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Abstract

Differentiable Architecture Search (DARTS) has at-

tracted extensive attention due to its efficiency in searching

for cell structures. DARTS mainly focuses on the opera-

tion search and derives the cell topology from the operation

weights. However, the operation weights can not indicate

the importance of cell topology and result in poor topology

rating correctness. To tackle this, we propose to Decouple

the Operation and Topology Search (DOTS), which decou-

ples the topology representation from operation weights and

makes an explicit topology search. DOTS is achieved by

introducing a topology search space that contains combi-

nations of candidate edges. The proposed search space

directly reflects the search objective and can be easily ex-

tended to support a flexible number of edges in the searched

cell. Existing gradient-based NAS methods can be incor-

porated into DOTS for further improvement by the topol-

ogy search. Considering that some operations (e.g., Skip-

Connection) can affect the topology, we propose a group

operation search scheme to preserve topology-related oper-

ations for a better topology search. The experiments on CI-

FAR10/100 and ImageNet demonstrate that DOTS is an ef-

fective solution for differentiable NAS. The code is released

at https://github.com/guyuchao/DOTS.

1. Introduction

Neural Architecture Search (NAS) has attracted exten-

sive attention for its potential to find the optimal architec-

ture in a large search space automatically. Previous re-

inforcement learning and evolutionary learning based ap-

proaches [34, 41, 58] require a full training process to val-

idate the architecture performance, consuming hundreds of

GPU-days to search. To reduce the search cost, one-shot

methods [8, 10, 18, 40] adopt the weight sharing strategy,

which trains the supernet once and derives child architec-

∗Both authors contributed equally to this work.
†M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.

ture performance from the supernet directly. Recent meth-

ods [4, 6, 50, 51] based on differentiable architecture search

(DARTS) [35] also adopt the weight sharing strategy and

further reduce the search cost by unifying the supernet train-

ing and child architecture searching.

In DARTS, the operation selection is parameterized with

learnable operation weights, which is updated with the su-

pernet training. After training, the operation weights are

used to rank the importance of operations and topology. The

edge importance in DARTS is represented as the largest op-

eration weight on this edge. DARTS retains the two most

important edges for each intermediate node to derive the

topology of the searched cell. A question is raised: whether

the edge importance indicated by the operation weights ac-

curately ranks the stand-alone model’s performance. As

illustrated in Fig. 1, we find no obvious rank correlation,

which implies that DARTS has no superiority over choos-

ing edges randomly (see more details in Sec. 3.2). Further-

more, DARTS’ handcraft policy of edge numbers restricts

their potential to find more flexible cell structures.

This paper addresses the above problems via Decoupling

Operation and Topology Search (DOTS). The meaning of

decoupling is two-fold. On the one hand, we decouple the

topology representation from the operation weights. In de-

tail, we introduce a topology search space containing the

pairwise combinations of edges. The topology search space

is continuously relaxed, and the relaxed topology weights

model the combinatorial distribution of candidate edges.

The proposed topology search space directly reflects the

search objective and can be easily extended to support a

flexible number of edges. On the other hand, we decou-

ple the operation and topology search processes. The over-

all search process is divided into the operation search stage

and the topology search stage, in which we update operation

weights and edge combination weights, respectively. With

decoupling the two searching processes, existing gradient-

based NAS methods can be directly incorporated into the

DOTS’ operation search and get further improvement by

the topology search. Furthermore, the topology search is

performed in a shrunk supernet, making it more efficient
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Figure 1: Rank correlation analysis between different edge importance representations and the stand-alone model per-

formance. The edge combination importance is indicated by operation weights (DARTS) and edge combination weights

(DOTS). We calculate the Kendall Tau metric [25] to measure the rank correlation.

and accurate. Considering that some operations (e.g., Skip-

Connection) can affect the topology, we adopt a group strat-

egy in the operation search to preserve these topology-

related operations for a better topology search.

We summarize our contributions as follows:

• We propose to decouple the operation and topology

search, which decouples both the topology represen-

tation and search processes. Such decoupling leads to

the correct rating of stand-alone models with different

topologies.

• The proposed topology search space can be extended

to support a flexible number of edges in the searched

cell, fulfilling its potential to search for more complex

structures.

• Existing gradient-based methods can be incorporated

into DOTS and get further improvement by the topol-

ogy search. DOTS only costs 0.26 and 1.3 GPU-days

to search from scratch and achieves 97.51% and 76.0%

accuracy on CIFAR10 and ImageNet. Better perfor-

mance can be achieved if the constraint of edge num-

bers is removed.

2. Related Work

Different from the previous manually designing task-

specific neural networks [14, 17, 36, 46, 47], Neural Archi-

tecture Search (NAS) has attracted extensive attention for

its potential to design efficient networks automatically [15,

16, 30, 32]. Early methods based on reinforcement learn-

ing [57,58] and evolutionary algorithms [41,48] train thou-

sands of candidate architectures from scratch and use their

validation accuracy to learn a meta-controller, which re-

quires prohibitive search cost. Recent one-shot NAS meth-

ods [2, 3, 8, 18] and gradient-based methods [9, 19, 35, 50]

adopt the weight sharing strategy [40], which only trains

the supernet once and thus reduces the search cost. Re-

cent gradient-based methods try to overcome the instabil-

ity [5,7,9,19,31,50,53] and reduce the search cost [6,11,51].

Previous gradient-based methods mainly target improving

the operation search. While our work improves gradient-

based methods with the topology search, which is comple-

mentary to previous researches.

Recent researches [12, 13, 42, 49] reveal the importance

of connection topology in neural networks. The randomly-

wired network [49] finds that networks generated by ran-

dom graph algorithms can obtain competitive results. Shu

et al. [42] find that the cell topology has more impact on

network convergence than the operation in cell-based NAS.

DenseNAS [12] proposes a densely-connected search space

that focuses on the macro structure’s topology. Our work

sheds light on the micro cell’s topology and constructs a

topology search space to support a flexible number of edges.

Recent weight sharing methods [22,26,27,29,52,55,56]

try to improve the architecture rank correctness. Yu et

al. [52] point out that recent NAS has similar performance

to random search because of the constrained search space

and the widely-used weight sharing strategy. PCNAS [29]

identifies and fixes the posterior fading problem in weight-

sharing methods. Block-wisely NAS [26] improves the ar-

chitecture rank correctness by modularizing the large space
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Figure 2: Overall pipeline of the proposed DOTS. The DOTS framework consists of the operation search and the topology

search. In the operation search phase, we search for the best performing operations on each edge. And in the topology search

phase, we search for the best combination for candidate edges.

into blocks. Although some recent works notice the rating

problem in one-shot methods, there is less concern about

the rating problem in gradient-based methods.

3. Review of DARTS

3.1. Preliminary of DARTS

We start by reviewing the baseline algorithm DARTS

[35]. DARTS aims at searching for the cell, a repeating

building block of the neural network. A cell is represented

as a directed cyclic graph with N nodes {xi}
N
i=1, including

two input, one output, and several intermediate nodes. Each

node denotes a feature map transformed by graph edges.

The j-th intermediate node xj connects to all its prede-

cessors xi through the edge (i, j). Each edge (i, j) con-

tains candidate operations weighted by the operation weight

α(i,j), which can be defined as

ō(i,j)(x) =
∑

o∈O

α(i,j)
o o(i,j)(xi), (1)

where o(x) ∈ O and O is the operation search space con-

taining eight operations, including Zero, Skip-Connection,

Avg-Pooling, Max-Pooling, Sep3x3Conv, Sep5x5Conv,

Dil3x3Conv, and Dil5x5Conv. The weight for each oper-

ation is normalized with softmax:

α(i,j)
o =

exp(α
′ (i,j)

o )
∑

o
′
∈O exp(α′ (i,j)

o
′ )

, (2)

where α
′

is the unnormalized operation weight. The oper-

ation weight is updated with the supernet training, gradu-

ally focusing on the optimal architecture. Once defined the

mixed operation ō(i,j) for edge (i, j), the intermediate node

xj is computed from all its predecessors xi:

xj =
∑

i<j

ō(i,j)(xi). (3)

Let Ltrain
cls and Lval

cls be the Cross-Entropy loss on the train-

ing and validation sets, respectively. Then, we can formu-

late the bi-level optimization with the operation weight α
and the network weight w as

min
α

Lval
cls (w

∗(α), α),

s.t. w∗(α) = argmin
w

(Ltrain
cls (w,α)).

(4)

After searching, the final architecture is derived from the

operation weight α by two hard pruning:

1. Retain the operation with the largest weight and

prune other operations for each edge, i.e., o(i,j) =

argmaxo∈O,o 6=Zero α
(i,j)
o .

2. Retain two incoming edges with the largest edge

importance for each intermediate node and prune

other edges. The edge importance is defined as the

largest operation weight on each edge (i, j), i.e.,

maxo∈O,o 6=Zero α
(i,j)
o .

3.2. Coupling Problem in DARTS

Previous works [5–7, 11, 20, 28, 31, 38, 50, 51] based on

DARTS indicate the edge importance by the largest oper-

ation weight (excluding the Zero operation) on this edge.

We conduct a rank correlation analysis to find whether edge

importance indicated by operation weights can accurately

rank the stand-alone model (measured by Kendall Tau met-

ric [25]). We follow DARTS’ handcraft policy that sums

the importance of two edges to get its edge combination

importance. However, for DOTS, the edge combination

weights can directly represent the edge combination impor-

tance. There are five edges in our experiment, resulting in

ten different edge combinations. The stand-alone model is

trained with the same setting as in Sec. 5.1, except that we

reduce the number of training epochs to 300.

Fig. 1a and Fig. 1c show that the stand-alone model accu-

racy has no clear ranking correlation with edge importance

indicated by the operation weights. It implies that DARTS’

searched cell is sub-optimal because it cannot converge to

the best cell topology, which is consistent with the finding

that DARTS cannot surpass random search in some cases.

Intuitively, the larger operation weight can only indicate an
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operation’s suitability for a specific edge, but does not mean

the edge should be retained in the searched topology. As

shown in Fig. 1b and Fig. 1d, the proposed edge combina-

tion weights achieve Tau = 0.73 and Tau = 0.71 on CI-

FAR10 and CIFAR100, demonstrating its effectiveness for

edge selection.

4. Methodology

The above analysis points out the limitation of coupling

the operation and topology search. In this section, we try to

tackle this problem via decoupling operation and topology

search. As shown in Fig. 2, the overall search is divided

into the operation search and the topology search. In the

operation search phase, we search for the best operation on

each edge. In the topology search phase, we search for the

best combination of candidate edges. In Sec. 4.1, we intro-

duce how to construct the topology search space and sup-

port a flexible number of edges. In Sec. 4.2, we describe

how to incorporate existing gradient-based NAS methods

into DOTS’ operation search and propose a group opera-

tion search scheme to retain topology-related operations for

a better topology search.

4.1. Topology Search

4.1.1 Handcraft Policy for the Number of Edges

In Sec. 3.2, we have discussed the limitation of coupling the

operation and topology search. Hence, we need to decou-

ple the edge importance from operation weights. To achieve

this, we define a topology search space apart from the oper-

ation search space.

Formally, the j-th intermediate node xj connects to all

its predecessors xi through the edge (i, j). Following

DARTS’ handcraft policy to restrict two edges for interme-

diate nodes, we make the topology search space Exj
for xj

as all pairwise combinations of its incoming edges:

Exj
= {〈(i1, j), (i2, j)〉 |0 < i1 < i2 < j}. (5)

Suppose that there are total n incoming edges for node xj ,

so the search space Exj
contains C2

n = n!
2!(n−2)! candi-

date combinations. For each node xj , we relax its topology

search space to continuous, which can be defined as

βc
xj

=
exp(β

′xj

c /Tβ)∑
c
′
∈Exj

exp(β′xj

c
′ /Tβ)

, (6)

where βc
xj

denotes the normalized probability of choosing

edge combination c. Although the topology search space

is defined on edge combinations, we do not need to obtain

each edge combination feature in practice. To reduce the

memory cost, we aggregate weight for edge eij from those

combinations containing this edge, which can be formulated

as

γ(i,j) =
∑

c∈Exj
,(i,j)∈c

1

N(c)
βc
xj
, (7)

where γ(i,j) is the weight of each edges and N(c) is the

edges number in edge combination c. We sum all the incom-

ing edges of xj weighted by the edge importance weight γ
to get its features:

xj =
∑

i<j

γ(i,j) · ō(i,j)(xi), (8)

where ō(i,j) means the mixed operation on edge (i, j).
Since we decouple the operation and topology search pro-

cesses, the ō(i,j) mixes the candidate operations retained by

the operation search, which will be discussed in Sec. 4.2.

As discussed in ASAP [38] and SNAS [50], the opti-

mization gap between the supernet and the derived child

network causes a performance drop. Both works exploit ar-

chitecture annealing to bridge the optimization gap during

searching. We generalize the annealing idea to the topology

search. In Equ. (6), Tβ is the annealing temperature. We

adopt an exponential schedule for annealing:

T (t) = T0θ
t, (9)

where it starts from an initial temperature T0 and decays

with the training step t increasing.

DARTS uses bi-level optimization to avoid overfitting

[35]. However, [18, 28] shows that one-level optimization

is stable and accurate. In our topology search stage, the op-

eration on each edge is largely reduced, eliminating the risk

of overfitting. Therefore, we use one-level optimization for

updating the network weight w and the topology weight β,

which can be formulated as

wt = wt−1 − ηt∂wLtrain(wt−1, βt−1),

βt = βt−1 − δt∂wLtrain(wt−1, βt−1),
(10)

where ηt and δt are the learning rates of the network weight

and topology weight, respectively.

4.1.2 Flexible Number of Edges

In Sec. 4.1.1, we construct a topology search space follow-

ing the DARTS handcraft policy to restrict each interme-

diate node in the searched cell connects two edges. Such

a handcraft policy cannot learn the number of edges auto-

matically. Hence, we extend the topology search space to

support arbitrary numbers of edges. Specifically, we adopt

binary code to describe such search space. For the interme-

diate node xj with n incoming edges, the binary code for

the m-th edge combination can be represented as
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Figure 3: Topology search with more than one operation

on each edge. We adopt a lower initial temperature to an-

neal operation weight than topology weight, i.e., Tαon
=

1
1000Tβ . Hence, the operation is fixed on each edge in the

first few epochs (denoted by the red dash line).

cm = {e1, e2, . . . , en}, (11)

where ei ∈ {0, 1} denotes the edge i exists or not in an

edge combination. The topology search space for the node

xj can be defined as

Exj
= {c1, c2, . . . , cM}, (12)

where M is the number of valid edge combinations. We can

compute M by

M =

n∑

k=1

Ck
n = 2n − 1. (13)

We exclude the extreme case where all edges are not in the

edge combination. Overall, we enable searching for a flexi-

ble number of edges. This is easy to implement as we only

replace the search space of Equ. (5) with Equ. (12) and keep

the architecture relaxation and optimization the same.

4.2. Operation Search

In this section, we introduce the operation search of

DOTS. The operation search aims to retain the optimal op-

eration candidate on each edge. We introduce how to in-

corporate the existing gradient-based NAS methods into

DOTS’ operation search in Sec. 4.2.1. Existing methods

only retain the best operation on each edge, discarding

that some operations (e.g., Skip-Connection) may affect the

topology. To prevent topology-related operations from be-

ing pruned in the operation search, we propose a group op-

eration search scheme in Sec. 4.2.2.

4.2.1 Incorporating Gradient-Based NAS Methods

The previous gradient-based methods based on DARTS

can be easily incorporated into DOTS’ operation search.

DARTS introduces a set of weights α = {α(i,j)} for can-

didate operations on each edge (i, j). We follow their own

searching strategies to get the trained operation weight α.

Then, the operation with the maximum weight is retained

on each edge (i, j):

o(i,j) = argmax
o∈O

α(i,j)
o . (14)

The final step is to replace the mixed operation ō(i,j) in

Equ. (8) with o(i,j). Overall, existing gradient-based NAS

methods can be easily plugged into DOTS’ operation search

and get further improvement by the topology search.

4.2.2 Operation Search with Group Strategy

Generally, the operations can be categorized into topology-

related (e.g., Skip-Connection) and topology-agnostic (e.g.,

Separable Convolution). In Sec. 4.2.1, we incorporate

the existing gradient-based methods into DOTS’ operation

search, where the best operation is retained on each edge.

Such a strategy eliminates potential topology choices be-

cause some topology-related operations are dropped before

the topology search. To this end, we resort to group strat-

egy [20, 28] for the operation search. The group strategy

can ensure to retain both topology-related and topology-

agnostic operations for the topology search.

Formally, in the group operation search, the operation

search space O is divided into several subspaces O =
{O1,O2, . . .Op}, where p is the number of groups. Each

operation subspace is relaxed to continuous independently.

After searching, the operation with the largest weight is

chosen from each group to construct a new operation search

space On on each edge (i, j), which can be formulated as

o(i,j)p = arg max
op∈Op

α(i,j)
op

, (15)

On = {o
(i,j)
1 , o

(i,j)
2 , . . . , o(i,j)p }. (16)

We evaluate different group strategies and discuss them

in the experiment. Since On contains more than one oper-

ation, we need to search for it in the topology search stage.

Simultaneously updating the operation and topology is in-

accurate because it increases the weight-sharing child mod-

els [8, 29]. To tackle this problem, we anneal the operation

weight with a lower temperature Tαon
than Tβ in the topol-

ogy search. As illustrated in Fig. 3, the operations in two

groups are fixed in the first few epochs. Once the opera-

tions are fixed, further topology search evolves similarly as

that in Sec. 4.2.1.

5. Experiment

5.1. Evaluation on CIFAR10/100

Search Settings. We implement the DOTS based on Py-

torch [39], Mindspore [1] and Jittor [23] frameworks. The
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Architecture
Top-1 Acc. (%)

CIFAR10

Params (M)

CIFAR10

Top-1 Acc. (%)

CIFAR100

Params (M)

CIFAR100

Search Cost

(GPU-days)
Search Method

DenseNet-BC [24] 96.54 25.6 82.82† 25.6 N/A N/A

NASNet-A [58] 97.35 3.3 83.18 3.3 1800 RL

ENAS [40] 97.11 4.6 80.57† 4.6 0.5 RL

AmoebaNet-B [41] 97.45± 0.05 2.8 - - 3150 EA

Hireachical Evolution [34] 96.25± 0.12 15.7 - - 300 EA

PNAS [33] 96.59± 0.09 3.2 80.47† 3.2 225 SMBO

DARTS [35] 97.00 3.4 82.46† 3.4 0.4 GD

SNAS [50] 97.15 2.8 82.45 2.8 1.5 GD

GDAS [11] 97.07 2.5 81.62† 3.4 0.2 GD

P-DARTS [6] 97.50 3.4 82.51† 3.6 0.3 GD

FairDARTS [9] 97.46 2.8 82.39 2.8 0.4 GD

PC-DARTS [51] 97.43 ± 0.07 3.6 83.10 3.6 0.1 GD

DropNAS [20] 97.42 ± 0.14 4.1 83.13 4.0 0.6 GD

MergeNAS [45] 97.27 ± 0.02 2.9 82.42 2.9 0.2 GD

ASAP [38] 97.32 ± 0.11 2.5 82.69 2.5 0.2 GD

SDARTS-ADV [5] 97.39 ± 0.02 3.3 83.27 3.3 1.3 GD

DARTS- [7] 97.41 ± 0.08 3.5 82.84† 3.4 0.4 GD

DOTS (best) 97.63 3.5 83.72 4.1 0.26 GD

DOTS (avg)∗ 97.51±0.06 3.5 83.52±0.13 4.1 0.26 GD

Table 1: Comparison with state-of-the-art models on CIFAR10/100. CIFAR10 evaluation results are taken from their original

paper. †: The CIFAR100 results are reported by Chu et al [7]. ∗: Our results are obtained by four individual runs of search

and evaluation under different random seeds.

Architecture TS CIFAR10 CIFAR100

DARTS [35]
✗ 97.02±0.12 80.74

✓ 97.40±0.09 83.07

DARTS (2nd) [35]
✗ 97.01±0.15 81.37

✓ 97.12±0.11 83.28

GDAS [11]
✗ 96.84±0.06 82.75

✓ 97.06±0.08 83.01

SNAS [50]
✗ 97.05±0.10 81.92

✓ 97.26±0.12 83.25

PC-DARTS [51]
✗ 97.28±0.08 81.74

✓ 97.45±0.06 82.36

Table 2: Improving existing gradient-based NAS methods

by the topology search. TS means the topology search.

whole search process on CIFAR10/100 takes 70 epochs, i.e.,

30 epochs for the operation search and 40 for the topology

search. The network is composed of 8 cells for the operation

search and 20 cells for the topology search. The initial tem-

perature is set to T0 = 10 and decay to 0.02 in the topology

search. The search process costs 6.3 hours (0.26 GPU-days)

on one NVIDIA Tesla V100 GPU. More detailed search set-

tings can be found in the supplementary.

Evaluation Settings. The evaluation network is com-

posed of 20 cells (18 normal cells and 2 reduction cells)

and the initial number of channels is 36. We train the net-

work from scratch for 600 epochs with a batch size of 96.

The network is optimized via the SGD optimizer with an

initial learning rate of 0.025 (cosine annealing to 0), mo-

mentum of 0.9, weight decay of 3e-4, and gradient clipping

at 5. Cutout and drop-path with a rate of 0.2 are used for

preventing overfitting.

Main Results. The evaluation results on CIFAR10/100

are shown in Tab. 1. DOTS only costs 0.26 GPU-days to

achieve 97.51% and 83.72% accuracy on CIFAR10 and CI-

FAR100, respectively. Thanks to the decoupling of the op-

eration and topology search, the number of candidate opera-

tions on edges is largely reduced, and both stages are fast to

converge. DOTS improves DARTS by 0.51% on CIFAR10

with lower search costs. The previous effort in gradient-

based methods can be incorporated into the DOTS frame-

work and further improved by the topology search, which is

shown in Tab. 2.

5.2. Evaluation on ImageNet

Search Settings. The whole search process takes 70

epochs, 30 epochs for the operation search and 40 epochs

for the topology search. The network is composed of 14

cells for both search stages. The initial temperature T0 is

set to 10 and decay to 0.02 in the topology search. The

whole search process costs 7.8 hours (1.3 GPU-Days) on

four NVIDIA Quadro RTX 8000 GPUs. Other search set-

tings we keep the same as PC-DARTS [51], which can be

found in supplementary.

Evaluation Settings. The evaluation follows the mobile

setting, where the input image size is set to 224× 224, and

the number of multiply-add operations is restricted to be

fewer than 600M. The network consists of 14 cells (12 nor-

mal cells and 2 reduction cells) with an initial number of

channels of 46. We train the network from scratch for 250

epochs with a batch size of 1024. The SGD optimizer with

an initial learning rate of 0.5 (warm up in the first 5 epochs

and cosine annealing to 0), momentum of 0.9, and weight

decay of 3e-5 is used. Additional enhancements follow P-

DARTS [6] and PC-DARTS [51], including label smooth-
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Architecture
Acc. (%) Params

(M)

Multi-Add

(M)

Search Cost

(GPU-days)
Search Method

top-1 top-5

Inception-v1 [43] 69.8 89.9 6.6 1448 N/A N/A

MobileNet [21] 70.6 89.5 4.2 569 N/A N/A

ShuffleNet 2× (v1) [54] 73.6 89.8 5.4 524 N/A N/A

ShuffleNet 2× (v2) [37] 74.9 92.4 7.4 591 N/A N/A

NASNet-A [58] 74.0 91.6 5.3 564 1800 RL

AmoebaNet-C [41] 75.7 92.4 6.4 570 3150 EA

PNAS [33] 74.2 91.9 5.1 588 225 SMBO

MnasNet-92 [44] 74.8 92.0 4.4 388 1667 RL

DARTS (2nd order) (CIFAR10) [35] 73.3 91.3 4.7 574 4.0 GD

SNAS (CIFAR10) [50] 72.7 90.8 4.3 522 1.5 GD

P-DARTS (CIFAR10) [6] 75.6 92.6 4.9 557 0.3 GD

GDAS (CIFAR10) [11] 74.0 91.5 5.3 581 0.2 GD

FairDARTS (CIFAR10) [9] 75.1 92.5 4.8 541 0.4 GD

PC-DARTS (CIFAR10) [51] 74.9 92.2 5.3 586 0.1 GD

SDARTS-ADV (CIFAR10) [5] 74.8 92.2 5.4 594 1.3 GD

DropNAS (CIFAR10) [20] 75.5 92.6 5.2 572 0.6 GD

ASAP (CIFAR10) [38] 73.7 91.5 3.8 427 0.2 GD

DOTS (CIFAR10) 75.7 92.6 5.2 581 0.2 GD

ProxylessNAS (ImageNet) [4] 75.1 92.5 7.1 465 8.3 GD

FairDARTS (ImageNet) [9] 75.6 92.6 4.3 440 3 GD

PC-DARTS (ImageNet) [51] 75.8 92.7 5.3 597 3.8 GD

DOTS (ImageNet) 76.0 92.8 5.3 596 1.3 GD

Table 3: Comparison with state-of-the-art models on ImageNet. CIFAR10 and ImageNet mean the cell architecture is

searched on CIFAR10 or ImageNet.

Topology Parameterized

Strategy

Edge Numbers

Constraint

CIFAR10

Test Acc. (%)

CIFAR100

Test Acc. (%)

PC-DARTS 2 97.38 ±0.09 82.98

DOTS 2 97.51 ±0.06 83.72

Edge-Level Sigmoid arbitrary 97.26 ±0.14 81.02

DOTS arbitrary 97.53 ±0.08 83.92

(a) Ablation study of different topology parameterized strategy.

Operation Search

Strategy
#op

CIFAR10

Test Acc. (%)

CIFAR100

Test Acc. (%)

Search Cost

(GPU-days)

DARTS-Top1 1 97.40 ±0.09 83.07 0.22

DARTS-Top2 2 97.42 ±0.11 82.96 0.26

Group-V1 [28] 4 97.48 ±0.11 83.55 0.35

Group-V2 [20] 2 97.51 ±0.06 83.72 0.26

(b) Ablation study of different operation search strategies. #op: The

numbers of operation retained on each edge.

Table 4: Ablation studies of different strategies.

ing and an auxiliary loss tower.

Main Results. The evaluation results are summarized

in Tab. 3. Most gradient-based methods search on a proxy

dataset, e.g., CIFAR10, and transfer the searched cell to

ImageNet because their search cost on ImageNet is pro-

hibitive. While DOTS can search on ImageNet proxylessly,

and requires the least search costs (1.3 GPU-days). DOTS

improves DARTS by 2.7% of top-1 accuracy on ImageNet.

5.3. Ablation Study

Improving gradient-based NAS methods. We incor-

porate five gradient-based methods into DOTS and validate

the effectiveness of the topology search. The baseline is

to derive the topology of the searched cell by DARTS pol-

icy. Comparison results are summarized in Tab. 2. We can

observe that adding topology search results in a consistent

improvement over the baseline, verifying the effectiveness

of the proposed topology search. An illustrative example is

shown in Fig. 4. We use DARTS for the operation search

and the operation search results are shown in Fig. 4a. Di-

rectly deriving its topology based on the operation weights,

i.e., DARTS’ policy, results in the searched cell in Fig. 4c.

We can find it is dominated by skip-connection and only

achieves 80.74% accuracy on CIFAR100. Fig. 4b shows

the topology search results based on the same searched op-

erations, which obtains a 2.33% improvement (83.07% vs.

80.74%). We can find the topology search helps remedy the

unstable results of the operation search by further choosing

edge connections.

Influence of topology parameterized strategy. We val-

idate the effectiveness of the proposed edge combination

weights and compare it with some other topology parame-

terized strategies. First, we compare with PC-DARTS that

directly adds learnable weight on edges. Since it is not easy

for the PC-DARTS strategy to support flexible edge num-

bers in the searched cell, we restrict both methods to re-

tain two edges per node after the topology search. From

the results in Tab. 4a, the proposed DOTS improves the

edge weight of PC-DARTS by 0.13% on CIFAR10. This

mainly because the original purpose of the edge weight in

PC-DARTS is to stabilize the training, not for the topol-

ogy search. In comparison, the proposed edge combination
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EdgeID 1 2 3 4 5 6 7

OP SkipC Sep3x3 SkipC SkipC Sep3x3 SkipC SkipC

EdgeID 8 9 10 11 12 13 14

OP Sep3x3 Sep3x3 SkipC Sep3x3 Sep3x3 Sep3x3 Sep3x3

(a) Operation searched results

c_{k-2}
0

skip_connect

c_{k-1}

sep_conv_3x3
1

skip_connect

3

sep_conv_3x3

sep_conv_3x3

2
sep_conv_3x3

c_{k}sep_conv_3x3

sep_conv_3x3

(b) DOTS topology search

c_{k-2}

0

skip_connect

1

skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

skip_connect

skip_connect

sep_conv_3x3
c_{k}

(c) DARTS’ policy

Figure 4: Results of different topology derivations. (a) The operations searched by DARTS on CIFAR10. (b) Deriving

topology based on proposed topology search. (c) Deriving topology based on DARTS’ policy.

EdgeID 1 2 3 4 5 6 7

OP Group 1 SkipC SkipC SkipC SkipC SkipC SkipC SkipC

OP Group 2 Dil3x3 Sep3x3 Sep3x3 Sep3x3 Sep3x3 Sep3x3 Sep3x3

EdgeID 8 9 10 11 12 13 14

OP Group 1 SkipC SkipC SkipC SkipC SkipC SkipC Zero

OP Group 2 Dil3x3 Dil3x3 Dil5x5 Sep3x3 Sep3x3 Dil3x3 Sep3x3

(a) Operation searched results

c_{k-2}

0

skip_connect

1

sep_conv_3x3

2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3
skip_connect

c_{k}

dil_conv_3x3

(b) Topology searched results

Figure 5: Results of the operation and topology search

based on Group-V2 strategy.

weights can directly reflect the objective of edge selection.

Then we validate the effectiveness of DOTS in arbitrary

edge numbers setting. By removing the edge number con-

straint, the performance of DOTS is promoted from 83.72%

to 83.92% on CIFAR100. In the arbitrary edge numbers

setting, a straightforward method is to replace the softmax

activation with sigmoid activation on the edge weights and

binarize the choice with a threshold. We name this strategy

edge-level sigmoid. From Tab. 4a, the DOTS has a clear

advantage over the edge-level sigmoid strategy.

Influence of the operation search strategy. We in-

vestigate the different operation search strategies and dis-

cuss their influence to the topology search. The base-

line is DARTS-Top1, which retains one strongest opera-

tion on each edge for the topology search. The operation

search with Group-V2 strategy (details in supplementary)

improves DARTS-Top1 by 0.11% and 0.65% on CIFAR10

and CIFAR100, respectively. The reason is DARTS-Top1

overlooks a case that some operations are topology-related.

Pruning these operations in the operation search stage will

eliminate the potential topology choices, resulting in sub-

optimal solutions.

An illustrative example of the group strategy is shown in

Fig. 5. From Fig. 5a, the best operation in the topology-

related and topology-agnostic group is retained for the

topology search. Fig. 5b shows the topology search re-

sults based on the operation search results in Fig. 5a. Direct

retaining more operations, i.e., DARTS-Top2 has no obvi-

ous improvement, because it does not guarantee topology-

related operations are preserved. Adding more groups in

topology-agnostic operations i.e., Group-V1 strategy has no

improvement but increases the search cost. From this exper-

iment, we can find preserve two operations (one topology-

related and one topology-agnostic) is sufficient for the

topology search.

6. Conclusion

In this paper, we study the topology derivation of ex-

isting gradient-based methods based on DARTS. The edge

importance of DARTS is based on the operation weights,

which can not correctly rank the stand-alone models with

different topologies. Thus we propose to decouple the

topology representation from the operation weights and

make an explicit topology search. The proposed topology

representation, i.e., edge combination weights, leads to the

correct topology rating and supports flexible edge numbers.

Apart from decoupling the operation and topology repre-

sentation, we propose to decouple their searching processes

to make an efficient and accurate topology search. Exper-

iments on CIFAR and ImageNet demonstrate DOTS is an

efficient and effective solution to differentiable NAS.
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