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Abstract

Visual events are a composition of temporal actions in-

volving actors spatially interacting with objects. When

developing computer vision models that can reason about

compositional spatio-temporal events, we need benchmarks

that can analyze progress and uncover shortcomings. Ex-

isting video question answering benchmarks are useful, but

they often conflate multiple sources of error into one accu-

racy metric and have strong biases that models can exploit,

making it difficult to pinpoint model weaknesses. We present

Action Genome Question Answering (AGQA), a new bench-

mark for compositional spatio-temporal reasoning. AGQA

contains 192M unbalanced question answer pairs for 9.6K

videos. We also provide a balanced subset of 3.9M question

answer pairs, 3 orders of magnitude larger than existing

benchmarks, that minimizes bias by balancing the answer

distributions and types of question structures. Although

human evaluators marked 86.02% of our question-answer

pairs as correct, the best model achieves only 47.74% ac-

curacy. In addition, AGQA introduces multiple training/test

splits to test for various reasoning abilities, including gen-

eralization to novel compositions, to indirect references,

and to more compositional steps. Using AGQA, we eval-

uate modern visual reasoning systems, demonstrating that

the best models barely perform better than non-visual base-

lines exploiting linguistic biases and that none of the exist-

ing models generalize to novel compositions unseen during

training.

1. Introduction

People represent visual events as a composition of tem-

poral actions, where each action encodes how an actor’s re-

lationships with surrounding objects evolves over time [44,

46, 30, 37]. For instance, people can encode the video in

Figure 1 as a set of actions like putting a phone down and

holding a bottle. The action holding a bottle can be further

decomposed into how the actor’s relationship with the bot-

tle evolves – initially the actor may be twisting the bottle

and then later shift to holding it. This ability to decompose

Q: What did the person hold after putting a phone somewhere?

Q: Were they taking a picture or holding a bottle for longer?
Q: Did they take a picture before or after they did the longest action?

G99VH.mp4

Template: What did they <relation> last <time><action>, a <object1> or <object2> ?

Q1: What did they touch last, a phone or some medicine ?
        A1: medicine

Q2: What did they touch last before holding some medicine, a phone or some medicine ?
       A2: phone

Q3: What did they touch last before holding some medicine, a phone or the object they twisted ?
       A3: phone

Q4: What did they touch last before the longest action, a phone or the object they twisted ?
       A4: phone

Legend: objects relationships actions time

A: bottle

A: holding a bottle
A: before

holding a bottle

bottle

Time

taking a picture putting a phone down 

twist

bottle

behind holdhold

picking up phone

holdleft ofholdingSpatio-temporal 
scene graph:

Example compositional spatio-temporal questions:

phone bottlephone

left of

A: yes
A: yes
0

Generalization to more compositional steps:

Q: Did the person twist the bottle?
Q: Did the person twist the object they were holding last?

Generalization to indirect references:

Generalization to novel compositions:
A: yes
0

Q: Did the person twist the bottle after taking a picture?

A: phone
0

Q: What did they touch last before holding the bottle and after 
taking a picture, a phone or a bottle ?

Figure 1. We introduce AGQA: a new benchmark to test for com-

positional spatio-temporal reasoning. AGQA contains a balanced

3.9M and an unbalanced 192M question answer pairs associated

with 9.6K videos. We design handcrafted programs that operate

over spatio-temporal scene graphs to generate questions. These

questions explicitly test how well models generalize to novel com-

positions unseen during training, to indirect references of con-

cepts, and to more compositional steps.

events is reflected in the language people use to communi-

cate with one another [8, 42], so tasks involving both vision

and language comprehension, such as answering questions

about visual input, can test models’ compositional reason-

ing capability. We can ask questions like “What did the per-

son hold after putting a phone down?” and expect a model

capable of compositional spatio-temporal reasoning to an-

swer “bottle.” While such behavior seems fundamental to

developing vision models that can reason over events, the

vision community has only developed compositional ques-

tion answering benchmarks using static images [17] or syn-

thetic worlds [31, 56] which either are not spatio-temporal

or do not reflect the diversity of real-world events.

Although questions and visual events are composed of

multiple reasoning steps, existing video question answer-

ing benchmarks conflate multiple sources of model errors
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Table 1. AGQA is 3 orders of magnitude larger than all existing VideoQA benchmarks. It contains real-world videos and compositional

open-answer questions with action, object, and relationship grounding. AGQA’s questions focus on visual comprehension and do not

require common sense or dialogue understanding.

Dataset
Video Question answers Grounding

Avg. length (s) # videos (K) Real-world Not dialogue related Open answer Compositional # questions objects relationships actions

MarioQA [43] 3-6 188 X X 188K

CLEVRER [56] 5 20 X X X 282K X X X

Pororo-QA [27] 1.4 16.1 X 9K

MovieQA [48] 202.7 6.77 X 6.4K X

SocialIQ [59] 99 1.25 X 7.5K

TVQA [33] 76.2 21.8 X X 152.5K X

TVQA+ [34] 7.2 4.2 X X 29.4K X X

MovieFIB[40] 4.9 118.5 X X X 349K

TGIF-QA [18] 3.1 71.7 X X X 165.2K

MSVD-QA [53] <10 1.97 X X X 50.5K

Video-QA [61] 45 18.1 X X X 175K

MSRVTT-QA [53] 10-30 10 X X X 243K

ActivityNet-QA [58] 180 5.8 X X X 58K

AGQA 30 9.6 X X X X 192M X X X

into a single accuracy metric [18, 53, 40, 61, 58]. Consider

this stereotypical question-answer pair, Q: “ What does the

bear on the right do after sitting?” A: “stand up” [18]. A

model’s inability to answer such questions does not afford

any deeper insights into the model’s capabilities. Did the

model fail because it is unable to identify objects like bear

or relationships like sitting or does it fail to reason over the

temporal ordering implied by the word after? Or did the

model fail for a combination of these reasons?

Not only are failure cases difficult to analyze, but the

inputs where the model correctly guesses the answer are

equally difficult to dissect. Due to biases in answer distri-

butions and the non-uniform distribution of occurrences of

visual events, models may develop “cheating” approaches

that can superficially guess answers without learning the

underlying compositional reasoning process [36, 54]. To ef-

fectively measure how well models jointly compose spatio-

temporal reasoning over objects, their relationships, and

temporal actions, we need newer benchmarks with more

granular control over question composition and the distri-

bution of concepts in questions and answers.

To measure whether models exhibit compositional

spatio-temporal reasoning, we introduce Action Genome

Question Answering (AGQA)1. AGQA presents a bench-

mark of 3.9M balanced and 192M unbalanced question an-

swer pairs associated with 9.6K videos. We validate the ac-

curacy of the questions and answers in AGQA using human

annotators for at least 50 questions per category and find

that annotators agree with 86.02% of our answers. Each

question is generated by a handcrafted program that outlines

the necessary reasoning steps required to answer a question.

The programs that create questions operate over Charades’

action annotations and Action Genome’s spatio-temporal

scene graphs, which ground all objects with bounding boxes

and actions with time stamps in the video [19, 45]. These

programs also provide us with granular control over which

reasoning abilities are required to answer each question.

1Project page: https://tinyurl.com/agqavideo

For example, some questions in AGQA only require under-

standing the temporal ordering of actions (e.g. “Did they

take a picture before or after they did the longest action?”)

while some others require understanding actions in tandem

with relationships (e.g. “What did the person hold after

putting a phone somewhere?”). We control bias using re-

jection sampling on skewed answer distributions and across

families of different compositional structures.

With our granular control over the question genera-

tion process, we also introduce a set of new training/test

splits that test for particular forms of compositional spatio-

temporal desiderata: generalization to novel compositions,

to indirect references, and to more compositional steps. We

test whether models (PSAC, HME, and HRCN [11, 32, 35])

generalize to novel compositions unseen during training —

the training set can contain the relationship twist and the

object bottle separately while the test set requires reason-

ing over questions such as “Did the person twist the bottle

after taking a picture?” with both concepts paired together

in a novel composition. Similarly, we test whether models

generalize to indirect references of objects by replacing ob-

jects like bottle in “Did the person twist the bottle?” with

an indirect reference to make the question “Did the person

twist the object they were holding last?” Finally, we test

whether models generalize to questions with more reason-

ing steps by constraining the test set to questions with more

reasoning steps than those in the training set (e.g. “What did

they touch last before holding the bottle but after taking a

picture, a phone or a bottle?”).

Using AGQA, we evaluate modern visual reasoning sys-

tems (PSAC, HME, and HRCN [11, 32, 35]), and find that

they barely perform better than models that purely exploit

linguistic bias. The highest performing model achieves only

47.74% accuracy, and HCRN performs only 0.42% better

than a linguistic-only version. While there is some evidence

that models generalize to indirect references, all of them de-

crease in accuracy when the number of compositional steps

increase and none of them generalize to novel compositions.
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2. Related Work

Our work lies within the field of video understanding us-

ing language and is targeted towards the question answering

task. We use spatio-temporal scene graphs to generate our

questions, and we provide a suite of new evaluation metrics

to measure compositional spatio-temporal reasoning.

Image question answering benchmarks. A wide variety

of visual question answering benchmarks have been created

over the past five years [21, 17, 2, 60, 14, 29, 62, 26]. These

benchmarks vary in input, from synthetic datasets [21],

to cartoons [2], charts [27], or real-world images [17, 29,

62, 14, 60, 2]. They also vary in the type of questions

asked, from descriptive questions (who, what, where, when,

which, why, how) [62], to ones requiring commonsense

reasoning [60], spatial compositional reasoning [21, 17],

or spatial localization [62, 29, 17]. These benchmarks fa-

cilitated the development of many model architectures and

learning algorithms that demonstrate spatial compositional

reasoning abilities [39, 49, 6]. However, none of these mea-

sure temporal reasoning beyond guessing common sense

actions that usually require external knowledge [60].

Video question answering benchmarks. As shown by the

benchmarks in Table 1, there is a growing interest in mea-

suring video reasoning capabilities using question answer-

ing [48, 33, 18, 27, 53, 40, 61, 58, 56]. Several of these

prominent benchmarks rely on dialogue and plot summaries

instead of a video’s visual contents [33, 48, 27, 59], result-

ing in models with a stronger dependence on the dialogue

than on the visual input and therefore reducing the bench-

mark’s effectiveness at measuring visual reasoning [48, 33].

Some video-only question-answering benchmarks are

synthetically generated [56, 43], which affords the granu-

lar control necessary to measure model abilities like causal-

ity [56], or counting [43]. However, these benchmarks use

short video clips, utilize only a handful of objects, focus

on questions that require commonsense or external knowl-

edge (Figure 2), and lack the visual diversity of real-world

videos. Other video-only benchmarks suffer from the bi-

ases and simplicity associated with human generated ques-

tions [58, 48, 18, 33] or descriptions [53, 61]. The largest

human-annotated [33] and generated [40] datasets contain

152.5K and 349K questions. In comparison, our corpus is

purely vision based, is three orders of magnitude larger, and

evaluates complex and multi-step reasoning.

Scene graphs. Scene graphs were first introduced as a Cog-

nitive Science [4, 52] inspired representation for static im-

ages [29, 23]. Each scene graph encodes objects as nodes in

the image and pairwise relationships between objects as di-

rected edges connecting nodes. The Computer Vision com-

munity has utilized the scene graph representation for a va-

riety of tasks including visual question answering [22], re-

lationship modeling [38], object localization [28], evalua-

tion [1], generation [20, 3], retrieval [3, 23] and few-shot

ActivityNet QA

AGQA

MSRVTT-QA
MSVD-QA 
Movie FIB 
Video-QA

Did/Does/Do <concept> occur?Concept existence

How many times does the <person> <action>?Repetition counting

What does the person do before/after/while <action>?Activity recognition

Did they <relation> something before or after <action>?Action-relationship

What did the person do after <action>?Action sequencing

Did they <relation> <object1> but not <object2>?Logical combinations

Did they <action1> or <action2> for longer?Duration comparison

MarioQA
TGIF-QA

What would have happened if <event A>?Counterfactual

Is <event A> responsible for <event B>?Explanation

What will happen next, <event A>?Prediction

CLEVRER
(synthetic)

What were they <action> first/last?Superlatives

What/Who/When/Where/How did they <rel> <object>?Object-relationship

Did they <relation> <object> while<action>?Action-object-relationship

Did they interact with <object> before or after <action>?Action-object

Requires 
external 
knowledgeSplit TVQA and 

ActivitynetQA, 
so that TVQA 
can have action 
obj.rel/actobj

Figure 2. AGQA contains a variety of compositional spatio-

temporal reasoning types that are absent from existing real-world

video-only corpuses, including duration of actions, interactions

between relationships and actions, action sequencing, and logical

combinations. We focus on questions that require visual under-

standing, so we do not have questions that require external knowl-

edge.

learning [7, 10]. Of particular interest to our project is how

scene graphs from Visual Genome [29] were used to cre-

ate GQA, a benchmark for compositional spatial reason-

ing over an image [17]. Our work is a generalization of

GQA’s pipeline. While GQA uses indirect references to ob-

jects with attributes (e.g. “red”) and spatial relations (e.g.

to the left of), we also use temporal localizations (e.g. be-

fore), indirect action references (e.g. the longest action), and

changes in a subject’s relationship with objects over time

(e.g. before holding the dish). Our programs operate over

Action Genome’s spatio-temporal scene graphs to automat-

ically generate question-answer-video pairs [19].

Compositional reasoning. While there are numerous def-

initions of compositionality, we in particular use what is

more colloquially referred to as bottom-up compositionality

— “the meaning of the whole is a function of the meanings

of its parts” [9]. In our case, reasoning about the ques-

tion “Was the person running or sitting for longer?” re-

quires finding the start and end of when the person was

running and sitting, subtracting the start from the end, then

comparing the resulting lengths. Unfortunately, the most

popular benchmarks and metrics defined to study compo-

sitional behavior have been limited to synthetic environ-

ments [25, 31, 21, 56] or to static images [17]. Recent work

has argued the importance of compositionality in enabling

models to generalize to new domains, categories, and log-

ical rules [31, 49] and has discovered that current models

struggle with multi-step reasoning [11]. These studies mo-

tivate a benchmark like ours that defines multiple metrics to

explore compositional reasoning in real-world videos.
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Question answer #1: 
What did they  carry before putting 
something on a table? - food

Indirect action reference for #1:
What did they  carry before the shortest 
action? - food

Question answer #2: 
Did they go behind some food before 
putting something on a table? - No

Indirect object reference for #2:
Did they go behind the object they 
carried before putting something on a 
table? - No

query(object, exists(carry, 
temporal(before, query(action, )

exists(food, exists(behind, temporal(before,  
             query(put something on a table)

side of

put something 
on a table

side of

food

carry behind

Spatio-temporal scene graph

food food

query
relations

Iterate
<time>

contains
<relation>

Yes

No

<time>

<relation>

<object>

No frames

No

locate
<object>

Semantic Programs

Input Output

Video

Legend: objects relationships actions time

Our benchmark generation process

Program #2: 

No

query action

exists go behind

query 
before

Template #2:  Did they <relationship> <object> <time><action>?

Template #1:  What did they <relationship><time><action>?

Program 1: 
for frame in video: 
    if exists(carry): 
        return query(object)

food

Iterate Frames

exists()

query()

Program #1: 

Template1:  What did they <relation>?

Program 1: 
for frame in video: 
    if objRelExists(food,  behind): 
        then “Yes”
 else: “No”

Yes

Iterate Frames

query action
query 

before

food
exists
carry

query object

objRelExists()

Find action

for frame before put something on a table: 
    if exists(carry): 
        return query(object)

Look 
before

food

Iterate Frames

exists()

query()

for frame before put something on a table: 
    if objRelExists(food,  behind): 
        then “Yes”
else: “No”

for frame before put something on a table: 
    if exists(go behind-food): 
        return Yes
return No

query 
action

attend
time

exists
rel

exists
object

No

put something 
on a table

side of

food

carry

for frame before put something on a table: 
    if exists(carry): 
        return query(object)

Alternate action reference for #1:
What did they  carry before the shortest 
action? - food

Alternate object reference for #2:
Did they go behind the object they 
carried before putting something on a 
table? - No

exists
food

Question answer #1: 
What did they  carry before putting 
something on a table? - food

Functional program #1: 
query(object, query(carry, temporal(before, 

query(action, put something on a table))))

Question answer #2: 
Did they go behind some food before putting 
something on a table? - No

Functional program #2: 
exists(food, query(behind, temporal(before,  
             query( action, put something on a table))))

Figure 3. (Left:) Our benchmark generation process expects a dataset of videos with spatio-temporal scene graphs as input. (Middle:) We

handcraft programs that operate over the scene graphs to generate questions and answers. (Right:) We balance generated questions and

their corresponding answers using rejection sampling to avoid biases that models can exploit. We can control the number of reasoning steps

required to answer a question by either developing more complex programs or by referencing visual concepts using indirect references (e.g.

referring to a specific action as the shortest action or object as the object they carried).

3. The AGQA benchmark

Our benchmark generation process takes videos with

annotated spatio-temporal scene graphs [19] as input and

produces a balanced corpus of question-answer pairs (Fig-

ure 3). First, we consolidate and augment Action Genome’s

spatio-temporal scene graphs [19] and Charades’ action lo-

calizations [45] into a symbolic video representation. Next,

we handcraft programs that operate over the augmented

spatio-temporal scene graphs and generate questions using

probabilistic grammar rules. Then, we reduce biases in an-

swer distributions and by question structure types, resulting

in a balanced benchmark that is more robust against “cheat-

ing.” Finally, we create new evaluation metrics that allow us

to test how well models generalize to novel compositions,

to indirect references, and to more compositional steps.

3.1. Augmenting spatiotemporal scene graphs

AGQA is generated using programs that operate over

Action Genome’s spatio-temporal scene graphs. Each

spatio-temporal scene graph is associated with a video and

contains objects (e.g. food, bottle) that are grounded in

video frames, and the spatial relationships (e.g. above, be-

hind), and contact relationships (e.g. carry, wipe) that de-

scribe an actor’s interactions with the objects [19]. We aug-

ment Action Genome’s spatio-temporal scene graphs with

actions (e.g. running) from the Charades dataset, localized

using time stamps for when the action starts and ends [45].

To use these scene graphs for question generation, we

augment them by specifying entailments between actions

and relationships, incorporating prior knowledge about ac-

tion sequencing, merging synonymous annotations, and re-

moving attention relationships. Some actions and relation-

ships, such as carrying a blanket and twisting the blanket,

entail other relationships such as holding and touching. We

augment the scene graphs with such entailment relation-

ships to avoid generation of degenerate questions like “Were

they touching the blanket while carrying the blanket?” We

created heuristics that adjust the start and end times of ac-

tions to avoid logical errors. For example, the action taking

a pillow from somewhere would often end after the next

action, holding a pillow, would start. To be able to gen-

erate questions that reason over the temporal ordering of

these events, we modified the events so that the first action

ends before the next one starts. To avoid generating sim-

ple questions with only one answer, we use co-occurrence

statistics to prune relationships that only occur with one ob-

ject category (e.g. turning off a light). We also consolidate

references to similar objects and actions (e.g. eating a sand-

wich and eating some food) so that each concept is rep-

resented by one phrase. Finally, we remove all attention

relationships (e.g. looking at) from Action Genome’s anno-

tations because our human evaluations indicated that evalu-

ators were unable to accurately discern the actor’s gaze.

The resulting spatio-temporal scene graphs have more

clean, unified, and unambiguous semantics. Our final on-

tology uses 36 objects, 44 relationships, and 157 actions.

There are 7, 787 training and 1, 814 test set scene graphs.

3.2. Question templates

To generate question and answer pairs from spatio-

temporal scene graphs, we handcraft a suite of programs,

each associated with a template (see Figure 3). Each tem-

plate has a variety of natural language question frames that

can be filled in by scene graph content. For example, a tem-

plate “What did they <relationship><time><action>?”

can generate questions like “What did they tidy after snug-

gling with a blanket?” and “What did they carry before

putting something on a table?” To answer this question,

the associated program finds the action put something on a
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Figure 4. We classify each question in AGQA in three category types. Reasoning types distinguish which reasoning steps are required to

answer the question. Semantic types split questions based on whether they are asking about an object, relationship, or action. Question

structure types indicate the question’s form. We also compare the distribution of question lengths of AGQA and existing video question

answering benchmarks.

table, attends to events before that action, finds where the

relationship carry occurs, and finally queries for the object.

This generation process associates each question with

the reasoning skills and number of reasoning steps used

to answer it. While some of the spatio-temporal reason-

ing skills required to answer our questions are inspired from

existing corpora, successfully answering AGQA’s questions

requires a variety of new spatio-temporal reasoning absent

in existing benchmarks (see Figure 2). Along with incor-

porating more reasoning skills, we increase the number of

compositional reasoning steps necessary to answer a ques-

tion by allowing question templates to use phrases that lo-

calize a time within the video and indirect references to ob-

jects, relationships, and actions. For example, we can re-

place food with the indirect reference the object being car-

ried or walking through a doorway with the shortest action.

For each question, we also keep track of its answer type,

semantic class, and structure. Open answer questions have

many possible answers, while binary questions have an-

swers that are Yes/No, before/after, or are specified as one

of two options (e.g. carrying or throwing) within the ques-

tion. A question’s semantic class describes its main subject,

a (1) object; (2) relationship; or (3) action. AGQA classi-

fies questions into five structure categories: (1) query for

all open questions; (2) compare for comparisons (3) choose

for questions that present two alternatives from which to

choose; (4) verify questions that respond yes or no to

the question’s contents; and (5) logic questions with logi-

cal conjunctions. We display the distribution of questions

across these categories in Figure 4.

Before adding a question to the benchmark, we ensure

that there is no ambiguity in answers by removing ques-

tions for which multiple elements could satisfy the con-

straints of the question. We avoid nonsensical compositions

(e.g. “Were they eating a mirror?”) by only asking about

object-relationship pairs that occur at least 10 times in Ac-

tion Genome. We also delete questions that answer them-

selves (e.g. “What did they hold while holding a blanket?”).

Finally, we remove questions that always have one answer

across all our videos (e.g. “Are they wearing clothes?”).

We handcraft 269 natural language question frames that

can be answered from a set of 28 programs. Using these

programs, we generate 192M question-answer pairs, with

over 45M unique questions and 174 unique answers.

3.3. Balancing to minimize bias

Machine learning models are notoriously adept at ex-

ploiting imbalances in question answering datasets [14, 17,

21]. We mitigate inflated accuracy scores by balancing our

benchmark’s answer distributions for each reasoning cate-

gory and by the distribution of question structures.

We balance answer distributions with an approach in-

spired by the method described in GQA [17]. We first bal-

ance all answer distributions for each overall reasoning type

and then for each concept within that reasoning type. For

example, we first balance the answer distribution for the

“exists” category, then that of the “exists-taking-dish-and-

picture” category. For binary questions, we ensure that each

answer is equally likely to occur. For open answer ques-

tions, we iterate over the answers in decreasing frequency

order, and re-weight the head of the distribution up to the

current iteration to make it more comparable to the tail.

Second, we use rejection sampling to normalize the dis-

tribution of question structures. Our templates generate

more binary questions than the more difficult query ques-

tions. We balance the benchmark such that query ques-

tions constitute at least 50% of the benchmark. We fur-

ther balance the binary answer questions such that approx-

imately 15% are comparisons, 15% are choose questions,

15% are verify questions, and 5% use a logical operator.

This new distribution of question structures increases the

benchmark’s difficulty and makes the distribution of re-

quired reasoning skills more varied.

Our balancing procedure reduced AGQA from an un-

balanced set of 192M question answer pairs to a balanced

benchmark with 3.9M question answer pairs. We provide a

detailed algorithm in supplementary materials.
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Table 2. Although humans verify 86.02% of our answers as correct, modern vision models struggle on a variety of different reasoning

skills, semantic classes, and question structures. In fact, most of the increase in HCRN’s performance comes from exploiting linguistic

biases instead of from visual comprehension.

Question Types Most Likely PSAC [35] HME [11] HCRN (w/o vision)[32] HCRN[32] Human

R
ea

so
n

in
g

object-relationship 8.82 34.75 43.91 42.33 43.00 80.65

relationship-action 50.00 56.84 57.84 58.06 56.75 90.20

object-action 50.00 58.33 50.00 51.67 63.33 93.75

superlative 10.29 30.51 41.10 36.83 37.48 81.25

sequencing 49.15 59.95 59.60 62.11 61.28 90.77

exists 50.00 69.94 70.01 72.12 72.22 79.80

duration comparison 23.70 29.75 44.19 45.24 45.10 92.00

activity recognition 4.72 3.78 3.23 7.57 11.21 78.00

S
em

an
ti

c object 9.38 32.79 42.48 40.74 41.55 87.97

relationship 50.00 65.51 66.10 67.40 66.71 83.58

action 32.91 57.91 58.12 60.95 60.41 86.45

S
tr

u
ct

u
re

query 11.76 27.20 36.23 36.50 37.18 83.53

compare 50.00 56.68 58.06 59.65 58.77 92.53

choose 50.00 33.41 49.32 39.52 40.60 83.02

logic 50.00 67.48 69.75 69.47 69.90 70.69

verify 50.00 68.34 68.40 70.94 71.09 88.26

O
v
er

al
l binary 50.00 54.19 59.77 57.93 58.11 86.65

open 11.76 27.20 36.23 36.50 37.18 83.53

all 10.35 40.40 47.74 47.00 47.42 86.02

3.4. New compositional spatiotemporal splits

With control over our generated set of questions, we

measure how well models perform across different reason-

ing skills, semantic classes, and question structures. We

also introduce a new set of train/test splits to test for partic-

ular forms of compositional spatio-temporal reasoning that

require generalization to novel and more complex concepts.

Novel compositions: To test whether models can disentan-

gle distinct concepts and combine them in novel ways, we

hand-select a set of concept pairs to only appear in the test

set. For example, we remove all training questions that con-

tain the phrase before standing up, but retain only questions

with the specified phrases in the test set.

Indirect references: The semantic categories in a question

can be referred to directly (e.g. blanket, holding, and eat-

ing something) or indirectly (e.g. the object they threw, the

thing they did to the laptop, and the longest action). Indirect

references make up the core method through which we in-

crease compositional steps. This metric compares how well

models answer a question with indirect references if they

can answer it with the direct reference.

More compositional steps: To test whether models gener-

alize to more compositional steps, we filter the training set

to contain simpler questions with ≤ M compositional steps,

such as “What did they touch?” then reduce the test set to

contain only questions with > M compositional steps, such

as “What did they touch last before holding the bottle but

after taking a picture, a phone or a bottle?”

4. Experiments and analysis

We begin our experiments with scores from a human val-

idation task on the AGQA benchmark that evaluates the

correctness of our benchmark generation process. Next,

we compare state-of-the-art question answering models on

AGQA, revealing a large gap between model performance

and human validation of our dataset. We report how well

models perform on spatio-temporal reasoning, for different

semantics, and for each structural category. Finally, we re-

port how well models generalize to novel compositions, to

indirect references, and to more compositional steps. All

experiments run on the balanced version of AGQA.

Models: We evaluate three recent video question an-

swering models: PSAC [35], HME [11], and HCRN [32].

PSAC uses positional self-attention and co-attention blocks

to integrate visual and language features [35]. HME builds

memory modules for visual and question features and then

fuses them together [11]. HCRN, a current best model,

stacks a reusable module into a multi-layer hierarchy, in-

tegrating motion, question, and visual features at each

layer [32]. We use identical feature representations, from

the ResNet pool5 layer and ResNeXt-101, for all models.

We compare performance against a “Most-Likely” base-

line that reports the accuracy of always guessing the most

common answer after balancing (Section 3.3). Binary ques-

tions have a Most-Likely accuracy of 50% because they ask

a Yes/No or before/after question, or they list answers in the

question (e.g. “What did they hold, a bag or a dish?”).
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Table 3. We introduce new training/test splits to measure whether

models generalize to novel compositions and to more composi-

tional steps. B and O refer to binary and open questions. Overall,

none of the models generalize.

Most Likely PSAC HME HCRN

Novel B 50.00 43.00 52.39 43.40

Composition O 15.87 14.80 19.46 23.72

All 10.55 32.49 40.11 36.06

More B 50.00 35.39 48.09 42.46

Compositional O 14.51 28.00 33.47 34.81

Steps All 12.81 31.13 39.70 38.00

Table 4. Here we break down the models’ accuracy when general-

izing to novel compositions of different reasoning types.

Most Likely PSAC HME HCRN

Sequencing 13.67 38.35 44.77 42.91

Superlative 12.60 31.97 41.48 34.01

Duration 10.96 38.65 48.19 48.90

Obj-rel 35.63 19.12 22.17 25.71

4.1. Human evaluation

To quantify the errors induced by our benchmark gen-

eration process, we hire subjects at a rate of $15/hr in ac-

cordance with fair work standards on Amazon Mechanical

Turk [51]. We present at least 50 randomly sampled ques-

tion per question type from AGQA to our subjects. We used

the majority vote of three subjects as the final human an-

swer. Human validation labeled 86.02% of our answers as

correct, implying that about 13.98% of our questions con-

tain errors. These errors originate in scene graph annotation

errors and ambiguous relationships. We describe in supple-

mentary materials the sources of human error and a second

validation task. To put this number in context, GQA [17]

and CLEVR [21], two recent automated benchmarks, report

89.30% and 92.60% human accuracy, respectively.

4.2. Performance across reasoning abilities

Each question is associated with the one or more reason-

ing abilities necessary to answer the question. By analyzing

performance on each reasoning category, we get a detailed

understanding of each model’s reasoning skills. Overall,

we find that across the different reasoning categories HME

and HCRN perform better than PSAC (Table 2). HME out-

performs the others on questions asking about superlatives,

while HCRN outperforms the others on questions involving

sequencing and activity recognition.

However, for most reasoning categories, HCRN does not

outperform a language-only version of itself (HCRN w/o

vision) by more than 1.5%. In fact, HCRN performs worse

than its language-only counterpart on questions that involve

sequencing actions as well as questions that reason over

the length of time actions occurred. The only two reason-

ing categories in which the HCRN model outperforms the

language-only baseline by more than 1.5% are on questions

Table 5. We evaluate performance on questions with indirect ref-

erences. Precision values are accuracy on these indirect questions

when the corresponding question with only direct references was

answered correctly, while recall values are accuracy on all ques-

tions with that kind of indirect reference.
PSAC HME HCRN

Precision Recall Precision Recall Precision Recall

Object 64.82 38.64 79.16 47.32 81.03 46.29

Relationship 40.84 24.12 48.6 29.39 46.77 29.82

Action 64.53 34.62 81.68 45.15 80.22 43.05

Temporal 66.48 33.15 80.71 42.91 83.92 42.13

that focus on activity recognition and on questions compar-

ing object-action interaction. Although HCRN improves on

questions that require activity recognition, these questions

are very challenging for all models and for humans. A more

detailed breakdown of each section split by binary and open

question types is in supplementary materials.

4.3. Performance across question semantics

We also compare how models perform across different

question semantic categories (Table 2). HCRN only im-

proves over the language-only variant for questions that re-

volve around objects. However, object-related questions

were the most difficult for all three models.

4.4. Performance across question structures

Different question structures also appear more challeng-

ing than others (Table 2). Open-ended query questions are

very challenging and have the lowest accuracy for all mod-

els. HCRN outperforms the language-only variant in this

category by only 0.68%. The models have similar perfor-

mances for each structural category, with the exceptions

that PSAC struggles the most with open-ended questions

and HME outperforms the rest on choosing questions.

4.5. Generalization to novel compositions

All models struggle when tested on novel compositions

unseen during training (Table 3). HME outperforms the

others overall and on binary questions, while HCRN per-

forms best for open-ended questions. However, no model

performs much better than the Most-Likely model on open

questions. Only HME outperforms 50% on binary ques-

tions with 52.39% accuracy.

We further break down the performance on novel compo-

sitions by composition type (Table 4). For example, in the

sequencing category we remove compositions like before

standing up from the training set and test how well models

perform on questions with those compositions in the test set.

We find that models perform the worst on novel composi-

tions that involve new object and relationship pairs and best

on reasoning about the length of novel actions. HME gen-

eralizes best to novel sequencing and superlative composi-

tions, while HCRN generalizes best to novel compositions

of the duration of actions and object-relationship pairs.
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Figure 5. For all three models, we fit a linear regression and find

that accuracy is negatively correlated with the number of compo-

sitional reasoning steps used to answer the question. However, the

R
2 scores are relatively weak for all three: HCRN (.43), HME

(.24), and PSAC (.51). This is likely because all three models

barely outperform the Most-Likely baseline, even for small com-

positional steps. The human validation study’s R
2 score is .09.

The size of the dots correlates with the number of questions with

that many steps, with the model’s test set size scaled to be 1000x

smaller. The shaded area is the 80% confidence interval.

4.6. Generalization to indirect references

We report precision and recall for how well models gen-

eralize to indirect references in Table 5. HCRN generalizes

best to indirect object and temporal references, while HME

generalizes best to relationship and action indirect refer-

ences. However, the models still fail on at least nearly a

fifth of questions with indirect references, even when it cor-

rectly answers the direct counterpart.

4.7. Generalization to more compositional steps

When trained on simple questions and tested on ques-

tions with more compositional steps, the models outper-

form the Most-Likely baseline on open questions. However,

they still achieve less than 50% accuracy on binary ques-

tions. HCRN performs the best on open-ended questions,

but HME generalizes better overall to questions with more

compositional steps than the other models. This is likely

because HME’s architecture was explicitly designed to an-

swer semantically complex questions, as it has a memory

network for reasoning over question features [11].

Despite some aptitude at generalizing to more complex

questions, these models’ accuracy scores decrease as the

number of compositional steps increase (Figure 5).

5. Discussion and future work

In conclusion, we contribute AGQA, a new real-world

compositional spatio-temporal benchmark that is 3 orders

of magnitude larger than existing work. Compositional rea-

soning is fundamental to understanding visual events [30,

37] and has been sought after recently by a number of pa-

pers [47, 55, 57, 13, 24]. However, to the best of our

knowledge, AGQA is the first benchmark to use language

to evaluate visual compositional desiderata: generalization

to novel compositions, to indirect references, and to more

compositional steps. Our experiments paint a grim picture

— modern visual systems barely perform better than vari-

ants that exploit linguistic bias, and no models generalize to

novel compositions. Although these models demonstrated

some capability to generalize to more compositional steps,

the overall trend was negative; model accuracy decreased as

the number of reasoning steps increased.

While the results may appear grim, they also suggests

multiple directions for future work to pursue. We expect re-

searchers to utilize AGQA as a benchmark to make progress

in the following directions:

Neuro-symbolic and semantic parsing approaches: We

believe that the fundamental component missing in current

models is the ability to extract systematic rules from the

training questions. A model might perform better if it can

operate in the “rule-space” using an explicit representation,

either using neuro-symbolic [41] or semantic parsing [22,

15] to convert a question into an executable program. As

AGQA provides ground truth scene graph annotations for

all questions, it naturally leads into this line of work.

Meta-learning and multi-task learning: Since none of

the models exhibited generalization to novel compositions,

meta-learning might be a promising objective, which re-

quires models to discover shared underlying compositional

rules [12]. Such an approach can expose models to a num-

ber of learning environments with varying sets of novel

compositions during the meta-train step. Another formu-

lation worth exploring is multi-task learning, where models

also simultaneously learn to detect objects, classify relation-

ships, and recognize actions [5].

Memory and attention based approaches: HME outper-

formed other models in generalizing to more compositional

steps. Perhaps this improvement is due to its explicit us-

age of memory when processing the question features. Fu-

ture work can explore methods to keep track of each reason-

ing step with memory networks [50], or even use attention

based approaches [16] to iteratively reason over the steps

outlines in a question.

AGQA contributes a benchmark evaluating composi-

tional spatio-temporal reasoning in visual systems along a

variety of dimensions. The structure of this benchmark pro-

vides the computer vision community with multiple direc-

tions for future work.
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