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Abstract

Image super-resolution (SR) techniques have been de-

veloping rapidly, benefiting from the invention of deep net-

works and its successive breakthroughs. However, it is ac-

knowledged that deep learning and deep neural networks

are difficult to interpret. SR networks inherit this mysterious

nature and little works make attempt to understand them. In

this paper, we perform attribution analysis of SR networks,

which aims at finding the input pixels that strongly influence

the SR results. We propose a novel attribution approach

called local attribution map (LAM), which inherits the inte-

gral gradient method yet with two unique features. One is to

use the blurred image as the baseline input, and the other is

to adopt the progressive blurring function as the path func-

tion. Based on LAM, we show that: (1) SR networks with

a wider range of involved input pixels could achieve bet-

ter performance. (2) Attention networks and non-local net-

works extract features from a wider range of input pixels.

(3) Comparing with the range that actually contributes, the

receptive field is large enough for most deep networks. (4)

For SR networks, textures with regular stripes or grids are

more likely to be noticed, while complex semantics are diffi-

cult to utilize. Our work opens new directions for designing

SR networks and interpreting low-level vision deep models.

1. Introduction

Deep learning has recently shown an explosive popular-

ity in the field of image super-resolution (SR) due to its

superior performance and flexibility. Various SR networks

have been proposed to learn effective and abstract represen-

tations for SR, expecting to continuously improve the SR

performance. Despite their success, these SR networks re-

main mysterious because what has been learned and how

it contributes to their performance remain unclear. For ex-

ample, whether larger receptive fields and multi-scale struc-
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Figure 1: Demo results of the proposed attribution method LAM

for SR network interpretation. The LAM maps represent the im-

portance of each pixel in the input LR image w.r.t. the SR of the

patch marked with a red box. We also illustrate the area of contri-

bution in the third line. Our LAM results indicate that FSRCNN

[12] only utilizes very limited information, EDSR [26] increases

the range of information utilization but still fails to reconstruct ac-

curate texture, and non-local network RNAN [50] can utilize a

wider range of information for better SR result.

tures are effective for SR networks? Why the attention and

non-local schemes can help improve the SR results? How

could different network architectures affect the information

usage and the final performance? We lack a systematic un-

derstanding, and even research tools, towards these open

questions.

In this paper, we propose to conduct attribution analysis

of SR networks, aiming at finding input pixels that strongly

influence the network outputs. The results are often visual-

ized in the attribution maps where the most important pixels

are highlighted. In this manner, we can analyze the pattern

of information usage for SR networks, and evaluate whether

a SR network could extract high-level semantic informa-

tion. We show some representative results in Figure 1. In

contrast to the attribution methods that are widely studied in
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classification networks, the SR networks have not witnessed

the development and application of attribution techniques.

As the first work that tries to build attribution method for

SR networks, we need to introduce several auxiliary prin-

ciples. First, we argue that the attribution should be con-

ducted in local patches rather than global images. Second,

we should analyze patches that are difficult to reconstruct.

Third, we propose to interpret the existence of specific fea-

tures instead of pixel intensities. With these preliminaries,

we present a new Local Attribution Map (LAM) to inter-

pret SR networks. LAM employs path integral gradients to

conduct attribution analysis. We use the blurred image as

the baseline input and propose a novel progressively blur-

ring function as the path function. These two strategies are

specially designed for SR networks.

Using the proposed LAM method, we draw the follow-

ing observations: (1) The range of pixels involved in the SR

process has significant impact to the final SR performance.

SR networks with a wider range of involved pixels could

achieve better performance. Thus deepening or widening

the SR network could lead to better performance (under suf-

ficient training). (2) Attention and non-local schemes could

help SR networks extract features from a wider range of in-

put pixels. (3) For most deep networks, the receptive field

is much larger than the pixel range that actually contributes

to the SR. Simply expanding the receptive field will not in-

volve more influential pixels. (4) For existing SR networks,

textures with regular stripes or grids are more likely to be

extracted, while complex semantics are difficult to extract

and utilize.

The above observations are beneficial to SR research

both scientifically and practically. The reasons are at least

threefold, with the value of diagnostic for SR networks be-

ing the first. Understanding the mechanism that underlies

these SR networks would intuitively tell us the effective-

ness of the proposed method. Second, it would also have

direct consequences on designing more efficient architec-

tures. Third, studying the interpretability of SR networks

would also advance the science of deep learning applied to

low-level vision tasks. In light of the above discussion, we

hope our work can serve as a stepping stone towards a more

formal understanding of SR networks.

2. Related Work

SR networks. Since Dong et al. [11] introduce the first

SR network, plenty of deep learning based SR methods

have been proposed, including deeper networks [12, 21,

36], residual architectures [24, 46], recurrent architectures

[22, 44], and attention mechanism [49, 10]. Recently, non-

local operations [45] are also introduced to SR networks

[27, 50, 31], expecting to capture long-range information in

the image and utilize self-similarity prior of natural images.

The whirlwind of progress in deep learning has delivered

remarkable performance in SR field. Research on SR net-

works focuses on measuring the difference in performance,

lacking a formal understanding of their underlying mecha-

nisms.

Network interpretation. Our work is also closely related

to network interpretation. Since the deep networks were

applied to computer vision, network interpretation follows

a long line of works on understanding the predictions given

by the models. Some works attempt to explore inside the

deep network and visualize the learned knowledge, such as

natural pre-image [30] and network dissection [53]. An-

other straightforward idea, which is more related to our

work, is to visualize what part of the input is responsible

for the model’s prediction. These visualization results are

called attribution maps. In recent years, various attribution

methods have been proposed [39, 41, 43, 37, 29], aiming

at obtaining human-understandable representations for at-

tribution. Some methods employ networks’ interior activa-

tions to localize the discriminative image regions [54, 34].

While the above works require the mathematical details

of the model, there are works that treat deep models as

black-boxes. These methods usually localize the discrim-

inative image regions by performing perturbation to the in-

put [14, 13]. In addition, there are also works on inter-

preting generation networks, e.g., Bau et al. [8] propose a

framework for visualizing and understanding the structure

learned by a generative network, and Shen et al. [35] de-

scribe that a well-trained generative network learns a disen-

tangled representation.

Difference from the previous interpretation research.

Despite the above works on explaining both discrimina-

tive and generative networks, to the best of our knowledge,

the SR networks have not witnessed the effort of explana-

tion and visualization. Interpreting SR networks is different

from previous works in both perspectives and approaches.

First, the concerns of security and human-interactable are

the key motivations behind the research of classification

network interpretation. However, the motivation of inter-

preting SR networks lies in pursuing better understanding

of the existing models’ success and obtaining insights to

break performance bottlenecks. Second, the characteristics

of the SR network make the existing interpretation research

invalid for SR networks. New principles and approaches

for interpretation need to be established, which is the pri-

mal goal of this paper.

3. Method

Before diving into the specific method, we first introduce

several important auxiliary principles for SR network inter-

pretation in Sec 3.1. We then briefly describe some prior

works of attribution methods in Sec 3.2. In Sec 3.3, we pro-

pose the Local Attribution Map to interpret SR networks.

At last, we provide supplementary discussions in Sec 3.4.
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3.1. Auxiliary Principles of Interpretation

Interpreting local not global. Different from classifica-

tion networks that output predicted labels w.r.t. the whole

image, SR networks output the SR image that are spatially

corresponding to the input image. The independence of SR

in different locations poses challenges for interpreting SR

networks globally. We propose to interpret the SR networks

in a local manner for specific locations and surroundings.

This is consistent with the commonly-used qualitative eval-

uation strategy, which focuses on the reconstruction of lo-

cal edges and textures. We aim to find the input pixels that

effectively contribute to the reconstruction of a certain loca-

tion/area in the output image. This process can tell us what

information has been utilized by the SR network.

Interpreting hard not simple. The flat areas and simple

edges are relatively easy to reconstruct in SR. The interpre-

tation of these areas is of limited help in understanding SR

networks. What we really care about is the areas that limit

the development of SR. In these areas, the low-resolution

(LR) image usually contains limited information, and dif-

ferent SR networks have distinguishable performance. Un-

derstanding how these SR networks utilize information to

obtain different performances could provide useful insights

for designing better algorithms.

Interpreting features not pixels. When conducting attri-

bution analysis of classification networks, the gradients are

usually calculated directly on the predicted probabilities of

labels. However, the outputs of SR networks are pixel inten-

sities, which are strongly correlated with the pixel intensi-

ties of the corresponding location in the LR image. The di-

rect attribution results will also be correlated with the pixel

intensities, as they provide the main gradients. But the in-

tensities, ranging from 0 to 255, could provide little help for

network interpretation. In contrast, we propose to detect the

existence of specific local features, such as edges and tex-

tures. We convert the problem of attribution into whether

there exists edges/textures or not, instead of why these pix-

els have such intensities. In this manner, the attribution re-

sults are robust to the brightness changes.

3.2. Investigating Attribution Methods

Before introducing our method, we briefly summarize

the recent progress of attribution methods in classification

networks. Consider an input image I ∈ R
d and a classi-

fication model S : R
d 7→ R, an attribution method pro-

vides attribution maps AttrS : R
d 7→ R

d for S that are

of the same size as the inputs and present the importance

for each dimension. As the most intuitive idea, the gradi-

ent for an input GradS(I) = ∂S(I)
∂I

quantifies how much a

change in each input dimension would change the output

in a small neighborhood around the input [39, 7]. How-

ever, the gradient method suffers from the “saturation” is-

sue [43, 42], which could lead to the problem – the gra-

F
local patch

D

SR network

Feature

detector

Existence 

of feature

Path integrated gradients

LAMI

Figure 2: Illustration of the proposed Local Attribution Map

(LAM).

dients have small magnitudes and fail to indicate impor-

tant features. The element-wise product of the input and

the gradient I ⊙
∂S(I)
∂I

is proposed to address the satura-

tion problem and reduce visual diffusion [38]. Sundararajan

et al. [43] also propose Integrated Gradients (IG) to allevi-

ate gradient saturation, which is formulated as IGS(I) =

(I − I ′) ·
∫ 1

0
∂S(I′+α(I−I′))

∂I
dα, where I ′ is the baseline in-

put that represents the absence of important features. The

idea of introducing baseline inputs is also revealed in many

prior works [38, 9]. The logic behind using baseline inputs

is that when we assign blame to a specific cause, we im-

plicitly consider the absence of the cause as a baseline for

comparison. In addition to the above attribution methods,

Guided Backpropagation [41] and Smooth Gradient [40] are

also widely used in visualizing classification networks.

3.3. Local Attribution Maps

In this section, we describe the proposed Local Attribu-

tion Maps (LAM), which is based on the integrated gradi-

ents method [43]. Let F : R
h×w 7→ R

sh×sw be an SR

network with the upscaling factor s. As stated before, we

interpret F by attributing the existence of certain features of

local patches in the output image, instead of the pixel inten-

sities. We quantify the existence of a specific feature in an

l×l patch located in (x, y) with a detector Dxy : Rl×l 7→ R.

Here, Dxy is implemented by simple operators or filters,

which can be easily understood, to avoid introducing ad-

ditional difficulty to the interpretation. In this work, we

mainly use the gradient detector to quantify the existence of

edges and textures, as Dxy(I) =
∑

i∈[x,x+l],j∈[y,y+l] ∇ijI ,

where the subscript i, j indicates the location coordinates.

In the following text, we omit the subscripts for convenience

without loss of generality. Given I ∈ R
h×w as the input

LR image, conducting attribution analysis of an SR network

also requires a baseline input image I ′, which satisfies that

F (I ′) absent certain features existed in F (I). A simple ex-

ample of I ′ is a black image with all zero-value pixels. Ac-

cordingly, D(F (I)) will show large numerical advantage

compared to D(F (I ′)).

To obtain the attribution map for D(F (I)), we calculate

the path integrated gradient along a gradually changing path

from I ′ to I . We represent the path by a smooth path func-

tion γ(α) : [0, 1] 7→ R
h×w, where γ(0) = I ′ and γ(1) = I .

Then, the ith dimension of the local attribution map is de-
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Figure 3: Comparison of different baseline images and path functions. (a) – (d) are the HR image with the selected local patch highlighted,

the LR image, the SR result using EDSR [26], and the attribution map using the proposed LAM method, respectively. On the right of the

figure: (e) The images interpolated from the baseline image to the LR image using different baselines and path functions. (f) The curves

of D(F (γ(α))) w.r.t. α. The saturation triggered when the curve shows a flat trend. (g) The curves illustrate magnitudes of ∂γ(α)/∂α
with different αs. Notice high magnitude gradients accumulate at position that D(F (γ(α))) changes sharply. (h) shows the curve by

accumulating gradients over α, the red line refers to D(F (I))−D(F (I ′)). (i) shows the gradients at interpolations.

fined as follows:

LAMF,D(γ)i :=

∫ 1

0

∂D(F (γ(α))

∂γ(α)i
×

∂γ(α)i
∂α

dα. (1)

Obviously, for different baselines and path functions, we

obtain different attribution maps. When the baseline inputs

are black images and the path function is linear interpo-

lation, Eq (1) degrades to the standard formulation of IG

[43]. However, as revealed in [42], the choice of baseline

and path function greatly affects the final attribution results.

In this work, we carefully design the baseline inputs and the

path function specially for SR networks.

As stated above, a baseline input is meant to represent

the “absence” of some input features. In SR, the low-

frequency components of the LR image are easy to recon-

struct and contribute less when evaluating SR performance.

In contrast, the high-frequency components (e.g., edges and

textures) are of great importance to achieve good SR re-

sults. In this work, we design the baseline input by elimi-

nating the high-frequency components. In implementation,

we set it as the blurred version of the LR image, denoted as

I ′ = ω(σ) ⊗ I , where ⊗ represents convolution operation

and ω(σ) is the Gaussian blur kernel parameterized by the

kernel width σ. The kernel ω(σ) degrades to the impulse

response δ when σ equals to 0.

Then we introduce the new path function according to

the above baseline input. IG employs linear interpolation

function as the path function. However, the linear inter-

polated images show artifacts and do not follow the prior

distribution of natural images. To address this problem, we

propose the progressive blurring path function γpb, which

achieves a smooth transformation from I ′ to I through pro-

gressively changing the blur kernel:

γpb(α) = ω(σ − ασ)⊗ I. (2)

Obviously, we have γpb(0) = I ′ and γpb(1) = I .

In practice, we calculate the gradients at points sampled

uniformly along the path and then approximate Eq (1) with

a summation:

LAMF,D(γpb)
approx
i := (3)

m
∑

k=1

∂D(F (γpb(
k
m
))))

∂γpb(
k
m
)i

·

(

γpb(
k

m
)− γpb(

k + 1

m
)
)

i
·
1

m
,

where m is the number of steps in the approximation of

the integral. Here, we approximate
∂γpb(α)

∂α
by calculating

the difference after discretization. The calculation of gra-

dients in Eq (3) can be directly implemented using compu-

tational graph frameworks, e.g., PyTorch [33] and Tensor-

Flow [1]. Experimentally, a step number of 100 is enough

to approximate the integral. One can check the accuracy of

the approximation according to the proposition [43, 15] that
∑

i LAMF,D(γpb)i = D(F (I))−D(F (I ′)).

3.4. Discussion

Why using integrated gradient. It is counter-intuitive to

use the path integrated gradients instead of the vanilla gra-

dients, as the latter one directly indicates the direction of the

maximum increase of the detected feature existence. How-

ever, the vanilla gradients usually have small magnitudes

and fail to indicate important features. This is also called
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Figure 4: Attribution results with different diffusion index (DI).

The DI reflects the range of involved pixels. A higher DI repre-

sents a wider range of attention. These results are derived from

different SR networks.

the “gradient saturation”. We illustrate the saturation by

plotting the curve of D(F (γ(α))) along with the change

of α. As shown in Figure 3.f, saturation can be triggered

when the curve shows a flat trend, where a small shift of I

along with the gradients does not significantly change the

value of D(F (I)). On the contrary, the path integrated gra-

dients shows how D(F (I)) changes from small to large and

its attribution map indicates the pixels that contribute most

significantly to D(F (I)) when changing alone the path. We

illustrate this process by decomposing Eq (1) into two parts:

the gradients at the interpolated images and the gradients

of γ(α), where the latter one could be viewed as weights

for the gradients at different interpolations. As shown in

Figure 3.f, the change of D(F (γpb(α))) is not linear. It

experiences a sharp increase in the range marked by the

green dashed line. Meanwhile, the magnitudes of
∂γpb(α)

∂α

also have large values in this range, which makes these gra-

dients provide greater contribution to the final attribution

map. We also show the curve of the cumulative gradients

over α in Figure 3.h. Notice that high magnitude gradients

accumulate at the same range where the D(F (γpb(α))) in-

creases sharply and also where the magnitudes of
∂γpb(α)

∂α

have large values. These experiments show the rationality

of using the path integral gradient instead of the vanilla gra-

dient.

The choice of baseline and path function. Although

Sundararajan et al. [43] suggest to use black images as base-

line and linear interpolation as the path function, Sturmfels

et al. [42] argue that it may not be the best choice. We ex-

perimentally show its disadvantages in Figure 3. As can be

seen, the linear interpolated images of black baseline im-

age does not present the “absence” of important features,

although the feature detection output of the baseline image

is reduced. It reduces D(F (I)) by reducing the intensity

of all the pixels, resulting in saturation for the gradients of

all these interpolations. On the other hand,
∂γlin(α)

∂α
is equal

to I − I ′ for all α in linear path function, which provides

all gradients the same weights. For these reasons, the black

baseline image and linear path function are not suitable for

interpreting the SR networks. Alternative choices are pro-

posed in this work for SR networks. We use a blurred image

as baseline to represent the missing high-frequency compo-

nents. The the progressively blurring function is presented

as a natural choice of path function. With the mathemati-

cal characteristics of path integral gradients, the proposed

method can provide reasonable attribution results for SR

networks.

4. Experiments

4.1. Collection of Test Set and Visualization Method

Following the principle of interpreting hard cases, we

collect 150 images that are challenging for SR networks as

the test set for the following analysis. We first sample more

than 30,000 sub-images of size 256×256 from DIV2K val-

idation set [3] and Urban100 [19] and then obtain their ×4
SR results using different SR networks. We select the sub-

images that have low average PSNR performance and high

variance between different SR networks and then manually

remove images with duplicate and unidentifiable content. In

practice, we only perform attribution analysis to the 16×16
local patch in the center of the image, so we manually adjust

the image to make the content in the center meaningful. In

our test set, the average PSNR value is only 20.87dB. Com-

pared with 28.59dB and 24.12dB (the average PSNR values

of DIV2K validation set and Urban100), our test images are

challenging for SR networks. When selecting metrics for

quantitative evaluation, we follow the suggestion of Gu et

al. [17, 16] and employ both PSNR and the LPIPS percep-

tual similarity [48]. For the visualization of the attribution

results, we first normalize the maps to the range [−1, 1] and

then take the absolute values. Although the normalization

only keeps the relative values without signs, we contend that

such properties will not affect the perception of the output

visualization. Similar visualization methods are also used in

the previous work [2]. In the visualization results, a darker

pixel (larger intensity) indicates a larger influence w.r.t. the

SR results. In the following texts, the heat maps of distribu-

tions are obtained using kernel density estimation [32].

4.2. Diffusion Index for Quantitative Analysis

As stated above, LAM highlights the pixels which have

the greatest impact to the SR results. Theoretically, for

the same local patch, if the LAM map involves more pix-

els or a larger range, it can be considered that the SR

network has utilized information from more pixels. For

quantitative analysis, we employ the Gini coefficient [47]

to indicate the range of involved pixels, denoted as G =∑
n
i=1

∑
n
j=1

|gi−gj |

2n2ḡ
, where gi represents the absolute value of

the ith dimension of the attribution map, ḡ is the mean value

and G ∈ [0, 1]. Gini coefficient is originally a measure of

statistical dispersion intended to represent the income in-
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Figure 5: Comparison of the SR results and LAM attribution results of different SR networks. The LAM results visualize the importance

of different pixel w.r.t. the SR results.
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Figure 6: The heat maps exhibit the area of interest for different SR networks. The pixels with red color are noticed by almost all SR

networks while the areas marked with blue represents the differences between the SR networks with large LAM interest areas and those

with small interest areas.

equality. In our case, the inequality of pixels’ contribution

to the attribution result also reflects the range of involved

pixels. If a few pixels contribute a large proportion in the

total attribution result, its Gini coefficient is relatively high,

otherwise, a low Gini coefficient indicates the attribution re-

sult involves more pixels. In practice, we rescale the Gini

coefficient and propose the diffusion index (DI) to facilitate

analysis, denoted as DI = (1 − G) × 100. Notice that in

this setting, a larger DI indicates more pixels are involved.

We illustrate the Gini and diffusion coefficient in Figure 4

with examples.

4.3. Attribution Results

We show some LAM results of different SR networks in

Figure 5. We can have the following observations. First, the

early network FSRCNN [12] and shallow network CARN

[4] have relatively small receptive fields and can only per-

form SR based on limited surrounding pixels. Deep resid-

ual networks, i.e., EDSR [26], RRDBNet [46], RCAN [49]

and DRLN [5], have deeper architectures and bigger recep-

tive fields. Their LAM results show that these networks

are interested in a wider range of pixels in the LR images

with similar patterns, e.g., the regular stripes that appear on

skyscrapers. Although the textures in these areas are heav-

ily aliased in the LR image, which may mislead the SR pro-

cess, some networks still reconstruct accurate textures and

they, according to the LAM results, take notice of a wider

range of unaliased areas. Second, non-local and channel-

wise attention modules are introduced to SR networks in

recent years, expecting to utilize long-term and global in-

formation to assist the SR. Representative network designs

include RNAN [50], RCAN and SAN [10]. The proposed

LAM method can also be applied to diagnose and visualize

that whether global and long-term information is used by

these networks. As can be observed from Figure 5, they all

extract information from non-local pixels. This experiment

demonstrates the value of LAM as a research aid. Third, it’s

worth noting that some networks also take a wider range of
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Figure 7: Key results related with DI. (a) the linear fitting results of DI vs. PSNR performance. (b) the linear fitting results of DI vs. LPIPS

perceptual similarity performance. (c) DI values with different network scales for FSRCNN and EDSR.

pixels into account but still reconstruct wrong textures, e.g.,

SAN and DRLN in the second example. In these models,

the information from more pixels is not effectively used for

accurate reconstruction.

We then visualize the similarities and differences of

LAM results for different SR networks in Figure 6. The

heat maps in the third row show the areas of interest for dif-

ferent SR networks. The information carried in the red areas

can be used for the most preliminary level of SR, while the

blue areas show the potential informative areas that can fur-

ther improve SR. How to extract and use the information in

blue areas is the key factor for a SR network to distinguish

with others. To empirically analyze the patterns of informa-

tion utilization, we find that they are more likely to notice

areas with self-similar properties and regular textures. For

instance, in the 6th, 7th, and 8th examples of Figure 6, the

attention of the SR networks is distributed along the direc-

tion of texture extension; and in the 9th example, the SR

networks notice the similar-shaped windows around the tar-

get patch.

4.4. Exploration with LAM

In this section, we use LAM as a tool to explore SR net-

works. We study the relationship between the diffusion in-

dex of LAM results and several indicators of SR networks,

e.g., performance, scales and receptive fields. In our ex-

periment, totally 48 SR networks are collected for analysis,

consisting of 18 networks from the literature and 30 net-

works with different network scales. For networks from the

literature, we select: SRCNN [11], FSRCNN, EDSR, Lap-

SRN [23], SRResNet [24], DDBPN [18], RDN [51], MSRN

[25], RCAN, RRDBNet, CARN, SAN, IMDN [20], RNAN

[50], RFDN [28], PAN [52], DRLN, and CSNLN [31]. For

networks with different network scales, we collect networks

for two representative architectures, i.e., FSRCNN [12] as a

representative of the fully convolution networks and EDSR

[26] as a representative of the residual networks. For FSR-

CNN, the range of width is selected to be [16, 128] and the

Model Recpt. Field PSNR DI Remark

FSRCNN 17×17 20.30 0.797 Fully convolution network.

CARN 45×45 21.27 1.807 Residual network.

EDSR 75×75 20.96 2.977 Residual network.

MSRN 107×107 21.39 3.194 Residual network.

RRDBNet 703×703 20.96 13.417 Residual network.

IMDN global 21.23 14.643 Global pooling.

RFDN global 21.40 13.208 Global pooling.

RCAN global 22.20 16.596 Global pooling.

RNAN global 21.91 13.243 Non-local attention.

SAN global 22.55 18.642 Non-local attention.

Table 1: Comparison of the receptive fields, PSNR and DI for

some representative SR networks. For computing receptive fields,

we follow the guidance provided by Araujo et al. [6].

range of depth is [2, 16], with 15 models in total. For EDSR,

the range of width is selected to be [32, 256] and the range

of residual blocks is [10, 24], with 15 models in total. All

the models are trained with the same setting.

Diffusion Index vs. Network Performances. The ques-

tion that we are most interested in is “can we get better SR

performance by utilizing information from more pixels?”

We establish this relationship with linear regression fitting,

where the x-axis represents the log number of DI and the y-

axis represents the SR performance. We illustrate the results

in Figure 7.a and Figure 7.b. The high pearson correlation

and spearman correlation (both larger than 0.8) indicate that

the extraction of information from a wider range of pixels

and SR performance are highly correlated, the two-tailed p-

test results for both experiments are lower than 1 × 10−12.

Finding ways to capture the benefits from a wider range of

pixels is an important direction for future work.

Diffusion Index vs. Receptive Field. A result of network

deepening is the increase of the receptive field, and some

networks also propose to increase the receptive field on pur-

pose to promote SR. We are curious whether the increase in

the receptive field directly promotes the use of information

from a wider range of pixels. In Table 1 we show the recep-

tive fields, PSNR and DI performances for some represen-

tative SR networks. As the number of convolution layers

increases, the receptive field steadily increases, and the area

9205



and pixels that the network can perceive also increase. In

addition to adding more convolution layers, channel-wise

attention with global pooling layers and non-local opera-

tions are also introduced, which can theoretically increase

the receptive field to cover the whole image. Compared

with RRDBNet (whose receptive field is already larger than

the size of the test images), IMDN, RFDN and RNAN with

the above global operations do not significantly utilize the

information from more pixels. However, they are more effi-

cient in the use of information, which is reflected in their

better PSNR performance. Besides, RCAN employs not

only global operations but also more than 400 convolution

layers that can support a very large effective receptive field,

and SAN employs multiple non-local operations and also

global-wised attentions. They all achieve higher DI values

and also better performances. We argue that the receptive

field of the existing networks is large enough, and the effect

of simply increasing the receptive field is limited. How to

effectively utilize the information within the receptive area

pixels is critical.

Diffusion Index vs. Network Scales. SR networks have

grown deeper and wider in the quest for higher reconstruc-

tion accuracy. We now investigate the relationship be-

tween the attribution results and different SR network scales

(width and depth). The results are shown in Figure 7.c. As

one can observe, with the increase of both depth and width,

FSRCNN is able to extract information from more pixels

and also achieves better PSNR performance. For EDSR,

the increase of the number of convolution layers directly in-

creases the receptive field and leads to better DI values and

PSNR performance, however, the increase of the number of

feature maps in each layer does not achieve the correspond-

ing improvement. This is because, under the same training

condition, networks with larger parameters are difficult to

optimize effectively.

Diffusion Index vs. Image Content. We have also ob-

served significant differences in LAM results on images

with different content. We first sort the images with high-

est DI values and the results are shown in Figure 8. As

can be observed, the network’s perception of different im-

age contents is also different. In some images, even for the

SR network with a large receptive field and good learning

capacity, the area of noticing is still narrow. It indicates that

these networks believe the semantics or features in a wider

area have little help to the SR of the current patch. On the

contrary, for some other images, these networks can extract

features from a wider surrounding area. We illustrate these

two image categories in Figure 8. As can be observed, im-

ages with regular stripe and grid textures are very likely to

be detected by SR networks, while the complex high-level

semantics, such as human and animal, can not be effectively

used. The results of LAM actually point out that for SR

networks, the extracted and used abstract semantics are dif-
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Figure 8: Relationship of DI and image contents. The scatter plot

shows the distribution of the DI values for different images and SR

networks. The left bottom images with low rank indices show the

images with narrow area of interest, and the right bottom images

with high rank indices show the images with large area of interest.

ferent from what people usually understand. It is an open

question that whether the use of complex high-level seman-

tics can help SR.

5. Conclusion

In this paper, we propose local attribution map (LAM) to

visualize and understand SR networks. We experimentally

demonstrate the potential of LAM as a research tool and re-

veal some interesting conclusions about what information is

used by SR networks and how this information affect per-

formance. Our work opens new directions for designing SR

networks and interpreting low-level vision deep models.
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