

of rendering the human avatar in this case is limited by the

classic graphical pipeline, while in our case a rendering net-

work allows to increase photorealism.

Recently, approaches that rely on implicit functions to

create 3D model of human bodies [36, 37] emerged. They

allow to generate detailed shapes of clothed human body.

Although, they are restricted to manipulate those shapes

only in terms of viewpoint since they lack structural infor-

mation and can not render fitted humans in new poses.

We build our approach on a powerful deferred neural

rendering model of [44] proposing learnable neural textures

for meshes, which encode visual appearance and can be

rendered using a standard graphics pipeline and then trans-

lated into photorealistic images of objects and scenes. In

our system, the neural textures also implicitly encode non-

modelled geometry, e.g. clothing and hair. While the sys-

tem of Thies et al. needs to be trained from scratch requir-

ing at least several dozens of images per scene, we propose

a generative model of neural textures for people rendering,

trained on a new large dataset of annotated in-the-wild im-

ages, which allows few-shot synthesis of a photorealistic

human avatar. The most recent approaches [47, 52, 26, 40]

report pose-to-image video-to-video translation in the few-

shot regime, when the target appearance is specified by sev-

eral images. Our approach leads to superior visual quality

in the same setting by relying on a better geometric proxy

as well as on the geometry-texture decomposition.

Finally, our StylePeople model builds on top of the re-
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Figure 2. The neural dressing model. The texture of an avatar (left column; first three PCA components are visualized) is superimposed on

the body mesh modeled with SMPL-X [33] (columns 2,3). Processing the rasterizations with the rendering network generates the renders

(columns 4,5). Note that the model can handle loose clothing and long hair as well as complex garment textures gracefully.

cent years of advances in modeling high-resolution 2D im-

ages ([19, 8, 20]), in particular StyleGANv2 model [21].

Tewari et al. [43] propose to use StyleGAN model for rig-

like control over face features. However, they can not con-

trol parts of the scene that are not explained by the para-

metric face model (e.g. hair style). The pairwise discrim-

inator that ensures consistency between poses of the same

avatar in our work has been recently proposed in a similar

extension for StyleGAN model in [27] for the task of video

synthesis (while in general, the use of multi-frame discrim-

inators for consistent video synthesis can be traced to [45]).

The inference ideas we apply to invert our generative model

in few-shot learning mode are based on extended generator

space [20, 1], learning the auxiliary encoders [21, 27], us-

ing discriminator feature matching loss [32], as well as fine-

tuning generators to achieve the best fit [53, 6, 32].

3. Methods

We first describe the neural dressing model that com-

bines together deformable mesh modeling with neural ren-

dering. After that we focus on the generative model for hu-

man avatars that builds on top of the neural dressing model.

3.1. Neural dressing model

The neural dressing model (Figure 2) builds on top of the

deformable shape model (SMPL-X in our case) that gener-

ates fixed-topology mesh M(p, s) driven by sets of pose

parameters p and body shape parameters s. We assume that

the mesh comes with a pre-defined texture mapping func-

tion, and denote with R(M,T ;C) the rasterization func-

tion that takes mesh M , L-channel texture T and camera

parameters C, to generate L-channel rasterization of the

textured mesh using z-buffer algorithm.

We use L-channel texture T with L=16 in our experi-

ments to encode local photometric and geometric informa-

tion (including the geometry missing in parametric mesh).

We then use a rendering image-to-image network fθ with

learnable parameters θ to translate the L-channeled raster-

ized image R to a six-channeled image I of the same size,

where the first three channels of I correspond to RGB color

channels and the last three channels correspond to segmen-

tation masks for the whole foreground, head and hands. Ad-

ditional segmentation channels for head and hands are used

as additional supervision to improve visual quality of these

body parts.

In the neural dressing model, an avatarA is characterized

by body shape parameters sA and neural texture TA. Given

a pretrained rendering network fθ, it can be rendered for an

arbitrary pose p and arbitrary camera parameters C. At test

time, the rendering process runs at interactive speed (∼25

FPS at one megapixel resolution).

3.2. Learning neural dressing via backpropagation

Given a collection of videos of several people, we can

create their avatars by fitting our model via backpropaga-

tion. For person i, we assume that a set of video frames I
j
i is

given (j ∈ 1..Ni). We then obtain three-channel segmenta-

tion map using a pretrained network [12], and fit parameters

of body shape si, pose p
j
i and camera C

j
i corresponding to

each individual frame. Our fitting is based on a modification

of the SMPLify-X algorithm [33] that constrains the body

shape parameters to be shared between frames.

We then jointly optimize parameters of the rendering

network θ and neural textures Ti of all individuals using

backpropagation. The optimization process minimizes fol-

lowing loss values: perceptual [18], adversarial [17], and

feature matching [46] losses between ground truth images

5153



I
j
i and rendered images fθ[R(M(pji , si), Ti, C

j
i )]. We use

above-mentioned losses for color channels and Dice loss

for ground truth and predicted segmentation masks. Im-

portantly, when predicting the mask, we assign all pixels

covered by the parametric body model to foreground.

In the first set of experiments, we pretrain the render-

ing network parameters θ on a dataset of 56 individuals, for

which we have collected many thousands of frames. We

can then create an avatar for a new person in three steps: (i)

estimate pose, body shape, and camera parameters for a lim-

ited number of frames of the individual, (ii) generate three-

channel segmentation masks for those frames and then (iii)

use the fixed pretrained rendering network to optimize neu-

ral texture for the person by backpropagation. Note that in

our current implementation, gradients are backpropagated

through rasterization function only to texture parameters

but not mesh or camera parameters, which means that non-

differentiable renderers are suitable for our learning task.

3.3. Generative modeling

Learning with backpropagation allows to create avatars

from relatively short videos or even few appropriately dis-

tributed frames (with each surface part of the person cov-

ered in at least one view). In some practical scenarios it

may be beneficial to create fullbody avatars from impartial

information, e.g. a single view in A-pose. To do that, sys-

tem needs ability to reason about unobserved parts of the

avatar. We take the generative modeling approach to handle

this task.

We build a generator for neural textures that can be used

in neural dressing. We start with the recent StyleGANv2

approach [21] for high-resolution image modeling. Follow-

ing [21], we train a multi-layer perceptron gφ(z) : R
512 →

R
512 and a convolutional network hψ(w

4, ...,w512,N)
that takes as an input a set of 512-dimensional style vec-

tors controlling generation at different resolutions (from

4 × 4 to 512 × 512) via modulation-demodulation mech-

anism as well as the set N of noise maps at these reso-

lutions. Together, the two networks define the generative

model hψ(gφ(z),N), in which a random vector z is passed

through the MLP and then used as an input at multiple res-

olutions into the convolutional part.

Our architecture for the generator (Figure 3) closely fol-

lows [21] with two exceptions. First, in our case it out-

puts L-channeled neural texture instead of an RGB image.

Second, we concatenate inputs of several later layers of the

network with the 16-channel map of spectral coordinates of

mesh vertices mapped into texture space to provide the gen-

erator with some information about the body mesh geome-

try. During training, we also sample body poses and shapes

from the training dataset, and superimpose the generated

textures over the deformed body meshes. The resulting tex-

tured meshes are then passed through the rendering network

that is trained as a part of the generator. Overall, the images

produced by our generator are computed as follows:

Gφ,ψ,θ(z,N,p, s, C) = (1)

fθ

[

R

(

M(p, s), hψ(gφ(z),N), C

)]

, (2)

where z and N variables are sampled from the unit Nor-

mal distributions, while the pose, the camera, and the body

shape variables are sampled from the empirical distribution

in the training set.

Training of the full model is performed adversarially,

with a dataset of videos of people as a source for real im-

ages. For each video we obtain foreground segmentation

as well as body shape, pose and camera parameters as dis-

cussed above. We utilize three different discriminator net-

works to train our system:

• Unary discriminator closely follows StyleGANv2 ar-

chitecture, and simply considers individual images

(generated by our model as well as real images). The

unary discriminator thus focuses on image quality.

• Binary discriminator also follows StyleGANv2 ar-

chitecture, however it takes pairs of images rather

than individual images. Each real example is made

up of two frames of a single video along with

their segmentations. To obtain a fake example, we

generate two examples Gφ,ψ,θ(z,N,p1, s, C1) and

Gφ,ψ,θ(z,N,p2, s, C2), where z, N (and thus the

avatar texture), as well as the body shape s are shared

between examples. Pose parameters p1,p2 and cam-

era positions C1, C2 are different within each pair and

correspond to two frames of the same video. The role

of this discriminator is thus both to assess the visual re-

alism of examples, as well as to ensure that the identity

is preserved through camera change and pose change.

• Face discriminator considers individual images

cropped around the face region (for both real and syn-

thetic images) and is used to improve quality of mod-

els’ face rendering.

Additional regularization. During training, we take ad-

ditional steps to ensure identity preservation, as merely re-

lying on binary discriminator turns out to be insufficient.

We use three additional tricks. First, we train a predictor

qξ that takes generated images I = Gφ,ψ,θ(z,N,p, s, C)
and tries to recover vector w = gφ(z). The training loss

‖qξ(I) − w‖2 is backpropagated through the entire gener-

ator, and thus ensures consistency of images created with

same avatar texture.

The second regularizing trick is to ensure that render-

ing network is covariant to in-plane geometric transfor-
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Figure 3. Our generative architecture is based on the combination of StyleGANv2 and Neural dressing. The StyleGAN part is used

to generate neural textures, which are then superimposed on SMPL-X meshes and rendered with a neural renderer. During adversarial

learning, the discriminator considers a pair of images of the same person. See text for more details.

mation of its input. We achieve this by applying a ran-

dom in-plane rigid transformation Tr on rasterized images

J = R(M(p, s), hψ(z,N), C). Transformed rasterizations

Tr(J) are then passed through the rendering network rθ, pe-

nalizing difference between Tr(fθ[J ]) and fθ[Tr(J)].
Lastly, to mitigate the influence of poorly segmented im-

ages from our in-the-wild training dataset and those, where

a part of a person’s body is occluded, we force foreground

masks of generated samples to cover the whole rendered

mesh given as an input. To do that, instead of a sampled

segmentation mask we use it’s union with the binary mask

of the mesh as a final foreground segmentation.

3.4. Encoders and inference

We now discuss how the generative model is used to fit

a new avatar to one (or few) images of a person. Given

an image of the person I (with corresponding segmentation

mask), we estimate the parameters of its’ body shape s, pose

p, and camera C. Our goal is to find a texture T such that

the rendering fθ[R(M(p, s), T, C)] matches the observed

image. The texture is parameterized by the convolutional

generator T = hψ(w
4, . . .w512,N), and thus depends on

the style vectors w4, . . .w512, the noise tensors N and the

parameters ψ of the generator hψ .

Encoders. As our texture parametrization is excessive

(i.e. the number of texture elements is usually greater than

the number of observations in I), very different sets of latent

variables are able to fit the observed image, while leading to

different degree of generalization to new poses and camera

parameters. We have therefore found it important to learn

encoder networks that would initialize latent vectors w at

the part of the latent space that leads to good generalization.

To learn the encoder network, we generate a dataset of

synthetic samples from our texture generator. In partic-

ular, to get the k-th sample, we randomly and indepen-

dently draw w4

k, . . .w
512

k by sampling z values and passing

them through the perceptron part of the generative model.

The noise tensors are drawn from the Normal distribution,

and the convolutional generator produces a random tex-

ture. We then superimpose the texture on a random body

from our training set in an approximate A-pose and pick

an approximately frontal camera. The rendering network

then produces an image Ik of a random A-posed avatar.

Our A-Encoder EA is then trained to recover the vectors

w4

k, . . .w
512

k from image Ik. The training uses the L1-loss

on synthetic data from our generative model only.

In addition to the A-encoder that is trained only on syn-

thetic data, and is suitable for A-posed images, we have

trained a generic encoder (G-encoder) on both synthetic

data and and pairs of video frames from real dataset. To

train on real data the generic encoder EG takes a pair of

real images (Ik, Jk) extracted from the same video of the

same person, predicts latent variables w4

k, . . .w
512

k from Ik,

augments them with random noise tensors N resulting in

the texture Tk = hψ(EG(Ik),N). The resulting texture is

then superimposed on the mesh, posed and rendered accord-

ing to the SMPL-X parameters pk, sk and camera pose Ck
observed in the image Jk. Learned perceptual similarity

(LPIPS) [54] between Jk and fθ[R(M(pk, sk), Tk, Ck)] is

then used as a loss function for real data. For synthetic data,

similarly to EA, we use the L1-loss between synthetic and

predicted latent vectors. These two loss values are taken

with equal weights resulting in the loss for the generic en-

coder EG.

The encoder’s architecture is inspired by the pSp-

architecture proposed in [34]. The main idea is that each

level of the encoder predicts a latent vector corresponding

to the generator’s resolution of this level. As a backbone

we use EfficientNet-B7 [42] pretrained on ImageNet [35].

More details about architecture is provided in Supplemen-

tary Material.
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Fitting. Avatar fitting to the given image(s) is done by op-

timization. The input to the optimization process is a set of

images of a person I = {Ii|i ∈ [1, N ]}. Latent vectors w

are initialized by passing the images I through one of the

two pretrained encoders. If more than one input image are

available (N > 1), the predicted latent vectors are aver-

aged across all images. For the sake of simplicity we fur-

ther assume that only one image I is given as input. The

optimization is performed over (i) the latent vectors w, (ii)

the parameters ψ of generator hψ and (iii) the noise tensors

N to further minimize the difference between the recovered

image fθ[R(M(p, s), T, C)] and I . As a last stage of the

optimization, we perform direct optimization of the texture

values for 100 iterations.

During the optimization we use multiple loss functions,

namely LPIPS-loss [54] between recovered image and in-

put image, Mean Squared Error (MSE) between recovered

image and input image, Mean Absolute Error (MAE) on la-

tent variables w deviation from the initialization predicted

by the encoder, MAE on generator parameters hψ devia-

tion from the initial ones, MAE on texture deviation from

the texture values, optimized to the beginning of the last

stage, LPIPS-loss [54] on face regions of recovered and in-

put images, and feature matching loss based on the trained

face discriminator [32]. In case of multiple input images,

losses are averaged across all images. We provide addi-

tional analysis on the role of losses in the Supplementary

Material. Optimization is performed via backpropagation

with ADAM optimizer [22].

4. Experiments

Below, we present experimental validation of the neural

dressing approach. We first evaluate the approach in the sce-

nario, where an avatar is created from a short video of a per-

son, using backpropagation without generative prior on the

neural texture. We then proceed to evaluate samples from

our generative model and its performance for one-shot and

few-shot image-based full-body avatar creation. We pro-

vide additional results including qualitative comparisons in

the Supplementary material.

Datasets. We use our recently collected AzurePeople

dataset to pretrain rendering network in backpropagation-

based approach. It was collected with five Kinect Azure

sensors and contains multi-view RGBD-videos of 56 peo-

ple (though we do not use depth information in this work).

Four other datasets were used to train generative model.

The first is a multi-view HUMBI dataset [51]. At the mo-

ment of experiments it has 442 subjects available with to-

tal of 61,975 images. This dataset alone was used to train

binary discriminator and ensure multi-view consistency of

generated samples. The second dataset TEDXPeople was

collected by us and contains 41,233 videos of TED and

TED-X talks. For our purposes we have extracted and pro-

cessed 8 to 16 frames from each video, in which a person

is visible in either full-body or close-up upper-body view.

This dataset is very diverse in terms of demographics and

clothing styles, though the resolution is limited and there

are certain biases associated with peculiar lighting and cam-

era viewpoints specific to TED(-X) talks. Because of these

limitatios, we only used this dataset for the unary discrimi-

nator.

Additionally, we used the dataset containing curated

SMPL-X fits released by the authors of ExPose [9] and the

Google OpenImages v6 dataset [23] (from which we ex-

tracted human bounding boxes). After filtering out low-

resolution and highly occluded samples from these two

datasets, we added remaining 10869 ExPose samples and

37660 OpenImages samples to our training procedure.

For evaluation only, we also use two videos from the

PeopleSnapshot dataset [3] (’female-1-casual’ and ’male-

2-casual’). Each video has a person rotating in front of the

camera in A-pose. We choose these particular sequences

because we have access to their avatars created with several

previous methods.

4.1. Video-based avatars

In the first set of experiments, we assess the ability of

our models to create avatars from videos, in which one per-

son is seen in different poses. Here, we create avatars using

backpropagation as described in Section 3.2. We show qual-

itative results of this approach on people from AzurePeople

dataset in Figure 4 and in supplementary video.

For evaluation, we also compare our results to textured

neural avatar system [39], and mesh-based approach [3].

Since we do not have any hold-out video sequences for the

models from [3], we perform a user study using an online

crowd-sourcing platform showing short videos of two peo-

ple from PeopleSnapshot dataset in pose sequences sampled

from TEDXPeople dataset. For visual quality, participants

preferred our method in 69.8% of the cases when compared

to [39] and in 70.6% of the cases when compared to [3]. For

identity preservation, preferences were 67.7% and 69.8%

respectively.

We have additionally compared our method to [39] on

in-the-wild YouTube video considered in [39]. It contains

much more challenging poses than TEDXPeople samples.

Here participants preferred our method 63.9% of the cases

when asked about visual realism and in 52.6% of the cases

when asked about identity preservation.

In both studies participants were presented with two-

second segments of 15 fps videos (10 segments for Peo-

pleSnapshot sequences and 18 for the YouTube sequence)

and asked to choose from pairs of side-by-side positioned

samples. In identity preservation study, an image from

ground truth video was presented along with the compared
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Figure 4. Results for video-based avatars. Sample source frames are shown on the left. The remaining images show the video-based avatars

in previously unseen poses shown within a simple augmented reality application. The pose sequence is transferred from a different person.

results. The order of compared results for each pair was

randomized. Each pair was assessed by 30 people.

4.2. Few-shot avatars

We then focus our evaluation on the few-shot scenario.

We first evaluate our avatar against the mesh-based Octo-

pus approach [2] in the eight-shot mode (i.e. each avatar is

created from eight photographs). For one-shot mode, we

compare against the mesh-based method [25], as well as

three neural rendering/warping one-shot methods: the first-

order motion model [40], the liquidGAN model [26], and

the coordinate-based inpainting model [13]. The first-order

motion model was retrained on the TEDXPeople dataset

(for completeness we also report the results for the author’s

model trained on the Taichi dataset). For other methods,

author-provided pretrained models/results were used (see

the supplementary material for details). For our method,

we consider two variants initialized with two different en-

coders. Figure 5 demonstrates process of fitting our models

to the data (using the A-encoder).

We use a set of standard metrics to evaluate image

quality of the avatars, including learned perceptual simi-

larity (LPIPS) [54], structured self-similarity (SSIM) [49],

Fréchet Inception Distance (FID) [15], and Inception Score

(IS) [38]. We use two-person People Snapshot dataset to

compare with [2], [25], [26] and [40]. (Table 1) as those

were available to us for all methods. We also compare

to the state-of-the-art one-shot methods on three hold-out

video sequences from test split of our TEDXPeople dataset

(Table 2, Figure 5). Both comparisons show advantage of

our approach in all metrics, except the Inception Score,

which we subjectively find least correlated with visual qual-

ity. Qualitative results and additional comparisons are pre-

sented in the supplementary material and video.

It has to be mentioned, that while all one-shot models

create avatars from the same data (a single image), our

model requires a lengthy optimization process to come up

with an avatar, which is a limitation of our model.

IS↑ FID↓ LPIPS↓ SSIM↑

One-shot

360Degree [25] 1.8643 1383.1 0.2123 0.8079

LWGAN [26] 1.7159 1771.9 0.2727 0.2876

FOMM-TaiChi [40] 1.7643 1059.4 0.1767 0.7585

FOMM-TEDX [40] 1.5404 674.3 0.1477 0.8743

Neural Dressing (A-encoder) 1.8025 349.2 0.1957 0.8264

Neural Dressing (G-encoder) 1.7469 272.1 0.0836 0.9012

8-shot

Octopus [2] 1.8123 403.6 0.1379 0.8324

Neural Dressing (A-encoder) 1.7335 183.3 0.1169 0.8764

Neural Dressing (G-encoder) 1.6608 158.2 0.0759 0.9079

Table 1. Comparison against state-of-the-art few-shot methods on

two sequences from People Snapshot dataset [3]. We use the first

frame as a source image for one-shot methods, and the frames

used in [2] for eight-shot methods, and evaluate on the remain-

ing frames of the sequences. Metrics are calculated with respect

to the ground truth sequence.
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Input image
Encoder

prediction
After

optimization
After optimization (holdout views)Encoder prediction (holdout views)

Figure 5. One-shot inference results for test subjects from People Snapshot dataset [3]. Single Input image is fed into the encoder to

produce initial texture estimation (Encoder prediction). Next, optimization step draws output renderings closer to the original person (After

optimization). Note, how non-visible details in the source image propagate to the output from the initial encoder prediction (e.g. the back

of the male’s shirt).

IS↑ FID↓ LPIPS↓ SSIM↑

One-shot

CBI [13] 1.4738 6761.3 0.1814 0.8293

LWGAN [26] 1.7467 10671.9 0.3284 0.6068

FOMM-TaiChi [41] 1.2981 3253.1 0.2186 0.7725

FOMM-TEDX [41] 1.2663 3976.1 0.2312 0.7944

Neural Dressing (A-encoder) 1.4448 601.7 0.0531 0.9369

Neural Dressing (G-encoder) 1.5903 765.7 0.0542 0.9361

8-shot

Neural Dressing (A-encoder) 1.4372 505.2 0.0521 0.9389

Neural Dressing (G-encoder) 1.5548 559.8 0.0537 0.9381

Table 2. Comparison against state-of-the-art one-shot methods on

three test sequences of the TEDXPeople dataset. Our method per-

forms better than competitors in most metrics.

4.3. Generative model ablation

Additionally, we evaluate contributions of regularization

mechanisms and additional discriminators in the training

process of generative model. We compare ablations in terms

of two metrics. First, we use Fréchet Inception Distance

(FID) between the set of real validation images and the set

of sampled images of people with the same meshes as in

the validation set. The second metric is the Euclidean dis-

tance between vectors extracted with a re-identification net-

work [55] from two images rendered with same neural tex-

ture, but positioned with pose difference of 180◦ (denoted

as ReID). While the first metric focuses on the image qual-

ity, the second measures consistency of rendering.

With each subsequent ablation we turn off one of the

modifications of the training procedure. Namely, no-

augmentations loses in-plane rotation regularization no-

meshmask uses plain sampled segmentation as foreground

mask instead of its’ union with the mask of SMPL-X mesh

FID↓ ReID↓

Ours full 48.3 15.0

no-augmentations 48.8 16.3

no-meshmask 54.2 15.8

no-speccoords 47.8 15.5

no-latent-predictor 44.2 15.9

no-face-discr 43.4 16.0

no-bin-discr 42.9 17.3

Table 3. Ablation study for generative model of neural textures

projection, no-speccoords omits spectral coordinates passed

into the texture generator, no-latent-predictor does not use

latent predictor qξ, no-face-discr and no-bin-discr omit fa-

cial and binary discriminator respectively.

As seen from Table 3, although the most basic variant

provides lowest FID for single images, the modifications

improve consistency across views.

5. Conclusion

We have presented a new approach for modeling the hu-

man appearance. This approach integrates polygonal body

mesh modeling with neural rendering. Thus, polygonal

mesh controls and models coarse body geometry as well as

the pose, while neural rendering component adds clothing

and hair. On top of that, we train a generative model for

neural textures, and show that this generative model allows

to obtain avatars in few-shot mode. We show that proposed

approach improves state-of-the-art for video-based and few

image-based avatar acquisition. Admittedly, results of our

method are still limited by the amount and quality of data,

especially diversity the biases of video sequences. Improv-

ing data efficiency of our generative modeling is thus one of

the important directions of out future work.
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