
AutoDO: Robust AutoAugment for Biased Data with Label Noise

via Scalable Probabilistic Implicit Differentiation

Denis Gudovskiy1 Luca Rigazio2

Shun Ishizaka3 Kazuki Kozuka3 Sotaro Tsukizawa3

1 Panasonic AI Lab, USA 2 AIoli Labs, USA 3 Panasonic Technology Division, Japan

denis.gudovskiy@us.panasonic.com luca@aiolilabs.com

{ishizaka.shun, kozuka.kazuki, tsukizawa.sotaro}@jp.panasonic.com

Abstract

AutoAugment [4] has sparked an interest in automated

augmentation methods for deep learning models. These

methods estimate image transformation policies for train

data that improve generalization to test data. While re-

cent papers evolved in the direction of decreasing policy

search complexity, we show that those methods are not ro-

bust when applied to biased and noisy data. To overcome

these limitations, we reformulate AutoAugment as a gener-

alized automated dataset optimization (AutoDO) task that

minimizes the distribution shift between test data and dis-

torted train dataset. In our AutoDO model, we explic-

itly estimate a set of per-point hyperparameters to flexibly

change distribution of train data. In particular, we include

hyperparameters for augmentation, loss weights, and soft-

labels that are jointly estimated using implicit differentia-

tion. We develop a theoretical probabilistic interpretation of

this framework using Fisher information and show that its

complexity scales linearly with the dataset size. Our exper-

iments on SVHN, CIFAR-10/100, and ImageNet classifica-

tion show up to 9.3% improvement for biased datasets with

label noise compared to prior methods and, importantly, up

to 36.6% gain for underrepresented SVHN classes1.

1. Introduction

Data augmentation (DA) plays one of the key roles in

improving accuracy of deep neural networks (DNNs) [14].

DA increases size and diversity of train dataset and con-

sequently improves generalization to test data distribution.

Unfortunately, DA design requires expert domain knowl-

edge, dataset analysis, and numerous costly experiments. In

real applications with biased [31] and noisy-label data [39],

the handpicking of DA becomes a challenging task.

1Our code is available at github.com/gudovskiy/autodo

train data

latent space

Augment

classifier

test data

5

2

Figure 1. Shared-policy DA dilemma: the distribution of aug-

mented train data (dashed blue) may not match the test data (solid

red) in the latent space: ”2” is under-augmented, while ”5” is over-

augmented. As a result, prior methods cannot match the test distri-

bution and the decision of the learned classifier f(θ) is inaccurate.

The automation of DA aims to estimate data transfor-

mation models without incurring the aforementioned dif-

ficulties. The seminal AutoAugment [4] (AA) proposes a

DA policy model estimated by reinforcement learning (RL).

Though AA outperforms prior classification baselines, its

policy search takes thousands of GPU hours. Follow-up

works [9, 16, 8] address the search complexity problem

while keeping comparable accuracy results.

In this paper, we show that existing methods are not

robust to train dataset distortions such as distribution bias

and noisy labels. We attribute this to the policy model that

shares parameters across all data points. We illustrate this

with the toy classification task in Figure 1. The distribu-

tion of digits ”2” and ”5” in the train dataset (solid blue)

is uneven and less diverse than test distribution (solid red)

in the latent space before a linear classifier. Then, the es-

timated augmentation policies virtually increase train data

size (dashed blue line). However, such DA model evenly in-

creases diversity of all digits: digit ”2” is under-augmented,

while digit ”5” is over-augmented. This pushes decision

boundary of the linear classifier in the wrong direction. A

multi-class classifier is even less robust [31], specifically,

when it overfits to examples with noisy labels [39].

To overcome these limitations, we propose to estimate

16601

DNN AutoDO

Process

Validation dataset:
 approximates✓

✓rare & hard examples
✓continuous updates

Train dataset:
 augmentation selection✓

 data biases and label noise✓

✓adversarial examples

Figure 2. General setting: the validation dataset is selected to approximate the test data distribution Qtest

x,y . The train dataset is subject to

the specified data distortions and unknown DA hyperparameters. Unlike prior DA models with shared policies for all train data points, our

AutoDO model g(λ) estimates hyperparameters λi=1...N ∈ R
K×1 for each of N train data points via implicit differentiation framework.

DA hyperparameters for each train data point. More-

over, our model includes and jointly optimizes loss weights

to capture data biases and soft-labels to address noisy la-

bels. This reformulates the original AA shared-policy

search task into a generalized automated dataset optimiza-

tion (AutoDO). The objective of our AutoDO model is to

match the distribution of a small clean unbiased validation

dataset with a large distorted train dataset using a set of

per-point hyperparameters as illustrated in Figure 2. We

optimize our model with large-scale hyperparameters using

implicit differentiation [21] and analytically show that it is

equivalent to maximizing the Fisher information between

empirical datasets. Experiments on class-imbalanced data

with noisy labels show the advantages of our approach.

2. Related work

DA has been widely used in computer vision from shal-

low convolutional neural networks (CNNs) for MNIST [28]

to deep CNNs for large-scale ImageNet [14] recognition.

Other applications such as segmentation [3] and object de-

tection [20] benefit from DA as well. Recent Mixup [40]

and CutMix [37] heuristically mix images to produce bet-

ter regularization at the semantic level. However, all these

methods require to handpick a set of hyperparameters.

Naturally, the idea to estimate DA hyperparameters

emerged in AutoAugment [4] (AA) by sequentially sam-

pling policies and using validation accuracy as a reward to

update the RL controller. However, AA requires thousands

of GPU hours to achieve results superior to the baseline. To

speed up policy search, Ho et al. [9] propose population-

based training [11] that can be efficiently parallelized across

distributed CPUs or GPUs. Unlike AA, this population-

based augmentation (PBA) searches for DA policy sched-

ules rather than individual augmentations. Recent Fast Au-

toAugment [16] (FAA) further extends this idea by search-

ing for policy schedules that maximize the match between

distribution of augmented train data and unaugmented vali-

dation data. Inspired by Tran et al. [32], Bayesian optimiza-

tion is adopted by FAA to achieve density matching.

Though the methods in [9, 16] substantially decrease

the complexity of AA [4], gradient-based optimization can

be scaled up to even larger models and datasets. Further-

more, it is directly supported by differentiable DNNs and

ML frameworks. Zhang et al. [41] and Lin et al. [17] adopt

the REINFORCE gradient estimator [35], which further de-

creases learning time. Authors use the same policy model

of [4, 16], but estimate DA hyperparameters online within

the bilevel gradient optimization framework. In this frame-

work, an inner objective minimizes conventional train loss,

while an outer objective minimizes adversarial [41] or val-

idation [17] loss. Similarly, Hataya et al. [8] and Li et

al. [15] employ the DARTS gradient estimator [19] inspired

by its success in a neural architecture search.

Lastly, RandAugment [5] and UniformAugment [18]

propose to dramatically decrease policy search space by a

reparameterization scheme and to manually select only few

DA hyperparameters. These near search-free methods are

almost as effective as the computationally expensive search-

based methods [4, 16]. This observation raises questions on

the applicability and optimality of the search-based meth-

ods. In this paper, we show that these DA methods with

the same shared-policy model perform very similarly only

on undistorted train datasets. At the same time, the search-

based methods can be significantly more effective and ro-

bust in the case of biased datasets with label noise. How-

ever, prior search-based methods with the shared-policy

model are ill-equipped to handle distorted datasets that is

sketched in Figure 1. Motivated by this, we develop our

AutoDO model with the following contributions:

• To control train dataset distribution more accurately,

we introduce the AutoDO model that jointly optimizes

per-point hyperparameters for DA, loss weights and

soft-labels using implicit differentiation.

• We analytically show that implicit differentiation min-

imizes the distribution shift between validation and

train data by maximizing Fisher information. We also

show a connection to DARTS [19] used in [8, 15].

• Our model outperforms prior methods in image classi-

fication by up to 9.3% when the task model is trained

on class-imbalanced data with label noise. More im-

portantly, we show that it improves accuracy of under-

represented classes: by up to 36.6% for SVHN.

16602

3. Theoretical background

3.1. Problem statement

Let (x,y) be an input-label pair where a given label

y = 1c ∈ B
C×1 is one-hot vector (hard-label) for clas-

sification task with C classes. A validation dataset Dval =
{(xv

i ,y
v
i)}i∈M of size M approximates test data Dtest. A

train dataset Dtrain = {(xi,yi)}i∈N of size N may have a

different from Dval distribution and noisy labels y.

There are a vector of parameters θ for a task model f(θ)
and a vector λ of hyperparameters. The latter only implic-

itly influences the train loss L(λ,θ) such that the optimal

parameters θ∗ can be written as an implicit function of hy-

perparameters θ∗(λ). Then, the inner objective optimiza-

tion can be expressed as

θ∗(λ) := argmin
θ

L(λ,θ), (1)

where the train loss is the empirical risk: L(λ,θ) =
∑

i∈N
L(yi, ŷi)/N =

∑

i∈N
L(yi, f(xi,θ(λ)))/N .

Since test distribution Qtest
x,y is not known, it is usually

replaced by an empirical distribution Q̂val
x,y of the validation

dataset Dval [16]. Then, the optimal hyperparameters λ∗

minimize an outer objective as

λ∗ := argmin
λ

L∗
v(λ) = argmin

λ

Lv(λ,θ
∗(λ)), (2)

where the validation dataset loss Lv(λ,θ
∗(λ)) =

∑

i∈M
L(yv

i , ŷ
v
i)/M =

∑

i∈M
L(yv

i , f(x
v
i ,θ

∗(λ)))/M ,

and it does not explicitly depend on λ.

A solution for (1-2) problem statement can be found

by bilevel (nested) optimization procedure [17, 15, 8],

where the inner objective is the conventional training to

find θ∗ and the outer objective is a hyperparameter opti-

mization (HO) to estimate λ∗. Unlike search-free meth-

ods [5, 18], HO can find nearly optimal λ∗ in automated

fashion. However, the solution to bilevel optimization can

be computationally costly for large-scale hyperparameters.

We find a scalable solution using gradient-based HO for

fully-differentiable DNN models. Specifically, our AutoDO

model relies on an implicit differentiation framework.

3.2. Solution using implicit differentiation

Since differentiation of (1) is known [23], we are only

interested in obtaining ∂Lv/∂λ in (2). This derivative at a

point (λ,θ∗(λ)) can be found using a chain rule as

∂Lv

∂λ
=

∂Lv

∂λ
+

∂Lv

∂θ∗(λ)

∂θ∗(λ)

∂λ
=

∂Lv

∂θ∗(λ)

∂θ∗(λ)

∂λ
, (3)

where the direct derivative ∂Lv/∂λ = 0, because Lv by

definition does not explicitly depend on λ. The derivative

∂Lv/∂θ
∗(λ) can be computed using conventional differen-

tiation. However, the derivative ∂θ∗(λ)/∂λ is not known

because implicit function θ∗(λ) is not defined.

Recently, Lorraine et al. [21] proposed to use the im-

plicit function theorem (IFT) [2] to find ∂θ∗(λ)/∂λ. Let

S(λ,θ) = ∂L(λ,θ)/∂θ : Λ × Θ → Θ be a continu-

ously differentiable function (C1). For a fixed point (λ́, θ́),

if S(λ́, θ́) = 0 and det JθS(λ́, θ́) 6= 0: a) there exists

an implicit function θ = s(λ) for ‖λ − λ́‖ ≤ r1 and

‖θ − θ́‖ ≤ r2, b) the function θ = s(λ) is of class C1,

and its Jacobian is defined as

∂θ(λ)/∂λ = − [JθS(λ,θ)]
−1

JλS(λ,θ). (4)

Using the definition of S(λ,θ) and (4), we rewrite (3) as

∂Lv

∂λ
= −

∂Lv

∂θ

[

∂2L

∂θ∂θT

]−1
∂2L

∂θ∂λT
. (5)

The difficulty in implicit differentiation (5) is to find in-

verse of Hessian H−1
θ =

[

∂2L/(∂θ∂θT)
]−1

, which scales

quadratically (Hθ ∈ R
L×L) with the size of task model pa-

rameters θ ∈ R
L×1. Fortunately, ML frameworks [23] are

able to calculate Jacobian-vector products to reduce mem-

ory. Computationally, H−1
θ can be approximated by conju-

gate gradients [24, 25], quasi-Newton methods [1], or Neu-

mann series [13, 21]. We rely on the latter approach.

3.3. Implicit differentiation meets density matching

One may ask what is the meaning of implicit differen-

tiation (5) in the context of the bilevel framework (1-2)?

The classification loss in (1) typically minimizes Kullback-

Leibler (KL) divergence between joint train data distribu-

tion Qx,y with density q(x,y) and the learned model dis-

tribution Px,y(θ) with p(x,y|θ) density. However, it can

be shown that KL objective learns only a conditional distri-

bution p(y|x,θ) of the train data distribution Qy|x [7]. In

other words, f(θ) is a strictly discriminative model.

The KL loss (1) for the empirical train distribution Q̂x

with hard-labels y can be simplified to

L(λ,θ) = −
∑

i∈N
log p(yi|xi,θ(λ))/N. (6)

By substituting (6) into each term in (5) and rewrit-

ing them as gradients for ith data point, it can be shown

that uv
j (θ) = −∂Lv(j)/∂θ = ∇θ log p(y

v
j |x

v
j ,θ(λ))

and ui(θ) = −∂L(i)/∂θ = ∇θ log p(yi|xi,θ(λ))
are the Fisher scores w.r.t. validation and train data

points [33], respectively. Moreover, the expectation of

Hessian −EQ̂x

[Hθ] is equal to Fisher information metric

Iθ =
∑

i∈N
ui(θ)ui(θ)

T /N [22].

Then, the gradient of (5) for empirical datasets simply

maximizes Fisher kernel between Q̂val
x and Q̂x as

∇λEQ̂val
x

,Q̂x

[Lv] = EQ̂val
x

[uv(θ)] I−1
θ EQ̂x

[

u(θ)u(λ)T
]

,

(7)

where the detailed derivations are presented in Appendix C.

16603

DNN LossAugmentData
sampler

Figure 3. Data pipeline of AutoDO model g(λ) for joint dataset optimization: augmentation, loss reweighting and soft-labeling are accom-

plished by, correspondingly, gA(λ
A), gW (λW) and gS(λ

S) using per-point hyperparameter vectors λ = [λA;λW ;λS] ∈ R
K×1.

DNN Weight.
KL Div

Soft-label

Reweight

Figure 4. Diagram of the proposed AutoDO for loss reweighting

and soft-labeling: conventional cross-entropy loss for classifica-

tion is replaced by a weighted Kullback-Leibler (KL) divergence.

Therefore, the implicit differentiation in (5) finds the

gradient (7) for an outer objective (2) that changes hyper-

parameters λ in the direction to match probability density

of Dval by Dtrain density on a Riemannian manifold with

a local metric given by Fisher information [6]. If replace

Iθ with the identity matrix and recall the IFT condition

∂L(λ́, θ́)/∂θ́ = 0, (7) is equivalent to the DARTS gradient

estimator [19] used in prior gradient-based methods [8, 15].

Typically, we can assume a setup in Figure 2 with a hy-

brid model where the discriminative model f(θ) is sepa-

rated from an additional model g(λ). The latter changes the

data distribution p(x,y|λ). Hence, g(λ) can be viewed as

a generative model with the outer objective (2) to minimize

KL divergence between Q̂val
x,y and Q̂x,y distributions [10].

4. The proposed AutoDO model

We use the theoretical framework introduced in Section 3

to jointly optimize Dtrain hyperparameters. Figure 2 shows

a general data setup: Dval is selected to approximate Dtest

distribution, and Dtrain is subject to data distortions and un-

known hyperparameters. In addition to a task model f(θ),
there is the proposed AutoDO model g(λ). The latter is

parameterized by a vector λ and can be applied to input

or output of f(θ). In contrast to prior models, we propose

to use per-point dataset hyperparameters λi ∈ R
K×1 that

form a matrix Λ ∈ R
K×N for dataset Dtrain of size N .

Figure 3 shows a diagram of our pipeline, where the

AutoDO model g(λ) is divided into application-specific

sub-models: gA(λ
A) for augmentation, gW (λW) for loss

reweighting, and gS(λ
S) for soft-labeling. Hence, a generic

vector λi is a concatenation of application-specific vectors:

λi ∈ R
K×1 = [λA

i ;λ
W
i ;λS

i] ∈ R
(A+W+S)×1.

A conventional data sampler uniformly generates train

data points xi that are passed to the augmentation sub-

model to perform gA(xi,λ
A
i) in Figure 3. This augmenta-

tion block outputs a modified train data point xA
i to the task

model for training procedure. Simultaneously, soft-labels

and loss weights are propagated to calculate a weighted

Kullback-Leibler (KL) divergence loss wiL(y
S
i , ŷi). This

part is detailed in Figure 4.

4.1. Augmentation submodel

Our augmentation sub-model contains binary probabili-

ties bi ∈ B
A×1 and continuous magnitudes mi ∈ R

A×1

that parameterize A operations for each ith data point. We

argue that it is less restrictive to model each data point dis-

tribution compared to finite-length policies in [4, 16].

We use a multivariate Gaussian prior for magnitudes:

mi ∼ rngM
10N (µ,Σi), where M normalizes magnitudes

as in [5]. The mean vector µ ∈ R
A×1 is usually consists

of zeros or ones depending on operation. Only the covari-

ance matrix Σi ∈ R
A×A is parameterized by AutoDO. Al-

though it is possible to model multivariate covariance at the

expense of quadratically-growing hyperparameters, we ex-

periment with an univariate option: Σi = σ(diag(λAm

i)),

where λAm

i ∈ R
A×1 is the magnitude hyperparameter vec-

tor and σ is a conventional sigmoid nonlinearity. We initial-

ize the magnitude hyperparameters to zeros, which sets the

variances of Σi to be in the middle of available range (rng).

While the widely-used reparameterization trick allows to

obtain gradients for magnitudes mi with continuous Gaus-

sian distribution, it is not trivial for the binomial probabil-

ity distribution of each operation: bi ∼ Bern(σ(λAb

i)) ∈
{0, 1}. We use Gumbel-softmax [12] to relax backpropaga-

tion through the discrete Bernoulli distribution. Initially, we

set probability of enabling the ath operation bai to 25%.

Finally, we model a sequence (a = 1 . . . A) of augmen-

tation operations O : X → X on the image space X as

xA
i (a) =

{

O(xA
i (a− 1),ma

i), if bai = 1

xA
i (a− 1), otherwise,

(8)

where xA
i (0) = xi is the input to augmentation sub-model.

16604

The number of hyperparameters in this particular sub-

model λA
i = [λAm

i ;λAb

i] ∈ R
2A×1 scales linearly with

the number of augmentations A and train data i ∈ N. In

general, it is possible to jointly model augmentations not

only along A-dimension using Σi, but also along sample

dimension using e.g. Gaussian mixture model.

4.2. Reweighting and softlabeling submodels

Our loss reweighting sub-model multiplies ith train loss

by a scalar: gW (Li, λ
W
i) = wiLi, where the weights are

parameterized as: wi = 1.44 × softplus(λW
i). Hyperpa-

rameters λW
i are initialized to zeros such that the weights

wi are ones at the start and their output is in range [0 : ∞).

Although soft-label estimation in the presence of noise

has been recently studied in [30, 36], we approach it as part

of joint optimization procedure with other types of appli-

cations. Moreover, we apply implicit differentiation rather

than the alternating optimization as in [30, 36].

Our soft-label sub-model consists of hyperparameters

λS
i ∈ R

C×1 that are estimated for each label in Dtrain

from the noise-free Dval. Similarly to [36], we set soft-

labels as follows: yS
i = gS(yi,λ

S
i) = softmax(λS

i). But,

unlike [36], we initialize λS
i at epoch e = 0 in a way to

output smooth-labels [29]: yS
i (0) = (1 − α)yi + α/C.

Our hyperparameters at the initialization step are: λS
i (0) =

(yi − 0.5) log(1− C − C/α), where yi = 1c ∈ B
C×1 are

potentially noisy hard-labels and α is a small constant. The

α constant is usually in the range α = [0.05− 0.2] [29].

Lastly, we replace the conventional asymmetric KL loss

in (1) with its symmetric version. This step is necessary be-

cause we simultaneously optimize conditional distribution

p(y|x,θ) and joint data distribution p(x,y|λ).

4.3. AutoDO optimization and complexity

Our optimization procedure is described in Alg. 1 with

two additional tweaks compared to the theoretical descrip-

tion in Section 3. First, we adopt widely-used stochastic op-

timization using mini-batches B, which speeds up learning

process at the expense of less accurate gradients. Second,

the IFT in (4) requires to be at a minima point. Hence, we

start HO only after reaching epoch E (line 10).

We estimate complexity of Alg. 1 in terms of forward

and backward passes through a DNN. The conventional

inner-objective training (lines 3-9) requires 2N passes per

epoch. The outer-objective implicit differentiation in lines

12-19 require (5 + T)N passes per epoch, where T is the

number of Neumann iterations. We set T = 5 using abla-

tion study in [21] and E = 0.5 × epochs. This results in a

factor of (1 + 0.5(5 + T)/2) = 3.5× increase in compu-

tation (lines 3-19) compared to only conventional training

(lines 3-9). In comparison, DARTS [19] in [8, 15], without

a finite-difference approximation, has T = 0 and a factor of

Algorithm 1 AutoDO bilevel optimization of f(θ), g(λ)

1: Initialize parameters θ and hyperparameters λ

2: for epoch = 1 . . . epochs do

3: for batch = 1 . . . batches do

4: sample batch {(x,y)}bi∈B from Dtrain

5: augment data xA = gA(x,λ
A)

6: predict ŷ = f(xA,θ)
7: generate soft-labels yS = gS(y,λ

S)
8: calculate ∇θ

(

wL(yS , ŷ)
)

9: update θ using task optimizer

10: if epoch > E then

11: for batch = 1 . . . batches do

12: sample {(x,y)}bi∈B from Dtrain

13: sample {(xv,yv)}bj∈B from Dval

14: predict ŷv = f(xv,θ)
15: predict ŷ = f(xA,θ) = f(gA(x,λ

A),θ)
16: generate soft-labels yS = gS(y,λ

S)
17: calculate ∇λLv using (5), where

18: L = wL(yS , ŷ) and Lv = Lv(y
v, ŷv)

19: update λ using HO optimizer

(1 + 0.5 × 5/2) = 2.25× increase in corresponding com-

putation. Runtime estimates are compared in Appendix A.

5. Experiments

5.1. Experimental setup

We conduct SVHN, CIFAR-10/100 and ImageNet clas-

sification experiments. The code is in PyTorch [23] with

the Kornia library [26] for differentiable image operations.

We evaluate DA methods using both the near-perfect orig-

inal train datasets and their distorted versions. To do that,

we introduce a class imbalance ratio (IR) that scales down

the number of available train images for a subset of classes.

Class imbalance is defined as the ratio of images with

{1 . . . C/2} labels to {C/2 + 1 . . . C}, where C is the total

number of classes. Next, we introduce a label noise ratio

(NR) that defines a proportion of randomly flipped labels in

the train dataset. For example, the notation IR-NR=100-0.1

for SVHN in Table 1 means that 10% (NR=0.1) of random

images have randomly flipped labels and the number of im-

ages with digits {0 . . . 4} is 100× larger than for {5 . . . 9}.

For comparison, there is a variety of gradient-free [4, 9,

16], gradient-based [17, 8, 15] and search-free [5, 18] meth-

ods described in Section 2. We narrow it down to only a sin-

gle method from each type by excluding [4, 9] due to high

complexity and [17, 8, 18] due to publicly unavailable code.

Hence, we define the following experimental configura-

tions: baseline with standard augmentations, optimization-

free RandAugment [5] (RAA), Bayesian Fast AutoAug-

ment [16] (FAA), gradient-based DADA [15], and our

AutoDO. As part of ablation studies, we enable AutoDO

16605

Table 1. WRNet28-10 SVHN top-1 test error rate, µ±σ %.

Alg./IR-NR 1-0.0 100-0.0 1-0.1 100-0.1

Baseline 3.6±0.10 13.6±0.69 5.3±0.27 20.0±1.92

RAA [5] 2.7±0.04 10.9±0.66 3.4±0.11 13.6±0.96

FAA [16] 2.8±0.02 11.5±0.32 3.7±0.08 15.3±1.07

DADA [15] 2.9±0.03 12.2±0.54 4.1±0.13 16.5±1.51

λASHA (ours) 2.8±0.10 12.6±1.53 3.0±0.17 13.7±0.77

λA (ours) 2.7±0.09 10.2±0.50 3.0±0.07 12.3±0.80

λA,W (ours) 2.8±0.04 6.1±0.22 2.8±0.07 8.1±0.14

λA,W,S (ours) 2.5±0.04 5.3±0.21 2.6±0.05 6.3±0.57

Table 2. WRNet28-10 CIFAR-10 top-1 test error rate, µ±σ %.

Alg./IR-NR 1-0.0 10-0.0 1-0.1 10-0.1

Baseline 6.0±0.10 16.3±0.54 12.8±0.14 22.8±1.09

RAA [5] 5.2±0.08 13.4±0.30 7.8±0.16 17.4±0.21

FAA [16] 5.0±0.14 13.3±0.38 8.2±0.28 17.9±0.32

DADA [15] 5.5±0.12 14.2±0.15 10.6±0.08 20.2±0.83

λASHA (ours) 5.9±0.22 17.1±0.87 7.6±0.28 19.4±1.23

λA (ours) 5.2±0.20 13.0±0.47 7.1±0.16 16.6±0.20

λA,W (ours) 5.4±0.17 12.9±0.40 6.8±0.07 15.1±0.19

λA,W,S (ours) 4.9±0.09 11.8±0.35 5.8±0.29 13.1±0.16

features one-by-one with the following notation: λASHA -

shared (across all data points) augmentation hyperparame-

ters, λA - per-point augmentation hyperparameters, λW -

loss reweighting, and λS - soft-labeling.

The baseline configuration uses only standard augmenta-

tions such as random cropping, horizontal flipping and eras-

ing [42]. We adopt the publicly available policy models for

RAA, FAA and DADA. Using Section 4.1 format [µ, rng],

the list of augmentation operations optimized by AutoDO

includes: rotation - [0◦, 30◦], scale - [1.0, 0.5], translateX/Y

- [0.0, 0.45], and shearX/Y - [0.0, 0.3]. This list has been

selected from the ablation study of the most helpful opera-

tions in Cubuk et al. [5]. Other operations in AutoDO are

applied as in the RAA model.

We use the same learning hyperparameters for all meth-

ods as specified in the Appendix A. AutoDO optimization

starts after the 100th epoch for ImageNet and 50th epoch

for others (parameter E in Alg. 1). The evaluated architec-

tures are ResNet-18 for ImageNet, Wide-ResNet-28-10 for

SVHN and CIFAR-10/100. We run each experiment four

times for SVHN and CIFAR-10/100 and report the top-1

mean error rate µ and standard deviation σ on test datasets.

We run only one experiment on large-scale ImageNet and

report top-1 error rate. Due to a lack of test labels for Ima-

geNet, we use a validation dataset as a test dataset.

We follow [16] and split original train dataset Dtrain into

validation Di
val and train Di

train datasets using K-fold strat-

ified shuffling [27] for ith experiment. The size of Di
val is

Table 3. WRNet28-10 CIFAR-100 top-1 test error rate, µ±σ %.

Alg./IR-NR 1-0.0 10-0.0 1-0.1 10-0.1

Baseline 24.9±0.19 45.9±0.86 36.6±0.65 54.5±0.74

RAA [5] 23.0±0.15 41.7±0.29 33.7±0.66 50.1±0.52

FAA [16] 22.7±0.23 40.0±0.27 31.4±0.25 48.9±0.51

DADA [15] 23.1±0.05 41.1±0.22 32.4±0.48 49.6±0.44

λASHA (ours) 24.7±0.94 41.0±1.29 31.4±1.75 48.9±1.80

λA (ours) 23.1±0.25 40.8±0.43 30.6±0.48 47.4±0.33

λA,W (ours) 22.2±0.22 39.0±0.30 30.6±0.50 48.0±0.38

λA,W,S (ours) 22.4±0.25 36.7±0.32 27.3±0.29 39.6±0.06

32% for SVHN, 20% for CIFAR-10/100 and ImageNet of

the original Dtrain. After the split, we distort Di
train by in-

troducing class imbalance (IR) and label noise (NR). We es-

timate AutoDO hyperparameters of Di
train using Di

val, train

on Di
train and test on Dtest. Unlike [16], we never train on

the original Dtrain = Di
train ∪ Di

val (except for ablations),

which leads to lower accuracy compared to ones reported in

the corresponding papers due to smaller train dataset size.

We choose this approach (Di
val

λ
−→ Di

train) to obtain undis-

torted Di
val and distorted Di

train for our experiments.

5.2. Quantitative results

Tables 1-4 present test error rates (lower is better) for

the selected datasets and model configurations. We clearly

see that all DA algorithms outperform the baselines with

only standard augmentations. This confirms the common

statement that DA improves generalization to test data.

In the case of undistorted train datasets (IR-NR=1-0.0),

prior DA algorithms and our AutoDO with augmentations

only (λA) tend to perform close to each other, if take into

account σ error bars. This empirically confirms our propo-

sition in Section 2 that search-free methods [5, 18] are as ef-

fective as search-based methods for nearly perfect datasets.

The enabled additional AutoDO features along with per-

point augmentations (λA,W,S) result in moderate improve-

ments that reach 0.2% for SVHN, 0.1% for CIFAR-10 and

0.5% for CIFAR-100 compared to the best prior methods.

In ablation study, we observe degradation in results by

0.1-1.6% for AutoDO with the shared hyperparameters

(λASHA) compared to per-point model (λA). The former

configuration is equivalent to a single-policy model, while,

for example, a typical RAA [5], FAA [16] and DADA [15]

consist of 25-125 policies. This experimentally verifies the

advantage of per-point AutoDO model.

Next, we compare robustness of all methods to train

dataset distortions. In the case of class imbalance only

(IR=10/100, NR=0.0), AutoDO achieves at least 5.6%,

1.5%, 3.3% and 1.2% gain compared to prior methods for

SVHN, CIFAR-10/100, and ImageNet, respectively. For in-

stance, the AutoDO loss reweighting sub-model decreases

16606

Table 4. ResNet18 ImageNet top-1 test error rate, %.

Alg./IR-NR 10-0.0 10-0.1

Baseline 43.1 46.2

RAA [5] 42.0 45.4

FAA [16] 41.6 44.7

DADA [15] 41.9 44.9

λA,W,S (ours) 40.4 44.1

A
c
c
u
ra

c
y,

 %

FAA (b)

AutoDO
finish (c)

Epoch

AutoDO
start (c)

baseline (a)

Figure 5. SVHN top-1 test accuracy learning curve for the models

trained on a dataset with 100× class imbalance and 10% label

noise: (a) baseline, (b) FAA [16], and (c) our AutoDO (λA,W,S).

Our optimization starts at epoch E = 50. It prevents overfitting to

the distorted train data and improves generalization to test data.

SVHN error rate from 10.2% for our model with λA to

6.1% for the model with λA,W . When we introduce 10% la-

bels noise only (IR-NR=1-0.1), our improvements are, cor-

respondingly, 0.8%, 2.0% and 4.1% for SVHN and CIFAR-

10/100 compared to the best prior methods. It is mostly

achieved by enabling the soft-label estimation sub-model.

For example, CIFAR-100 test error rate decreased from

30.6% for our model with λA,W to 29.4% for λA,W,S .

When we distort train data by both class imbalance

and label noise (IR=10/100, NR=0.1), AutoDO achieves at

least 7.3%, 4.3%, 9.3% and 0.6% gain for SVHN, CIFAR-

10/100, and ImageNet, respectively. To sum up, all com-

ponents of our model gradually improve classification ac-

curacy for all datasets. The only exception is CIFAR-100,

where the soft-label sub-model degrades mean accuracy by

0.2% in the case of undistorted train dataset. This can be

related to suboptimal initialization constant α = 0.1 for

100 classes. Also, we notice that the gain on ImageNet is

lower (0.6-1.2%) compared to small-scale datasets. The lat-

ter might be related to a relatively shallow ResNet18 model,

which has been chosen to decrease experiment time.

Figure 5 illustrates the typical learning process on dis-

torted train data, specifically, for SVHN with 100× class-

imbalance and 10% label noise. It is evident that FAA [16]

(b) improves accuracy compared to the baseline (a), but

Table 5. AutoDO on Di
val vs. Dtest, test error rate, µ±σ %.

Dataset/Split Di
val

λ
−→ Di

train Dtest
λ
−→ Di

train

SVHN 2.48±0.04 2.48±0.05

CIFAR-10 4.92±0.09 5.11±0.12

CIFAR-100 22.20±0.22 22.12±0.30

Table 6. Split as in [16]: Di
val

λ
−→ Dtrain, test error rate, µ±σ %.

Dataset/Alg. RAA [5] FAA [16] AutoDO

SVHN 2.46±0.05 2.49±0.05 2.39±0.02

CIFAR-10 4.70±0.13 4.37±0.11 4.56±0.16

CIFAR-100 21.85±0.21 20.42±0.21 20.49±0.27

it quickly starts to overfit to noisy labels [39] and over-

represented classes. The AutoDO optimization starts at

epoch E = 50 and avoids overfitting to the distorted train

data by selecting proper per-point hyperparameter vectors

λA,W,S . Hence, we conclude that AutoDO is more robust

to distorted data. Learning curves for train and test losses

are given in the Appendix B.

Ablation study: overfitting to test data. In our data

setup in Figure 2, we assume that small validation dataset

approximates test data distribution Qtest
x,y . To verify this

and to check how well the learned hyperparameters gen-

eralize to unseen test data, we replace Di
val with Dtest in

AutoDO estimation step (line 13 in Alg. 1). Table 5 com-

pares AutoDO results in both setups. Due to minor differ-

ences in error rates, we conclude that, indeed, Qtest
x,y ≈ Qval

x,y

and no significant overfitting to Di
val happens.

Ablation study: training and estimating λ on all train

data: Di
val

λ
−→ Dtrain, where Dtrain = Di

train ∪ Di
val.

We conduct experiments for the Lim et al. [16] data split:

AutoDO dataset hyperparameters are estimated from Di
val

and applied to the original Dtrain. This increases train

dataset size compared to experiments in Tables 1-3. Un-

like [16] with explicit steps for policy merge after each data

split step, we randomly sample mini-batches for Di
train and

Di
val from Dtrain in lines 12-13 of Alg. 1. Table 6 contains

results for the original train datasets. Although error rates

decrease by 0.1% for SVHN, 0.3% for CIFAR-10 and 1.9%

for CIFAR-100 due to larger train datasets, there is no sig-

nificant difference in results between the best prior methods

and AutoDO for nearly perfect train data.

5.3. Qualitative results

We present additional evidence that our AutoDO model

solves the shared-policy DA limitations sketched in Fig-

ure 1. To do that, we select three models from Table 1

for SVHN: (a) baseline with standard augmentations only,

(b) shared-policy FAA [16], and (c) our per-point AutoDO

model with all features (λA,W,S). These models have been

16607

0 1 2 3 4 5 6 7 8 9
Predicted label, (a)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

85.4 1.4 4.5 1.6 0.5 0.3 1.2 0.5 1.7 3.0

0.2 93.2 2.2 0.9 2.0 0.1 0.2 0.7 0.4 0.2

0.0 0.6 95.7 1.1 0.4 0.1 0.0 0.4 1.5 0.2

0.2 0.8 3.3 91.2 1.0 0.3 1.2 0.2 1.6 0.2

0.1 1.2 1.5 0.9 94.9 0.0 0.2 0.5 0.8 0.1

0.2 1.0 5.2 23.5 2.1 51.7 12.4 0.5 2.6 0.7

3.5 2.8 5.3 12.9 2.3 3.5 56.8 0.5 11.3 1.1

0.1 14.4 25.8 1.9 1.3 0.0 0.1 55.2 1.0 0.2

1.2 2.1 7.0 16.8 2.9 0.7 5.7 0.3 61.7 1.6

3.4 1.5 22.2 7.1 8.4 1.1 1.0 1.6 11.6 42.1

0 1 2 3 4 5 6 7 8 9
Predicted label, (b)

95.9 0.9 1.3 0.8 0.2 0.1 0.0 0.1 0.1 0.6

0.4 97.3 0.2 0.6 1.1 0.1 0.1 0.1 0.0 0.0

0.3 0.9 95.5 2.4 0.6 0.0 0.0 0.4 0.0 0.0

0.2 1.0 0.6 97.3 0.3 0.1 0.0 0.0 0.3 0.2

0.2 1.2 0.1 0.3 98.0 0.0 0.0 0.0 0.0 0.0

0.7 6.2 1.0 25.9 1.3 57.6 2.6 0.3 1.4 3.0

11.3 5.4 1.4 7.0 2.2 3.2 59.7 0.4 8.6 0.8

0.7 19.2 6.0 6.7 1.1 0.0 0.0 66.0 0.1 0.0

6.3 6.0 1.9 12.2 1.8 0.4 4.3 0.1 65.9 1.2

17.3 3.4 17.7 5.6 2.6 0.9 0.1 0.8 2.9 48.6

0 1 2 3 4 5 6 7 8 9
Predicted label, (c)

85.0 0.2 0.3 0.1 0.0 0.2 4.3 0.2 0.3 9.5

0.5 96.8 0.2 0.2 0.3 0.1 0.3 1.2 0.1 0.1

0.1 0.4 95.9 0.6 0.1 0.1 0.0 2.0 0.1 0.6

0.1 0.4 0.3 91.4 0.1 2.6 0.2 0.6 2.9 1.4

0.0 1.0 0.2 0.1 97.6 0.0 0.1 0.2 0.2 0.6

0.1 0.5 0.2 2.5 0.3 92.2 1.9 0.3 0.9 1.2

0.8 0.9 0.5 0.6 0.3 2.7 88.8 0.3 4.5 0.8

0.1 3.2 1.0 0.2 0.2 0.0 0.0 94.6 0.3 0.3

0.4 0.5 0.2 0.5 0.3 1.3 9.5 0.2 84.6 2.5

1.3 0.6 3.5 0.3 0.3 0.8 0.8 0.9 1.3 90.2

Figure 6. Confusion matrices (top) of SVHN test data and t-SNE clusters of penultimate layer embeddings (bottom) for the models trained

on a dataset with 100× class imbalance and 10% label noise: (a) baseline, (b) FAA [16], and (c) our AutoDO (λA,W,S). Dots and balls

represent correctly and incorrectly classified images for t-SNE visualizations, respectively. The underrepresented classes {5 . . . 9} have on

average 53.5% accuracy for baseline (a), 59.6% for FAA [16] (b), and 90.1% for our method (c).

trained on a distorted dataset with 100× class imbalance

and 10% label noise, and tested on Dtest.

First, we calculate confusion matrices of test data for

each trained model. Figure 6 (top) shows that the shared-

policy FAA [16] model improves the average top-1 accu-

racy compared to the baseline (from 78.4% to 83.1%), but

the improvement for the class-imbalanced digits {5 . . . 9}
(from 53.5% to 59.6%) is approximately the same as the

average gain. In contrast, our AutoDO model aligns the

distribution of the underrepresented digits with the unbiased

test data and their accuracy improves from 53.5% to 90.1%

with average accuracy of 93.0%. The standard deviation of

the inter-class accuracy drops from 20% for (a) and 19.2%

for (b) to only 4.4% for our AutoDO model (c).

Second, we cluster test data embeddings of the trained

models using the popular t-SNE [34] method. These em-

beddings are the output of WRNet28-10 [38] penultimate

layer that precedes a linear classifier. This setup exactly

matches Figure 1 setting. T-SNE clusters are shown in Fig-

ure 6 (bottom), where dots and balls represent correctly and

incorrectly classified images, respectively. While FAA [16]

(b) has significantly less misclassified digits (number of

balls) compared to the baseline (a), it is unable to clearly

separate clusters of underrepresented digits e.g. ”6”, ”8” and

”9”. These clusters are heavily mixed due to the limitations

of shared-policy DA model. Our AutoDO model solves this

issue by per-point augmentation and loss reweighting: ”6”,

”8” and ”9” clusters are much better separated, which ex-

plains 36.6% increase in accuracy. Furthermore, our soft-

label estimation allows to enlarge margins between not only

clusters of underrepresented digits {5 . . . 9}, but also well-

represented digits {0 . . . 4}.

6. Conclusions

We introduced the AutoDO model that addresses the lim-

itations of existing policy-based AutoAugment models by

incorporating the set of hyperparameters independently for

each train data point. We jointly optimized these large-scale

hyperparameters using an elegant low-complexity implicit

differentiation framework. Our probabilistic interpretation

using Fisher information matched the objective of minimiz-

ing the distribution shift between small noise-free unbiased

validation dataset and large distorted train dataset.

AutoDO components such as augmentation hyperparam-

eters, loss weights and soft-labels showed their effective-

ness on SVHN, CIFAR-10/100 and ImageNet classification

in ablation studies. For class-imbalanced train datasets with

label noise, our AutoDO improved the average accuracy

and, more importantly, aligned the precision on underrep-

resented classes by a significant margin compared to pre-

vious methods. Hence, our AutoDO is more robust in real

applications with imperfect train datasets.

16608

References

[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equi-

librium models. In Advances in Neural Information Process-

ing Systems, 2019. 3

[2] Augustin-Louis Cauchy. Résumé d’un mémoir sur la

mécanique céleste et sur un nouveau calcul appelé calcul des

limites. Oeuvres Complétes d’Augustun Cauchy, 12:48–112,

1831. 3

[3] Liang-Chieh Chen, G. Papandreou, I. Kokkinos, Kevin Mur-

phy, and A. Yuille. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully

connected CRFs. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018. 2

[4] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. AutoAugment: Learning augmentation

policies from data. arXiv:1805.09501, 2018. 1, 2, 4, 5

[5] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.

Le. RandAugment: Practical automated data augmentation

with a reduced search space. arXiv:1909.13719, 2019. 2, 3,

4, 5, 6, 7

[6] Pedro Domingos. Every model learned by gradient descent

is approximately a kernel machine. arXiv:2012.00152, 2020.

4

[7] Denis Gudovskiy, Alec Hodgkinson, Takuya Yamaguchi,

and Sotaro Tsukizawa. Deep active learning for biased

datasets via fisher kernel self-supervision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 3

[8] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki

Nakayama. Faster autoAugment: Learning augmentation

strategies using backpropagation. arXiv:1911.06987, 2019.

1, 2, 3, 4, 5

[9] Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi

Chen. Population based augmentation: Efficient learning of

augmentation policy schedules. In Proceedings of the Inter-

national Conference on Machine Learning (ICML), 2019. 1,

2, 5

[10] Tommi Jaakkola and David Haussler. Exploiting generative

models in discriminative classifiers. In Proceedings of the

11th Conference on Neural Information Processing Systems,

1999. 4

[11] Max Jaderberg, Valentin Dalibard, Simon Osindero, Woj-

ciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals,

Tim Green, Iain Dunning, Karen Simonyan, et al. Population

based training of neural networks. arXiv:1711.09846, 2017.

2

[12] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-

rameterization with Gumbel-softmax. arXiv:1611.01144,

2016. 4

[13] Pang Wei Koh and Percy Liang. Understanding black-box

predictions via influence functions. In Proceedings of the In-

ternational Conference on Machine Learning (ICML), 2017.

3

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, 2012. 1, 2

[15] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy

Hospedales, Neil M. Robertson, and Yongxin Yang. DADA:

Differentiable automatic data augmentation. In Proceedings

of the European Conference on Computer Vision (ECCV),

2020. 2, 3, 4, 5, 6, 7

[16] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and

Sungwoong Kim. Fast AutoAugment. In Advances in Neural

Information Processing Systems, 2019. 1, 2, 3, 4, 5, 6, 7, 8

[17] Chen Lin, Minghao Guo, Chuming Li, Xin Yuan, Wei Wu,

Junjie Yan, Dahua Lin, and Wanli Ouyang. Online hyper-

parameter learning for auto-augmentation strategy. In The

IEEE International Conference on Computer Vision (ICCV),

2019. 2, 3, 5

[18] Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari,

Mina Rafi Nazari, Jaspreet Singh Sambee, and Mario A.

Nascimento. UniformAugment: A search-free probabilis-

tic data augmentation approach. arXiv:2003.14348, 2020. 2,

3, 5, 6

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR),

2019. 2, 4, 5

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. Ssd: Single shot multibox detector. In Proceedings

of the European Conference on Computer Vision (ECCV),

2016. 2

[21] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Opti-

mizing millions of hyperparameters by implicit differentia-

tion. In International Conference on Artificial Intelligence

and Statistics (AISTATS), 2020. 2, 3, 5

[22] Alexander Ly, Maarten Marsman, A J Verhagen, Raoul Gras-

man, and Eric-Jan Wagenmakers. A tutorial on Fisher infor-

mation. Journal of Mathematical Psychology, 2017. 3

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in PyTorch. In Autodiff workshop at Advances in

Neural Information Processing Systems, 2017. 3, 5

[24] Fabian Pedregosa. Hyperparameter optimization with ap-

proximate gradient. In Proceedings of the International Con-

ference on Machine Learning (ICML), 2016. 3

[25] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and

Sergey Levine. Meta-learning with implicit gradients. Ad-

vances in Neural Information Processing Systems, 2019. 3

[26] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,

and Gary Bradski. Kornia: an open source differentiable

computer vision library for PyTorch. In Proceedings of

the Winter Conference on Applications of Computer Vision

(WACV), 2020. 5

[27] Mohammad Shahrokh Esfahani and Edward R. Dougherty.

Effect of separate sampling on classification accuracy. Bioin-

formatics, 30(2):242–250, 2013. 6

[28] Patrice Y. Simard, Dave Steinkraus, and John Platt. Best

practices for convolutional neural networks applied to visual

document analysis. In Proceedings of the International Con-

ference on Document Analysis and Recognition (ICDAR),

2003. 2

16609

[29] Christian Szegedy, V. Vanhoucke, S. Ioffe, Jon Shlens, and Z.

Wojna. Rethinking the inception architecture for computer

vision. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 5

[30] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-

oharu Aizawa. Joint optimization framework for learning

with noisy labels. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 5

[31] Philipp Terhörst, Jan Niklas Kolf, Marco Huber, Flo-

rian Kirchbuchner, Naser Damer, Aythami Morales, Ju-

lian Fierrez, and Arjan Kuijper. A comprehensive

study on face recognition biases beyond demographics.

arXiv:2103.01592, 2021. 1

[32] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and

Ian Reid. A bayesian data augmentation approach for learn-

ing deep models. In Advances in Neural Information Pro-

cessing Systems. 2017. 2

[33] Laurens van der Maaten. Learning discriminative Fisher ker-

nels. In Proceedings of the International Conference on Ma-

chine Learning (ICML), 2011. 3

[34] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. Journal of Machine Learning Research,

2008. 8

[35] Ronald J. Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. In Ma-

chine Learning, 1992. 2

[36] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise cor-

rection for learning with noisy labels. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 5

[37] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. CutMix: Regu-

larization strategy to train strong classifiers with localizable

features. In Proceedings of the International Conference on

Computer Vision (ICCV), 2019. 2

[38] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In Proceedings of the British Machine Vision Confer-

ence (BMVC), 2016. 8

[39] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning re-

quires rethinking generalization. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR),

2017. 1, 7

[40] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In Proceedings of the International Conference on

Learning Representations (ICLR), 2018. 2

[41] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.

Adversarial AutoAugment. In Proceedings of the Inter-

national Conference on Learning Representations (ICLR),

2020. 2

[42] Z. Zhong, L. Zheng, Guoliang Kang, Shaozi Li, and Y. Yang.

Random erasing data augmentation. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2020. 6

16610

