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Abstract

Compositing an image usually inevitably suffers from
inharmony problem that is mainly caused by incompat-
ibility of foreground and background from two different
images with distinct surfaces and lights, corresponding
to material-dependent and light-dependent characteristics,
namely, reflectance and illumination intrinsic images, re-
spectively. Therefore, we seek to solve image harmoniza-
tion via separable harmonization of reflectance and illu-
mination, i.e., intrinsic image harmonization. Our method
is based on an autoencoder that disentangles composite
image into reflectance and illumination for further sepa-
rate harmonization. Specifically, we harmonize reflectance
through material-consistency penalty, while harmonize il-
lumination by learning and transferring light from back-
ground to foreground, moreover, we model patch relations
between foreground and background of composite images
in an inharmony-free learning way, to adaptively guide
our intrinsic image harmonization. Both extensive exper-
iments and ablation studies demonstrate the power of our
method as well as the efficacy of each component. We
also contribute a new challenging dataset for benchmark-
ing illumination harmonization. Code and dataset are at
https://github.com/zhenglab/IntrinsicHarmony.

1. Introduction

The visual appearance of two images will be distinct
due to different light and scene while imaging [54, 60].
Thus, compositing an image, i.e., extracting a foreground
region in one image and pasting it with the background of
another image, will inevitably suffer from the inharmony
problem caused by distinct appearance between the two im-
ages (see Figure 1 for example), which significantly de-
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Figure 1. Thanks to separate intrinsic image harmonization, our
method can adjust the illumination of foreground to make it com-
patible with background while keep reflectance constant. We show
examples from iHarmony4 [1 1] (top) and our HVIDIT (bottom).

grades the quality of composite result [49, 12, 11]. Be-
sides, many computer vision tasks, especially image/video
synthesis, such as image editing [38, 2, 44], image inpaint-
ing [34, 55, 41], and image stitching [9, 56, 57], will also en-
counter this inharmony problem because of the compositing
process. However, human visual system is very sensitive to
the inharmony in appearance, e.g., human eyes can iden-
tify very subtle distinctions in color and contrast [30, 54].
Therefore, image harmonization, which aims to make the
appearance of foreground and background in the composite
image compatible [47, 49, 11, 12], is full of challenges.
Essentially, the appearance of a natural image depends
on various factors in the scene, such as illumination, ma-
terial, and shape [58, 3]. Moreover, human visual system
is remarkable in its ability to estimate characteristics in-
trinsic to the scene, such as color, size, shape, or illumi-
nation, where each intrinsic characteristic corresponds to
one intrinsic image [4]. Thus, humans are able to distin-
guish composite images, mainly owing to the apparent abil-
ity to estimate intrinsic characteristics in unfamiliar scenes.
Besides, the light intensity values represented in an image
actually encode all the characteristics of the corresponding
scene points [4]. Hence, harmonizing each intrinsic image
separately, rather than adjusting intensity values for harmo-
nization, is essential and crucial for image harmonization.
The inharmony in composite images is caused by the in-
compatibility of foreground and background from two dif-

16367



ferent scenes [49, |1], mainly lying in: (1) the boundaries
of foreground surfaces (e.g., object, person, etc.) are not in
harmony with the background [47], corresponding to the
intrinsic characteristic of surface; and (2) the illumination
of foreground (from one image) and background (from an-
other image) is not harmonious [47, 11], corresponding to
the intrinsic characteristic of illumination. Thus, to solve
image harmonization, it is intuitive and will be much bene-
ficial to disentangle composite image into intrinsic images
of surface and illumination for separate harmonization.

Retinex theory [33, 3 1] addresses the problem of separat-
ing illumination from reflectance in a given image, where
illumination represents the intrinsic light-dependent char-
acteristic of scene, while reflectance describes the intrinsic
material-dependent characteristic of surface that is invariant
to illumination and imaging conditions [26, 15, 35]. There-
fore, in this work, we seek to solve image harmonization
via separable harmonization of reflectance and illumination
intrinsic images, i.e., intrinsic image harmonization.

In this paper, we formulate image harmonization as an
autoencoder that internally disentangle composite image
into reflectance and illumination for separate harmoniza-
tion. For reflectance, we leverage material-consistency as
a penalty cue to harmonize foreground boundaries while
keeping reflectance constant. For illumination, we de-
sign a lighting strategy to harmonize the incompatibility
of foreground and background illumination. Moreover, we
note that the inharmony will be more visually obvious if
background and foreground have similar material (e.g., the
top example in Figure 1), and a single natural image has
powerful internal statistics that small patches recur abun-
dantly [18, 61, 22], so compositing an image realistically
and meaningfully should also follow this statistics, hence,
we devise an inharmony-free learning way to model patch
relations of foreground and background from composite im-
ages for adaptively guiding intrinsic image harmonization.

Note that, our method is not aimed to achieve physically
based intrinsic images, rather our goal is to tackle image
harmonization problem via intrinsic image properties. Ac-
tually, we are interested in relative, rather than absolute, re-
flectance and illumination, relying on intrinsic image prop-
erties, which aims at harmonizing foreground to be compat-
ible with background in the composite image. Therefore,
we leverage both intrinsic image (as motivation) and im-
age harmonization (as objective) to carefully design our net-
work as well as losses, for eliminating inharmony of com-
posite images (but not for intrinsic image decomposition).

Our contributions include: (1) we propose a novel
method to harmonize composite images via separately har-
monizing reflectance and illumination intrinsic images, as
far as we can tell, this is the first to model image harmo-
nization based on intrinsic image theory; (2) we design a
lighting strategy to learn light from image and transfer light

from background to foreground for illumination harmoniza-
tion; (3) we devise an implicit way to learn inharmony-free
patch relations between foreground and background from
composite images for adaptively guiding intrinsic image
harmonization; (4) our method achieves state-of-the-art per-
formance on both public synthesized dataset and real com-
posite images, besides, we build a new HVIDIT dataset for
benchmarking illumination harmonization.

2. Related Work

Image Harmonization. Early contributions in im-
age harmonization have focused on better matching tech-
niques to ensure consistent appearance of low-level statis-
tics, such as color [40], gradient [38, 48, 24], and hy-
brid [47]. While then, high-level visual realism of com-
posite images has been taken into account for appearance
harmonization [30, 25, 54, 60]. Recently, convolutional
neural networks (CNNs) have been developed for end-to-
end image harmonization, i.e., Tsai et al. [49] used a skip-
connected CNN to capture context and semantic informa-
tion of composite images during harmonization, and Cun et
al. [12] designed an additional Spatial-Separated Attention
Module to learn regional appearance changes in low-level
features for harmonization, then Cong et al. [11, 10] con-
sidered image harmonization as domain translation to trans-
form foreground domain to background domain. Different
from all existing methods, we devote to solve harmonization
from a novel perspective of intrinsic image harmonization.

Intrinsic Images. The scene in an image can be de-
scribed in terms of intrinsic characteristics, such as re-
flectance and illumination, and there is one image for each
intrinsic characteristic, all in registration with the origi-
nal image, namely intrinsic image [4]. Due to its in-
herent ill-posedness, intrinsic image decomposition from
a single image cannot be solved without prior knowledge
on reflectance and illumination [4]. Thus, Retinex the-
ory [33, 31] has been proposed to show that reflectance
could be separated from illumination if the illumination was
assumed to vary smoothly [20]. Then variational methods
introduced regularization on reflectance and illumination
based on the properties of them [&, 32, 26], such that intrin-
sic image decomposition could be applied for many com-
puter vision and graphics tasks, such as illumination estima-
tion [45, 17, 50], image enhancement [ 16, 21, 52, 50], shape
from shading [3, 43, 53], and image relighting [39, 59, 36].
Recent advances mainly relied on deep neural networks
(DNNps) for the decoupling of reflectance from illumination
and achieved good performance [15, 6, 35]. In our work,
we build a novel autoencoder-based DNN architecture to
harmonize composite images via separable reflectance and
illumination intrinsic image harmonization.
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Figure 2. Our autoencoder-based architecture for intrinsic im-
age harmonization, which disentangles composite image into re-
flectance (via encoder E'r and decoder Dg) and illumination (via
encoder E'; and decoder Dy) for separate harmonization. [y, and
lyg are foreground and background light latent code extracted by a
light learner (encoder Er,) for light transferer shown in Figure 3.
Encoder E; is for inharmony-free patch relation modeling.

3. Method

Given a pair of real image H and composite image H,
with a foreground mask M that indicates the inharmonious
region, our goal is to learn a model ® that receives H and
M as inputs and produces a harmonized image H as output,
where H is expected to be as harmonious as H.

To harmonize H (to H), our method aims to separately
harmonize intrinsic images of reflectance R (to R) and il-
lumination I (to ) that are material- dependent and light-
dependent respectively. We first build an autoencoder-based
architecture to disentangle composite image into reflectance
and illumination intrinsic images for separate harmoniza-
tion, then harmonize reflectance via material-consistency
penalty, while harmonize illumination by adjusting fore-
ground illumination to be compatible with background, fur-
ther we model inharmony-free patch relations between fore-
ground and background of composite images for guiding in-
trinsic image harmonization. The architecture is illustrated
in Figure 2, and we use the mask to separate foreground and
background in our lighting and guiding processes.

3.1. Intrinsic Image Harmonization

Decomposition of intrinsic images from a single image
is a classic ill-posed problem as information is confounded
in the light-intensity image [4, 35]. The only way to decode
the confounded information is, apparently, to make assump-
tions about the world and to exploit the constraints they im-
ply [4]. According to Retinex theory with the assumption of
ideal Lambertian surface [33, 20], reflectance is piece-wise
constant while illumination is smooth, which allows for the
decoupling of a reflectance image corresponding to large

image gradients from an illumination image corresponding
to small image gradients [26, 15]. _

So we can disentangle the composite image H into re-
flectance and illumination intrinsic images Rand I by:

H=RoI, (1)

where © is element-wise product. Therefore, the harmo-
nization problem of H = ®(H) ~ H (where H = R o 1
and H = R®I) can be divided into two harmonization sub-
problems of R~RandI~ I, namely, reflectance harmo-
nization and illumination harmonization, respectively.

Note that most intrinsic image work is only interested in
recovering relative reflectance and illumination of a given
scene [20]. That is, the estimated reflectance and illumina-
tion images are each allowed to be any scalar multiple of
the true reflectance and illumination (refer to Equation (1)).
Therefore, the reflectance and illumination obtained by our
method in this work are also relative.

As we have both composite images and real images to
learn from, the learning objective of intrinsic image harmo-
nization is also reconstructive, in other words, the model is
trained to disentangle composite image into reflectance and
illumination for separate harmonization while the combina-
tion of the two harmonized intrinsic images gives back real
image. This results in an autoencoding pipeline where we
can embed harmonization into the process from composite
image decomposition to real image recomposition via loss:

Lree = Eqg [ IF— HIl] - @

Reflectance Harmonization. The reflectance, or
albedo, describes how the material of an object reflects light
independent of viewpoint and illumination [20]. That is, re-
flectance is material-dependent yet light-independent. For
image harmonization, we assume that the foreground in a
composite image is semantically reasonable (or else, it will
be out of the scope of harmonization). Thus, the material
of foreground in both composite image and real image (as
well as harmonized image) should be consistent, giving the
constant reflectance constraint, namely, R ~ R ~ R (also
VR ~ VR ~ VR, V denotes gradient). In addition, with
the assumption that large image gradients correspond to
changes in reflectance and the prior that reflectance should
be spatially smooth to be a “visually pleasing” image [20],
we have the constraints of VH ~ VR and VH ~ VR
for composite and real images respectively. Therefore, we
obtain VR ~ VH as a constraint to harmonize reflectance,
yielding reflectance harmonization loss:

Lrn =Epvm |IVR - VH||1] . 3)

This loss actually keeps the reflectance of foreground in
composite image to be as close to that in real image as pos-
sible, so as to maintain the consistent material. Meanwhile,
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the foreground boundaries in composite image can also be
harmonized to be compatible with the background by lever-
aging both Ly and CNNs.

IMumination Harmonization. The illumination ac-
counts for shading effects, including shading due to geom-
etry, shadows and interreflections [20, 3]. So illumination
is light-dependent while retaining main structures. Essen-
tially, the main inharmony existing in composite image is
caused by incompatible illumination between foreground
(from one image) and background (from another image),
since they are usually captured under different lighting con-
ditions. Thus, to harmonize illumination, we need to adjust
foreground illumination I ¢ through background illumina-
tion ibg since i(,g ~ 1, such that the illumination of fore-
ground and background will be made compatible. To do
this, we design a novel lighting strategy to first learn light
and then transfer light from background to foreground (see
Section 3.2 for details). Besides, with the assumption of
small image gradients corresponding to illumination (i.e.,
illumination is smooth), we have the constraint of vi~o0
for decoupling, providing illumination smooth loss:

Lrs = VL “4)

Furthermore, since reflectance is restricted to unit interval,
we therefore can add the assumption that illumination im-
age is close to its source image (the intensity image) accord-
ing to Retinex theory (refer to Equation 1, i.e., reflectance
tends to white [26]). To better decouple illumination for
intrinsic image harmonization, we then make a penalty to
force a proximity between harmonized illumination and real
image, producing illumination harmonization loss:

Lin =B || -H|. )

Overall, the learning objective for intrinsic image harmo-
nization is given by the combination of reconstruction error
as well as reflectance and illumination penalties:

L(®;H,M) = Lycc + ApaLru + ArsLrs + Aiulin,

(6)
where Arp, A\rs, and Ajp are weighting factors to balance
the contribution of different losses.

3.2. Light Learning and Transferring

The inharmony of composite images mainly attributes
to incompatible illumination between foreground and back-
ground captured under different lighting conditions. Thus,
to harmonize this incompatibility, we first extract the light
of foreground and background and then transfer the light
from background to foreground, by designing a lighting
structure with a light learner followed by a light transferer,
as shown in Figure 2 (bottom) and 3 (right), respectively.

Benefiting from the autoencoding pipeline conditioned
on intrinsic image harmonization (Equation (6)), composite

l.{)f? log Light Transferer L
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Figure 3. Our lighting ResBlock (left) and light transferer (right)
illustration. /¢4 and lp4 are foreground light and background light
extracted by a light learner shown in Figure 2 (bottom).

image can be encoded to illumination latent space for re-
covering illumination intrinsic image (Figure 2). We hence
carry out our lighting strategy in this illumination latent
space, where an encoder can be served to map an image
to its illumination latent representation. Since the illumi-
nation latent features are still high-dimensional and embed-
ded with semantic information of the scene, so we further
feed them into multi-layer perceptron (MLP) to fetch low-
dimensional light latent code as light representation. In this
way, we harvest a light learner to extract light from image.

According to the fact that human eye has three differ-
ent types of color sensitive cones, the response of eye to
light is best described in terms of three “tristimulus val-
ues” [42, 37]. So we consider to compress light latent code
to three elements for representing the light of a scene in
image. However, in terms of purely visual phenomena of
color derived from reflected light, the three essential traits
are hue, value and chroma [46], where hue is the name of
a color (pure) while chroma is a property of a color in re-
lation to how pure it is, and value describes how light or
dark a color is [1]. Thus, for the sake of simplicity, we rep-
resent the light as separate color proportions of three color
elements by combining hue with chroma and independent
color values, which can be obtained by feeding light latent
code into a MLP plus softmax for proportions [, € R3*xC¢
and a MLP for values [, € R'*¢ (C is the channel number
of feature maps). Then, to transfer light from background to
foreground, we adjust the light on illumination latent repre-
sentation of composite image by:

3 b

. 19

f=2 fu gy + 00 =1, (7)
n=1

Pn

where f and f are illumination latent representation before
and after light transfer, n denotes the index of color element,

bg and fg mean background and foreground respectively.
bg
The ratio llZ—g and the difference 129 — 79 respectively adjust
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color proportions and color values of foreground light to be
close to that of background light. In this way, light transfer
takes place. Thus, we construct a novel light transfer layer
that can be embedded into various CNN blocks (e.g., Res-
Block) for multi-layer light transferring. In this work, we
make a lighting ResBlock for our light transferer.

3.3. Inharmony-Free Patch Relation Modeling

As small patches in a single natural image tend to re-
cur abundantly within and across different scales of same
image [61], while we also note that similar materials (rep-
resented as patches) appeared in both foreground and back-
ground of composite image are more prone to be visually in-
harmonious, so it would be more helpful if we guide intrin-
sic image harmonization by telling model patch relations
on similarity between foreground and background. Solving
this issue is closely related to traditional patch matching [2].

However, different from previous applications using
patch matching (e.g., image editing and image inpaint-
ing [2, 55, 41]), similar patches between foreground and
background of composite image are visually different due to
inharmony problem, thus it doesn’t work to directly match
patches on composite image. The only hope of solving this
issue is to learn to eliminate the influence of inharmony for
patch relation modelling, which we call inharmony-free.

To do this, we provide an implicit way to force an en-
coder to learn an inharmony-free representation for com-
posite image, yet modeling patch relations between fore-
ground and background of composite image, via the fol-
lowing inharmony-free loss:

Lip=1-8 [Ec(v(i), |, ®)
where \I/(ﬁ) denotes the encoder receiving composite im-
age as input and producing inharmony-free feature maps as
output, C' is the channel number of ¥(H), H’ represents
the downscaled grayscale real image with the same size of
W(H), and S is the similarity function. We use SSIM [51]
to measure structural similarity in this work.

We model patch relations by computing patch covariance
of inharmony-free foreground and background feature maps
separated from \II(I:I) Note that, although the covariance
is computed in terms of pixels, they actually correspond
to patches of input due to receptive field of CNN, such
that patch relations can be modeled by this inharmony-free
learning in an implicit way. We then design a guiding block
for bottleneck of autoencoder to reconstruct foreground fea-
tures, by using patches extracted from background features
as filters to deconvolve inharmony-free patch relations. We
therefore add this loss with a weighting factor for balance

as Ay L to Equation 6 yielding our final total loss:

L="Lrec+ArELRE + Ai5Lis + AtaLliyg + AirLir.
)

4. Experiments
4.1. Datasets and Metrics

Public Synthesized Dataset. To evaluate the perfor-
mance of our method on image harmonization, we conduct
experiments on public synthesized iHarmony4 dataset [1 1]
consisting of 4 sub-datasets: HCOCO, HAdobe5k, HFlickr,
and Hday2night, each of which contains synthesized com-
posite images, foreground masks of composite images, and
corresponding real images. We follow the same settings of
iHarmony4 as DoveNet [ | 1] in this work.

Our HVIDIT Dataset. To benchmark image harmo-
nization specifically for illumination, we construct a new
synthesized dataset named HVIDIT, which is generated
based on VIDIT (Virtual Image Dataset for Illumination
Transfer) [13] for Harmonization. VIDIT is used for re-
lighting challenge in the AIM workshop (part of ECCV
2020) [14], including 390 different unreal engine scenes,
each captured with 40 illumination settings, among which
300 scenes for training and 90 scenes for testing. We use
the publicly available train data in this work since ground-
truth test data remain private. Considering the similarity of
VIDIT and day2night [28], i.e., the same scene is captured
under different lighting conditions, we follow the same way
as constructing Hday2night [1 1] to generate composite im-
ages of our HVIDIT, but exclude those cases with obvious
shadow since they actually destroy the semantics of back-
ground. Thus, we finally obtain 3007 images of 276 scenes
for training and 329 images of 24 scenes for testing.

Evaluation Metrics. Following [49, 12, 11], we also
use Mean Squared Error (MSE), Peak Signal-to-Noise Ra-
tio (PSNR), and Structural Similarity (SSIM) [51] scores
on RGB channels as evaluation metrics. Besides, we re-
port foreground MSE (fMSE) [11] and foreground SSIM
(fSSIM) that only calculates MSE and SSIM in the fore-
ground region respectively as additional metrics, measuring
how well the foreground is harmonized. Noting that, we
compute fMSE and fSSIM over each single image and then
take average across the dataset, so that they can be regarded
as the indicator in evaluating harmonization generalization
ability of the method. Whereas, we argue that MSE and
SSIM essentially measure the average errors over all pixels
across the dataset, thus are not very suitable for tasks like
harmonization with many pixels (background) unchanged.
In addition, we use small window size (11 x 11) [19] for our
SSIM and fSSIM to avoid untrue similarity reflection due to
different sizes of foreground for harmonization.

Implementation Details. Reflectance and illumination
outputs are normalized to [0, 1] to recover H. We train our
model using Adam optimizer [27] with parameters of 5; =
0.5, B2 = 0.999, and learning rate « = 0.0001. We set
>\RH = 0.]., )\IS = 001, >\IH = 0.1, and >\IF = 1lin
experiments. We include more details in supplementary file.
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Ours

Ours

Ours

Dataset Metric | Composite Retinex-Net [52] DIH [49] SZAM[12] DoveNet [11] (base)  (base+lighting) (base+guiding) Ours
PSNR? 33.94 33.50 34.69 35.47 35.83 36.24 37.03 36.04 37.16
MSE| 69.37 69.18 51.85 41.07 36.72 32.36 25.45 30.62 24.92
HCOCO fMSE] | 996.59 958.16 798.99 542.06 551.01 510.98 429.09 477.73 416.38
SSIMT | 0.9853 0.9554 0.9433 0.9417 0.9546 0.9777 0.9801 0.9751 0.9803
fSSIMT | 0.8257 0.8242 0.8225 0.8477 0.8473 0.8301 0.8587 0.8399 0.8619
PSNR?T 28.16 27.99 32.28 33.77 34.34 33.90 35.17 34.16 35.20
MSE| | 345.54 335.27 92.65 63.40 52.32 57.14 44.15 48.64 43.02
HAdobe5k | fMSE] | 2051.61 1961.14 593.03 404.62 380.39 381.39 284.25 340.18 284.21
SSIMT | 0.9483 0.8716 0.8723 0.8884 0.8841 0.9297 0.9354 0.9354 0.9356
fSSIMT | 0.7294 0.7254 0.7777 0.8120 0.8309 0.7989 0.8357 0.8031 0.8364
PSNR?T 28.32 28.06 29.55 30.03 30.21 30.64 31.29 30.69 31.34
MSE| | 264.35 262.63 163.38 143.45 133.14 127.95 107.17 118.93 105.13
HFlickr fMSE] | 1574.37 1534.89 1099.13 785.65 827.03 814.98 728.06 773.59 716.60
SSIMT | 0.9618 0.9229 09114 0.9120 0.9272 0.9523 0.9587 0.9490 0.9590
fSSIM?T | 0.8031 0.7967 0.7984 0.8233 0.8235 0.7994 0.8280 0.8031 0.8297
PSNR?T 34.01 33.15 34.62 34.50 35.27 34.51 35.89 33.87 35.96
MSE| | 109.65 109.45 82.34 76.61 51.95 80.30 57.51 104.09 55.53
Hday2night | fMSE| | 1409.98 1365.01 1129.40 989.07 1075.71 1160.08 871.09 1082.51 797.04
SSIMT | 0.9606 0.8942 0.8838 0.8775 0.8961 0.9239 0.9308 0.9285 0.9302
fSSIM?T | 0.6353 0.6365 0.6277 0.6374 0.6194 0.5923 0.6448 0.6039 0.6449
PSNR? 31.63 31.28 33.41 34.35 34.76 34.90 35.82 34.86 35.90
MSE| | 172.47 169.16 76.77 59.67 52.33 51.14 40.62 47.07 38.71
All fMSE] | 1376.42 1322.57 773.18 594.67 532.62 518.83 428.21 484.62 400.29
SSIMT | 0.9714 0.9262 0.9179 0.9217 0.9299 0.9599 0.9638 0.9598 0.9699
fSSIM?T | 0.7917 0.7889 0.8032 0.8308 0.8357 0.8133 0.8447 0.8208 0.8469

Note: we refer to the results reported in paper [

Table 1. Quantitative comparison across four sub-datasets of iHarmony4 [

] or train the models to obtain the unavailable results for comparison.

]. The 1 indicates the higher the better, and | indicates the

lower the better. The best results are denoted in boldface. We compute fMSE and fSSIM at image level for better harmonization reflection.

4.2. Comparison with State-of-the-arts

We compare our method with state-of-the-art image
harmonization methods: DIH [49], S2AM [12] and
DoveNet [11], as well as an intrinsic image decomposi-
tion algorithm: Retinex-Net [52]. We don’t compare with
traditional image harmonization methods since they have
been proven to perform worse than deep learning meth-
ods [49, 12, 11]. Besides, although there exists cutting-edge
work on intrinsic image decomposition [!5, 5, 35], none of
them is specifically aimed at image harmonization, also they
mainly require additional ground-truth intrinsic images for
supervision and focus on how to decompose better, thus it is
not suitable to compare with them for harmonization task.
Moreover, for ablation study, we build three variants of
our intrinsic image harmonization method as follows: base
(ours without lighting and guiding), base+lighting (ours
without guiding), and base+guiding (ours without lighting).

Table 1 shows quantitative comparison results of image
harmonization across four sub-datasets of iHarmony4 [11],
as can be seen, (1) even our base model still outperforms
other methods across entire dataset, (2) our base model does
not perform well on Hday2night possibly due to big light-
ing difference, (3) either lighting or guiding helps to im-
prove performance and lighting boost with significant gains,
and (4) our method with both lighting and guiding achieves
state-of-the-art performance.

Figure 4 illustrates the qualitative comparison results of
image harmonization on iHarmony4 and HVIDIT datasets,
which demonstrate that, thanks to intrinsic image harmo-
nization, our method achieves the best visual effect compa-
rable to real images, even for very difficult cases such as the
fourth row of Figure 4 with very small foreground. More re-
sults are shown in supplementary file for further reference.

Furthermore, we conduct an additional experiment by in-
verting the normal masks, that is, exchanging foreground
and background to yield inverted masks, so that our method
tries to harmonize the background according to the fore-
ground. Figure 5 shows harmonized results with normal
masks (middle row) and inverted masks (bottom row) for
contrast, indicating that our method can produce promising
harmonized outputs from arbitrary foreground masks.

4.3. Analysis of Lighting

We then conduct to analyze efficacy of our light learning
and transferring (lighting) as follows: (1) our method with-
out lighting and guiding (base), (2) replace our light trans-
ferer with AdaIN [23] (base+AdalN), (3) base with lighting
but only background light (with %9 only), and (4) base with
lighting. The quantitative comparison in Table 2 shows that,
AdalN, aiming to transfer style information, has some pos-
itive effect on performance, but not as much as our lighting,
also background light is more important for harmonization.
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Figure 4. Qualitative comparison across four sub-datasets of iHarmony4 [ 1] and our new HVIDIT dataset (one example for each dataset).
From top to bottom: HCOCO, HAdobe5k, HFlickr, Hday2night, and HVIDIT. Red boxes in composite images mark foreground.

Figure 5. Image harmonization visual results with normal masks
(middle row) and inverted masks (bottom row) on composite im-
ages (top row). Red boxes mark foreground of normal masks.

Efficacy of Light Learning. We walk in the light la-
tent space to see if our light learner has learned relevant
light representation. Give an image, we use the light learner
of our model (base+lighting) to extract light latent code of
this input image as [, (consider this whole image as fore-
ground), and change this code to obtain [, then produce
the “harmonized” result by recovery as output. Figure 6 il-
lustrates an example with outputs under different lighting
conditions, indicating the efficacy of our light learner.

Efficacy of Light Transferring. We design an exper-
iment to employ our model for transferring the light from
one source image to another target image, as shown in Fig-
ure 7, and the results show that source light is successfully

Method |PSNRT MSE| fMSE| SSIM1 fSSIMf

base 34.90 51.14 518.83 0.9599 0.8133
base+AdaIN 35.34 48.96 467.19 0.9627 0.8415
base+lighting(with 1%9 only) | 35.32 44.18 459.31 0.9604 0.8159
base-+lighting 3582 40.62 42821 0.9638 0.8447

Table 2. Quantitative comparison about efficacy of light learning
and transferring (lighting) on iHarmony4 dataset.

Figure 6. Changing light latent code of an image (left) from light
learner produces different results in different lighting conditions.

transferred to target image thanks to our light transferer.

4.4. Analysis of Guiding

We further conduct ablation study to validate the effi-
cacy of our inharmony-free patch relation modeling (guid-
ing) as follows: (1) our method without lighting and guid-
ing (base), (2) guiding reflectance and illumination by com-
puting patch relations on composite images using SSIM
(composite), (3) our guiding reflectance only (reflectance),
(4) our guiding illumination only (illumination), (5) our
inharmony-free guiding, and (6) guiding by computing
patch relations on real images using SSIM as ground-truth

16373



Illumination Result

Source Target Reflectance

Figure 7. Our model can transfer the light from source to target.
Reflectance and illumination are disentangled from target.

Method |PSNRT MSE| fMSE| SSIM? fSSIMT

base 34.90 51.14 518.83 0.9599 0.8133
base+guiding(composite) | 33.87 73.93 692.58 0.9579 0.7986
base+guiding(reflectance) | 34.76 49.26 492.32 0.9581 0.8160
base+guiding(illumination) | 34.16 49.61 504.72 0.9570 0.8033

base+guiding 34.96 47.07 484.62 0.9598 0.8208
base+guiding(real) ‘ 35.88 38.51 397.21 0.9616 0.8286

Table 3. Quantitative comparison about efficacy of inharmony-free
patch relation modeling (guiding) on iHarmony4 dataset.

for comparison. The results listed in Table 3 demonstrate
that, guiding by composite images misleads the intrinsic
image harmonization, our guiding on reflectance or illu-
mination improves performance, while our guiding boosts
performance significantly, indicating the efficacy of our
inharmony-free learning. Even so, taking real image guid-
ing as a reference, there is still room for improvement in the
guiding way, which we leave for future work.

4.5. Experiment on Our New HVIDIT Dataset

Following [49, 11], we merge the training set of our
HVIDIT into iHarmony4 to retrain the models, and evalu-
ate the models on both test sets, yielding results in Table 4,
which draws the same conclusion as Table 1. For inharmo-
nious triangle roof (foreground) in composite image of the
fifth row in Figure 4, previous methods are hard to adjust
foreground light to be close to background light, while our
method performs the best, with similar light as the real im-
age. We include more visual results in supplementary file.

4.6. Experiment on Real Composite Images

Following [49, 12, 11], we conduct user study on 99 real
composite images provided by [49] for subjective evalua-
tion. In result, we invite 60 subjects to participate in user
study and acquire a total of 29700 pairwise results for all
99 images, with 30 results for each pair of different meth-
ods on average. All subjects are not aware of this image
harmonization task, and are only required to select the vi-

HVIDIT All
PSNRT MSE| fMSE| |PSNRT MSE| fMSE|

Composite 38.53 53.12 1604.41| 31.92 167.39 1386.12
Retinex-Net [52] | 36.32 53.01 1603.21| 31.08 165.09 1381.32
DIH [49] 36.62 45.55 1207.03| 32.65 80.37 800.73
S2AM [12] 36.24 45.82 1230.92| 33.86 53.88 594.90
DoveNet [11] 36.80 35.36 1186.19| 34.68 51.88 541.74
Ours (base) 40.55 33.16 934.63 | 35.09 46.76 512.05
Ours (base+lighting)| 40.31 22.51 861.09 | 35.97 37.17 411.74
Ours (base+guiding)| 40.29 25.57 925.01 | 35.78 42.48 470.30
Ours 41.55 20.16 800.92 | 35.99 35.61 390.03

Dataset

Table 4. Quantitative comparison on our new HVIDIT dataset. We
report results of iHarmony4 dataset in supplementary file.

Method | Composite DIH [49] S2AM [12] DoveNet[I1] Ours
B-Tscoref| 0.582  0.884  1.026 1.146 1735

Table 5. User study comparison on 99 real composite images.

Composite DIH SAM

DoveNet Ours

Figure 8. Visual comparison to harmonize real composite images.

sually better one corresponding to better method for each
pair, then, we record how many times one method is se-
lected in each pair on all 99 images as the statistics for pair-
wise comparison of Bradley-Terry (B-T) model [7, 29], to
calculate global ranking score for each method. Table 5
and Figure 8 report B-T score and visual comparison re-
spectively with three state-of-the-art image harmonization
methods, and our method still achieves best performance
with highest B-T score and best visual effect. Please re-
fer to supplementary file for visual comparison of different
methods to harmonize 99 real composite images.

5. Conclusion

In this paper, we propose a novel way of harmonizing
composite images, namely, intrinsic image harmonization,
aiming to eliminate the inharmony via separable reflectance
and illumination intrinsic image harmonization. We re-
spectively devise lighting and guiding to transfer the light
from background to foreground and learn inharmony-free
patch relations for better reflectance and illumination har-
monization. Both extensive experiments and ablation stud-
ies demonstrate the power of our method and the efficacy of
each component. Besides, we also contribute a new chal-
lenging harmonization dataset for specifically benchmark-
ing illumination harmonization. We hope that our work
opens up new avenues for image harmonization.
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