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Abstract

Detecting oriented and densely packed objects remains

challenging for spatial feature aliasing caused by the in-

tersection of reception fields between objects. In this pa-

per, we propose a convex-hull feature adaptation (CFA)

approach for configuring convolutional features in accor-

dance with oriented and densely packed object layouts.

CFA is rooted in convex-hull feature representation, which

defines a set of dynamically predicted feature points guided

by the convex intersection over union (CIoU) to bound

the extent of objects. CFA pursues optimal feature as-

signment by constructing convex-hull sets and dynamically

splitting positive or negative convex-hulls. By simulta-

neously considering overlapping convex-hulls and objects

and penalizing convex-hulls shared by multiple objects,

CFA alleviates spatial feature aliasing towards optimal fea-

ture adaptation. Experiments on DOTA and SKU110K-

R datasets show that CFA significantly outperforms the

baseline approach, achieving new state-of-the-art detec-

tion performance. Code is available at github.com/SDL-

GuoZonghao/BeyondBoundingBox.

1. Introduction

Over the past decade, we witnessed substantial progress

in visual object detection. This is attributed to the availabil-

ity of deep networks incorporating rich feature representa-

tion [16, 15] and large-scale databases [3, 17, 28] for pre-

training representative models. However, most detectors

encounter problems when objects, such as those in aerial

images, are in arbitrary orientations [24], or have dissimilar

layouts to the objects utilized during training. The problems

become more serious when oriented objects are densely dis-

tributed, because this causes spatial feature aliasing at the

intersection of reception fields, Fig. 1(above).

∗Corresponding Author.
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Figure 1. Problem illustration. (Upper) When using box represen-

tation, oriented and densely packed objects cause feature aliasing

for the intersection of reception fields between objects. (Lower)

With convex-hull representation, our CFA approach adapts fea-

tures located on regular convolutional maps to oriented and

densely packed objects, solving the feature aliasing issue in a sys-

tematic way.

One solution for oriented object detection is fea-

ture/anchor augmentation [19, 21, 20, 31], which produces

features in multiple orientations for detector training. This

intuitive solution, however, suffers a significant increase in

computational complexity and false detection. The other

solution is defining RoI transformers, which apply spatial

transformations on RoIs while learning the parameters un-

der the supervision of oriented bounding boxes [4]. Trans-

formers have been promoted as being dynamic [24], atten-

tive [37], and smoothed [36], enabling adaptive receptive

fields to adapt to object orientations. However, the problem

about how to adapt feature grids to objects of arbitrary lay-

outs remains unsolved, which causes feature aliasing, par-

ticularly when objects are densely packed.

In this paper, we propose a convex-hull feature adapta-
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tion (CFA) approach for oriented and densely packed ob-

ject detection. The objective is to adapt features located

within regular convolutional grids to objects with irregular

layouts. We model object layouts as convex-hulls, which

have natural advantages over rectangular boxes when re-

quired to cover the full extent of objects while minimizing

background regions, Fig. 1(below). On each convex-hull is

a set of feature points (extreme points) which defines the ob-

ject boundaries and indicates the Convex Intersection over

Union (CIoU) to determine object localization. Within the

convex-hull, discriminative features represent the object ap-

pearance for precise classification.

The proposed detector consists of two stages, following

the RepPoint method [38]. Initially, convex-hulls are gen-

erated by predicting feature point offsets driven by object

localization (CIoU) loss. Then, convex-hulls are refined

to cover the full extent of objects while classifying objects

with the backgrounds driven by object localization and clas-

sification loss. Meanwhile, CFA constructs a convex-hull

set for each object so that features at the periphery of objects

can be jointly optimized. To adapt convex-hulls to objects,

CFA defines a convex-hull set splitting strategy, under the

guidance of gradient consistency. By dynamically catego-

rizing convex-hulls into positives or negatives and penaliz-

ing convex-hulls shared by neighboring objects, CFA allevi-

ates feature aliasing and pursues optimal feature adaptation.

During the inference phase, single convex-hulls are used to

localize objects without convex-hull set construction or set

splitting, which guarantees detection is efficient.

The contributions of this study include:

• We propose convex-hull representation, which is

promising for detecting objects of irregular shapes

and/or layouts via learnable feature configuration.

• We propose the convex-hull feature adaptation (CFA)

approach, which incorporates CIoU and feature anti-

aliasing strategies and defines a systematic way to de-

tect oriented and densely packed objects.

• We significantly improved the performance upon the

baseline method, achieving new state-of-the-art on

commonly used benchmarks.

2. Related Works

Orientation-encoded Representation. Orientation-

robust representation received attention in the era of hand-

crafted features. For example, the SIFT features [22], Gabor

features [8], and LBP [23] used orientation-encoded feature

channels or bit cyclic shift to achieve rotation in-variance.

In recent years, orientation-robust representation has been

fused with deep feature learning. Spatial transformer net-

work (STN) [9] contributed a general framework for spatial

transform by introducing a network module which manipu-

lates the feature maps according to the estimated transform

matrix. ORN [44] involved active rotating filters which ac-

tively change orientations during convolution and produce

feature maps with explicitly encoded locations and orienta-

tions.

The majority of existing methods focus on locally or

globally invariant features, which enhances orientation-

encoded representation. However, the problem of how to

process oriented object layouts remains.

Orientation-robust Detection. To precisely localize ob-

jects in arbitrary orientations and/or with dense distribu-

tions [24], early methods [19, 21, 20, 20, 31] used fea-

ture/anchor augmentation strategies, e.g., numerous fea-

tures/anchors/RoIs [21] with multiple orientations, scales,

and aspect ratios for object representation. Despite the ef-

fectiveness, these methods suffer from substantial increases

in computational complexity and risk of false detection

caused by additional classification operations. Recent meth-

ods defined RoI transformers to configure oriented boxes

for oriented objects. RoI-Transformers [4] applied spatial

transformations on RoIs and learned parameters under the

supervision of oriented bounding box (OBB) annotations.

Dynamic Refinement Network (DRN) [24] equipped with a

feature selection module (FSM) and a dynamic refinement

head (DRH) can adapt receptive fields to objects with vari-

ous orientations.

R3Det [33] proposed re-encoding the positional infor-

mation of bounding boxes into the corresponding feature

points through feature interpolation. CSL [35] involved a

new rotation prediction pipeline, which converts orientation

prediction from a regression problem to a classification task.

GlidingVertex [32] glided the vertex of a horizontal bound-

ing box on each corresponding side to accurately describe

multi-oriented objects. While SCRDet [37] introduced the

localization (IoU) loss term to address the boundary issue

for oriented bounding boxes.

Existing methods have made encouraging progress in

rotation-robust detection; however, the problem of how to

adapt features on regular grids to objects of arbitrary lay-

outs remains. We attempt to solve this problem by explor-

ing a novel convex-hull representation beyond rectangular

representation.

Feature Spatial Adaptation. Deformable convolutional

network (DCN) [2] and ActivateConv [11] contributed gen-

eral spatial adaptation models by defining learnable spatial

transformation upon feature maps. CARAFE [30] defined

content-aware re-assembly of features for dense prediction

(detection or segmentation) tasks. This not only aggregated

contextual information within a larger receptive field but

also contributed instance-specific handling, which gener-

ates adaptive kernels on-the-fly.

Our approach defines a more feasible way by introducing
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Figure 2. Flowchart of the proposed CFA detector. The first stage predicts feature point offsets for convex-hull generation, while the second

stage refines the predicted convex-hulls, as well as reducing feature aliasing by convex-hull feature adaptation.

convex-hull sets. It is inspired by the FreeAnchor [40, 13],

ATSS [39], and PAA detectors [14], which used learning-to-

match [41] and continuation optimization [29] to adapt fea-

tures to objects with various spatial layouts. Beyond these

methods, our feature adaption strategy considers features

shared with multiple bags/sets, making this the first attempt

at handling joint feature optimization.

3. The Proposed Approach

3.1. Overview

The flowchart of the proposed CFA approach is pro-

vided in Fig. 2, which uses the RepPoint method [38] as

the baseline. As an anchor-free detector, CFA consists of

two stages: convex-hull generation and convex-hull adap-

tation. The first stage predicts convex-hulls for all loca-

tions on feature maps and estimates convex-hull layouts.

The second stage refines predicted convex-hulls as well as

adapting them to densely packed objects. During the in-

ference phase, only convex-hull generation is carried out to

localize objects without convex-hull set construction or set

splitting, which guarantees the simplicity and efficiency of

detection. For each predicted convex-hull, we calculate a

minimum bounding rectangle and merge overlapping ones

using Non-Maximum Suppression (NMS) detection perfor-

mance evaluation. In what follows, we first analyze the dis-

advantages of box representation and present convex-hull

representation. We then present convex-hull generation and

convex-hull adaptation modules.

3.2. Convexhull Representation

Considering that the CNN feature grids are axis-aligned,

modern object detectors typically use boxes, e.g., rectan-

gles or rotated rectangles, to cover object extent. Recent

anchor-free detectors, such as RepPoint [38] and Extreme-

Point [43], endow the feature grid deformability, i.e., dy-

namically arranging feature points in accordance with ob-

ject bounding boxes. However, they did not consider adapt-

ing features to objects of non-rectangle layouts, Fig. 1,

which causes feature aliasing when such objects come to-

gether. Recent studies including DRN [24] and R3Det [33]

attacked this problem by predicting object orientations, but

cannot adapt features to object extent well, Fig. 3(above).

The drawbacks of existing methods attribute to using rect-

angle boxes to bound objects of irregular layouts, which de-

grades the representation capacity of convolutional features.

We propose to represent object extent as convex-hulls,

each of which corresponds to a set of sampled points on

convolutional feature maps. Driven by object localization

and classification loss the detector learns to arrange feature

points in a manner that bounds the extent of an object and

discriminative features, Fig. 1. Modeling objects as convex-

hulls, object extent can be covered more completely, while

avoiding orientation ambiguity. Specifically, for i-th loca-

tion (xi, yi) on the feature maps X∈RH×W×C , where H ,

W and C respectively denote the height, width, and channel

number of feature maps, we define the convex-hull as

Ci = {(x
k
i , y

k
i )}

k=1...K
i , (1)

where k indexes feature points and K = 9 is the feature

point number of the convex-hull. In experiments, the feature

points are initialized as a 3× 3 feature grid, Fig. 3.

During training, convex-hull feature points “move” to-

ward the ground-truth bounding box to maximize the CIoU

(defined in next section) between the convex-hull and the

ground-truth box. This is a procedure to predict an off-

set (∆xk
i ,∆yki ) for each feature point using a convo-

lutional operation, which outputs a feature offset map
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Figure 3. Comparison of oriented box representation (above) with

the proposed convex-hull representation (below).

(O∈RH×W×2K). The convex-hull prediction is formulated

as

Ĉi(θ)←− {(x
k
i +∆xk

i (θ), y
k
i +∆yki (θ))}

k=1...K
i , (2)

where θ denotes network parameters.

Considering that the update of feature points can de-

stroy the convex-hull, Fig. 3(below), the Jarvis March al-

gorithm [10], denoted as Γ(·), is applied on the sampled

feature points to generate a minimal convex-hull after each

training iteration, as

Ci(θ) = Γ(Ĉi(θ)). (3)

Starting from a leftmost one of the feature points, the Jarvis

March algorithm keeps the points in the convex-hull by anti-

clockwise rotation. From a current point, it selects the next

point by checking the orientations of those points from the

current point. When the angle is largest, the point is se-

lected. After completing all points and when the next point

becomes the start point, the algorithm stops.

3.3. Convexhull Generation

CIoU. Based on each convex-hull prediction, we can cal-

culate the localization and classification loss for an object.

The CIoU between the i-th predicted convex-hull Ci(θ) and

the ground-truth box Bj of the j-object is calculated as

CIoU(Ci(θ),Bj) =
|Ci(θ)∩Bj |

|Ci(θ)∪Bj |
−
|Rj \ (Ci(θ) ∪ Bj)|

|Rj |
,

(4)

where Rj is the minimum bounding polygon of Bj and

Ci(θ), Fig. 3. According to [27], CIoU not only can repre-

sent the spatial overlap (the shadow area in Fig. 3) between

Ci(θ) and Bj but also is continuous and derivable.

z

𝑆2 𝑆1 𝑆−
Negative Convex-hullConvex-hull  for Obj.1 Convex-hull  for Obj.2

Input

FPN

Convex-hull

Top-I

Figure 4. Convex-hull set construction.

Convex-hull Loss. According to Eq. 4, the CIoU loss is

defined as

Lloc
i (θ) = 1− CIoU(Ci(θ),Bj). (5)

Let fk
i (θ) denote the feature of the k-th point, the

convex-hull feature fi(θ) is calculated by weighted sum-

mation of all the features of the points on Ci(θ), as

fi(θ) =
∑

k w
k
i · f

k
i (θ), where wk

i denotes learnable fea-

ture weights in DCN [2]. Based on the convex-hull feature,

the prediction score Si(θ) of Ci(θ) is calculated by a convo-

lutional operation, and the classification loss of Ci(θ) with

respect to object Bj is defined as

Lcls
i (θ) = FL(Si(θ), Yj), (6)

where Yj denotes the binary ground-truth label and FL(·)
the FocalLoss function [16]. As a result, the classification

loss for a positive convex-hull (defined in the next section)

is calculated as

L+
i (θ) = L

cls
i (Si(θ), Yj) + λLloc

i (Ci(θ),Bj), (7)

where λ is an experimentally determined regularization fac-

tor. For a negative convex-hull, classification loss is defined

as

L−
i (θ) = L

cls
i (Si(θ), Yj). (8)

Optimization. As shown in Fig. 2, during detector train-

ing, convex-hulls are generated solely by optimizing the lo-

calization (CIoU) loss, as

Ldet1(θ) =
1

J

∑

i

I(xi,yi)L
loc
i (θ), (9)

where J denotes the number of ground-truth objects,

I(xi,yi) an indicator function for whether i-th convex-hull

is involved in optimization. The classification loss will be

used in the second stage.
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Figure 5. Convex-hull set splitting guided by the gradient-

consistency principle.

3.4. Convexhull Adaptation

Convex-hull representation facilitates localizing objects

in arbitrary layouts. However, how to adapt the fea-

tures to densely packed objects, which have feature alias-

ing, remains a problem. Recent learning-to-match meth-

ods [40, 39, 14] have taken steps toward feature adaption;

nevertheless, all of them are defined for single objects, ig-

noring joint feature optimization for multiple dense objects.

Convex-hull Set Construction. We propose to con-

struct a convex-hull set for each object so that an object

can be matched with multiple convex-hulls, making it pos-

sible to jointly optimize features for densely packed ob-

jects, Fig. 4. A convex-hull set is constructed by selecting

top-I convex-hulls as positive candidates, according to the

CIoU between the convex-hulls and ground-truth boxes. It

can also be constructed with an experimentally determined

CIoU threshold. Convex-hulls not belonging to any convex-

hull set are merged to the negative set S .

Denote the convex-hull set for the j-th object as Sj . The

loss for Sj is defined as

L+
Sj
(θ) =

1

|Sj |

∑

i∈Sj

ωiL
+
i (θ), (10)

where ωi denotes the confidence of the i-th convex-hull,

L+
i (θ) the prediction loss of the i-th convex-hull. When

multiple objects come together, not all convex-hull features

within a convex-hull set are proper to represent the object.

The convex-hulls with large feature aliasing should be cate-

gorized to negatives while the convex-hulls shared by mul-

tiple objects should have low confidence.

Feature Anti-Aliasing. To alleviate feature aliasing, we

first propose a convex-hull set splitting strategy, i.e., dy-

namically evaluating the convex-hulls to select positive and

negative ones. To this end, we define the weight in Eq. 10

as ωi = f(L+
i (θ)), and have

L+
sj
(θ) =

1

|Sj |

∑

i∈Sj

f(L+
i (θ))L

+
i (θ), (11)

where f(x) is a monotonically decreasing function defined

on the Gaussian cumulative error function1, Fig. 5(a), which

implies that the convex-hull of a smaller loss provides a

greater object prediction confidence.

Convex-hull set splitting is guided by a gradient-

consistency principle. Specifically, taking the derivative of

Eq. 11, we have the gradient for the convex-hull set, as

∂L+
sj
(θ)

∂θ
=

1

|Sj |

∑

i∈Sj

∂(f(L+
i (θ))L

+
i (θ))

∂L+
i (θ)

∂L+
i (θ)

∂θ
. (12)

The gradient-consistency principle requires that the gradi-

ent
∂L

+

i
(θ)

∂θ
of each positive convex-hull has the same direc-

tion with that of the convex-hull set
∂L+

sj
(θ)

∂θ
, Fig. 5(b). In

other words, the convex-hulls of inconsistent gradient direc-

tions are supposed to cause feature aliasing. This means that

when
∂(f(L+

i
(θ))L+

i
(θ))

∂L
+

i
(θ)

is positive, Ci is a positive convex-

hull, and otherwise a negative one. As shown in Fig. 5,

when sortingL+
i (θ) in an increasing order, f(L+

i (θ))L
+
i (θ)

defines an upper convex function with a single extreme

value, Fig. 5(a). Function
∂(f(L+

i
(θ))L+

i
(θ))

∂L
+

i
(θ)

has a single zero

point and the convex-hulls are split to positives or negatives

by this zero point. According to the gradient consistency

principle, convex-hulls are dynamically partitioned to the

positive set Sj or the negative set S .

On the other hand, to handle feature aliasing, we intro-

duce an anti-aliasing coefficient

pi = γ ·
CIoU(Ci,Bj)∑M

m=1 CIoU(Ci,Bm)
, (13)

which indicates the degree that Ci belongs to a single object

when it overlaps M objects. γ is an anti-aliasing factor.

With the anti-aliasing coefficient, Eq. 11 is updated to

L+
sj
(θ) =

1

|Sj |

∑

i∈Sj

pif(L
+
i (θ))L

+
i (θ). (14)

Optimization. As shown in Fig. 2, the optimization of

the second stage is driven by the joint classification and lo-

calization loss defined on convex-hull sets, as

Ldet2(θ) =
1

J

J∑

j=1

1

|Sj |

∑

i∈Sj

pif(L
+
i (θ))L

+
i (θ)

+
1

|S |

∑

i∈S

L−
i (θ),

(15)

where Sj denotes the positive convex-hull set for the j-th

object and S the negative convex-hull set. Eq. 15 jointly

1f(x) = 1.0−
2√
π

∫
x

0
e−t

2

dt
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Table 1. Detection performance on DOTA. The category names are abbreviated as follows: PL-PLane, BD-Baseball Diamond, BR-BRidge,

GTF-Ground Field Track, SV-Small Vehicle, LV-Large Vehicle, SH-SHip, TC-Tennis Court, BC-Basketball Court, ST-Storage Tank, SBF-

Soccer-Ball Field, RA-RoundAbout, HA-Harbor, SF-Swimming Pool, and HC-HeliCopter. (·)∗ indicates multi-scale test. (·)† indicates

single-scale test performance provided by the authors.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

one-stage method

SSD [6] - 44.74 11.21 6.22 6.91 2.00 10.24 11.34 15.59 12.56 17.94 14.73 4.55 4.55 0.53 1.01 10.94

YOOLOv2 [25] - 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61 39.20

FR-O [31] ResNet101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93

R3Det [33] ResNet152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

two-stage method

R-DFPN [34] ResNet101 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94

R2CNN [12] ResNet101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

ICN [1] ResNet101 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RoI-Transformer [4] ResNet101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [37] ResNet101 89.41 78.83 50.02 65.59 69.96 57.63 72.26 90.73 81.41 84.39 52.76 63.62 62.01 67.62 61.16 69.83

SCRDet* [37] ResNet101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

CSL† [35] ResNet152 90.14 83.97 54.25 67.84 70.44 73.51 77.62 90.71 85.90 86.45 63.30 65.78 73.83 70.24 68.93 74.86

Gliding Vertex* [32] ResNet101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

CSL* [35] ResNet152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

anchor-free method

IE-Net [18] ResNet101 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 36.75 57.14

CenterNet [42] Hourglass104 89.02 69.71 37.62 63.42 65.23 63.74 77.28 90.51 79.24 77.93 44.83 54.64 55.93 61.11 45.71 65.04

DRN [24] Hourglass104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

DRN* [24] Hourglass104 89.45 83.16 48.98 62.24 70.63 74.25 83.99 90.73 84.60 85.35 55.76 60.79 71.56 68.82 63.92 72.95

CFA(ours) ResNet101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

CFA(ours) ResNet152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67

Table 2. Detection performance on SKU110K-R.

Method mAP AP75 AR300

YoloV3-Rotate 49.1 51.1 58.2

CenterNet-4point [42] 34.3 19.6 42.2

CenterNet [42] 54.7 61.1 62.2

DRN [24] 55.9 63.1 63.3

CFA(ours) 57.0 63.5 63.9

considers feature correspondence to multiple objects and

penalizing convex-hull shared by multiple objects, allevi-

ating feature aliasing towards optimal feature adaptation.

Combing the Eq. 9 and Eq. 15, we have the overall loss

function Ldet1(θ) + Ldet2(θ) for CFA detector training.

4. Experiments

In this section, we first describe the experimental set-

tings. We then report the performance of the proposed CFA

detector and compare it with the state-of-the-art methods.

We finally present visualization analysis and ablation stud-

ies.

4.1. Datasets

DOTA. The dataset is specified for objects in aerial sce-

narios, with 2,806 images and 15 object categories from re-

mote sensing platforms. Objects are of various scales, ori-

entations and layouts. The image sizes range from around

800×800 to 4,000×4,000 pixels. The objects are annotated

by oriented bounding boxes, each of which has four ver-

texes. Half of the images are randomly selected for training,

1/6 for validation, and 1/3 for testing.

SKU110K-R. SKU110K [7] involves 11,762 images

captured from supermarkets, with 1,733,678 objects in var-

ious scales, orientations, lighting conditions and crowded-

ness. In experiments, 8,233 images are used for training,

584 for validation, and 2941 for test. A recent work [24] re-

labelled the dataset (SKU110K-R) by augmenting the im-

ages to six orientations (−45◦,−30◦,−15◦, 15◦, 30◦, 45◦).

4.2. Experimental Settings

Evaluation Protocols. After establishing settings

in [24], we divided large-resolution images into sub-images

with resolution 1024×1024 and an overlap of 200 pixels be-

tween sub-images. Detection results from sub-images were

merged to the final detection results. For performance eval-

uation, the mAP metric [5] is applied for DOTA and the

AP metric [17] (which reports a mean average precision at

IoU=0.5:0.05:0.95.) is applied for SKU110K-R. The defi-

nition of the recall rate AR300 follows [7].

Implementation details. When training detectors, ran-

dom horizontal flip and multi-scale variations in range of

[768, 1280] are used for data augmentation. The detectors

are trained with the SGD optimizer with a batch size 16 on

eight Tesla V100 GPUs. The weight decay and momentum

are 0.0001 and 0.9, respectively. On DOTA, the detectors

are trained with 40 epochs in total. The learning rate is ini-

tialized as 8e-3 and reduced by a magnitude after 24th, 32nd

and 38th epochs. On SKU110K-R, the detectors are trained

with 24 epochs in total. The learning rate is initialized as
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Ground-truth Box 1st Epoch 5th Epoch 15th Epoch The Last Epoch

Figure 6. Convex-hull evolution during training. Convex-hulls are in red and ground-truth boxes are in green. (Best viewed in color)

Ground-truth Box Feature Adaptation (w/o) Feature Adaptation (w)

Figure 7. Heatmap comparison of CFA without (middle) and with (right) feature adaptation. Higher values correspond to small positive

convex-hull loss (1/L+

i
(θ)) in the training phase. (Best viewed in color)

8e-3 and reduced by a magnitude after 16 and 22 epochs.

In test, after NMS the IoU threshold 0.4 and score thresh-

old 0.05 are applied to obtain the detection results. For a

fair comparison with most existing methods, we report only

the single-scale test results. While the ResNet-50 back-

bone network is used for ablation study, the ResNet-101

and ResNet-152 are used to compare with the state-of-the-

art detectors.

4.3. Performance

In Table 1, the proposed CFA detector is compared

with the state-of-the-art detectors on DOTA for the oriented

bounding box (OBB) task[31]. As an anchor-free detector,

CFA outperforms the state-of-the-art DRN [24] detector by

5.97% (76.67% vs 70.70%), which is a large margin. Par-

ticularly, for the SV, LV, RA, HA and SP categories, it out-

performs DRN by 7.75% (81.23% vs. 73.48%), 10.27%

(80.96% vs. 70.69%), 11.53% (69.94% vs. 58.41%),

7.90%(75.52% vs. 67.62%), and 12.16%(80.76% vs.

68.60%). The reason lies in that these object categories are

of irregular shapes and our CFA approach with a convex-

hull representation can be more adaptive to such irregular

object shapes and layouts. As an anchor-free detector, our

CFA is comparable to, if not better than, most anchor based

detectors including RoI-Transformer [4], SCRDet [37],

Gliding Vertex [32] and CSL [35].

In Table 2, CFA is compared with the state-of-the-art de-

tector (DRN) on SKU110K-R. CFA achieves 57.0% AP and

improves the state-of-the-art by 1.1% (57.0% vs. 55.9%),

despite that DRN uses the larger backbone network (Hour-

glass 104).

4.4. Visualization Analysis

Convex-hull Layout. In Fig. 6, we show the evolution

of convex-hulls during training. One can see that after ini-

tialization the convex-hulls gradually approach the ground-

truth boxes. Most of the feature points, either in or on the

convex-hulls, localize within object extent, which facilitates

both object localization and classification.

Feature Adaptation. In Fig. 7, the heatmaps with and

without feature adaptation are compared. One can see that

with feature adaptation, the heatmaps of densely packed ob-

jects are clearly separated. This validates the feature anti-

aliasing effect of CFA.
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Figure 8. Evaluation of hyperparameters and modules. (a) CIoU

threshold. (b) Convex-hull set size (I). (c) Anti-aliasing factor γ.

(d) Feature adaptation.

Table 3. Ablation studies of modules in the proposed approach.

“CGen” denotes convex-hull generation, “FA-S” denotes feature

adaption by set splitting, and “FA-A” feature adaption with anti-

aliasing. The backbone network is ResNet-50.

CIoU CGen FA-S FA-A mAP ∆
∑

∆
65.35

X 66.30 +0.95 0.95

X X 68.18 +1.88 2.84

X X X 69.70 +1.52 4.36

X X X X 70.13 +0.43 4.79

Table 4. Comparison of the CIoU loss and Smoothed-L1 loss.

Method CIoU Smoothed-L1

mAP 66.30 65.35

4.5. Ablation Study

We conducted ablation studies using the DOTA valida-

tion set to verify the effect of CFA. RepPoint [38] is se-

lected as the baseline detector. To detect oriented objects,

we improved the RepPoint detector by adding an orienta-

tion prediction branch at the refinement stage and term the

detector “baseline-R”.

CIoU. As analyzed in Sec. 3.3, the CIoU loss reflects the

overlap of two oriented bounding boxes. Minimizing CIoU

loss drives optimizing object bounding boxes. As shown in

Table 4, compared with the Smoothed-L1 loss [26], CIoU

loss improves the mAP by 0.95% (66.30% vs 65.35%).

Convex-hull Generation. As shown in Fig. 6, by mod-

eling objects as convex-hulls, we alleviated feature alias-

ing from both the background and other neighboring ob-

jects. During training, the convex-hulls are generated and

are adaptive to the object extent, in a progressive fashion. In

Table 3, convex-hull generation (CGen) improves the per-

formance by 1.88% (68.18% vs 66.30%). In Fig. 8(a) under

an experimentally determined CIoU threshold in the assign-

ment process in second stage. Through the ablation study,

we found the best CIoU threshold 0.2.

Convex-hull Set Splitting. As discussed in Sec. 3.4,

convex-hull set construction is a process to define candi-

date features while convex-hull set splitting implements fea-

ture selection. As shown in Table 3 and Fig. 8(b), by us-

ing convex-hull set splitting, we improve the detection per-

formance by 1.52% (69.70% vs 68.18%), validating the

proposed gradient-consistency principle for feature anti-

aliasing. In Fig. 8(d), we experimentally validated that as-

signing six convex-hulls per feature pyramid level (I=6) to

each set can achieve the best performance.

Anti-aliasing Coefficient. By introducing feature anti-

aliasing coefficient (“FA-A” in Table 3), feature adaptation

for multiple objects is implemented and the performance is

further improved by 0.43% (70.13% vs. 69.70%) under the

best anti-aliasing factor (γ=0.75) in Fig. 8(c). In total, the

CFA detector improves the baseline by 4.79% mAP.

Computational Cost. With a ResNet-50 backbone on a

single Tesla V100 GPU, CFA spends 0.080s to process an

image with 1024 × 1024 resolution while the baseline de-

tector spends 0.075s. The DRN detector with an Hourglass-

52, which is larger than ResNet-50, spends 0.102s. As CFA

does not involve additional network architecture and the

loss is only applied in the training phase, the computational

cost overhead in the inference phase is negligible.

5. Conclusion

We proposed convex-hull feature adaptation (CFA),

which is an elegant and effective approach to configure con-

volutional features for objects with irregular layouts. By in-

troducing convex-hulls, CFA implemented adaptive feature

representation in accordance with the layouts of oriented

and densely packed objects. With convex-hull set splitting

and feature anti-aliasing strategies, CFA implemented fea-

ture adaptation towards optimal feature assignment around

objects. Extensive experiments on commonly used bench-

marks validated CFA’s superiors performance. This is in

striking contrast with the state-of-the-art anchor-free detec-

tors. CFA provides a fresh insight for detecting objects of

irregular layouts.
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