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Abstract

Long-tailed data distribution is common in many multi-

label visual recognition tasks and the direct use of these

data for training usually leads to relatively low perfor-

mance on tail classes. While re-balanced data sampling can

improve the performance on tail classes, it may also hurt

the performance on head classes in training due to label

co-occurrence. In this paper, we propose a new approach

to train on both uniform and re-balanced samplings in a

collaborative way, resulting in performance improvement

on both head and tail classes. More specifically, we design

a visual recognition network with two branches: one takes

the uniform sampling as input while the other takes the re-

balanced sampling as the input. For each branch, we con-

duct visual recognition using a binary-cross-entropy-based

classification loss with learnable logit compensation. We

further define a new cross-branch loss to enforce the con-

sistency when the same input image goes through the two

branches. We conduct extensive experiments on VOC-LT

and COCO-LT datasets. The results show that the proposed

method significantly outperforms previous state-of-the-art

methods on long-tailed multi-label visual recognition.

1. Introduction

By classifying an image into multiple classes, multi-

label visual recognition is an important task in computer

vision and the state-of-the-art approaches [45, 54, 44, 2, 20,

21, 12, 40, 52, 5] are to train deep networks on a set of

training data with ground-truth labels. However, as in many

single-label recognition tasks [25, 3, 6, 41, 24, 15, 16, 53],

the training data of multi-label recognition may exhibit a

long-tailed distribution [39] in terms of class labels – head

classes have many samples while tail classes have very few

samples. Direct training on such data (with uniform sam-

pling) usually produces relatively low performance on the

tail classes. In this paper, we focus on solving the problem

of long-tailed multi-label visual recognition (LTML).

Re-balanced data sampling [4, 32, 1, 10] is a proven ef-

fective approach for addressing the long-tailed visual recog-

nition. It achieves class-wise balance by either down-

sampling the head-class data or up-sampling the tail-class

data. However, repeating/dropping a tail-class/head-class

image may also duplicate/remove head-class/tail-class sam-

ples due to label co-occurrence in multi-label recogni-

tion [47]. Thus, while re-balanced sampling can improve

the recognition performance of tail classes, it may simulta-

neously decrease the performance of some head classes for

LTML. Since performance of different classes, either head

or tail ones, is usually considered to be equally important in

multi-label visual recognition, in this paper, we develop a

new method that can combine different data samplings for

improving the performance of both head and tail classes.

We consider the uniform and re-balanced samplings.

Given a long-tailed training set for multi-label recognition,

the uniform sampling leads to the original long-tailed distri-

bution, while the re-balanced sampling expects to achieve

a balanced distribution, but yields another biased distri-

bution due to label-occurrence. Our basic idea is to use

each of them to train a branch of a two-branch network,

where two branches follow the same architecture. We fur-

ther define a loss that enforces the consistency across the

two branches for the same input to achieve a collaborative

training, inspired by the previous mutual learning [51] and

co-regularization [27]. The cross-branch consistency com-

promises two distributions to achieve an effect equivalent to

learning the proposed network from a balanced implicit dis-

tribution somewhere between two biased distributions from

different samplings.

More specifically, as shown in Fig. 1(b), the two

branches have the same architecture but different param-

eters to reflect the different distributions of their respec-

tive inputs. For each branch, a binary-cross-entropy-based

multi-label classification loss with learnable logit compen-

sation is defined for LTML. For combining two branches,

we introduce another loss to collaboratively enforce the pre-

diction consistency across the two branches when the same

input image is fed to the two branches. Finally, this two-
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Figure 1. An illustration of the difference between (a) the previous mutual learning [51]/co-regularization [27] networks, where the input

from the same distribution is always fed to the two branches, and (b) the proposed network where different inputs, from different samplings,

are fed to the two branches. We only use the same input for the two branches for computing the consistency loss. I and J are mini-batch

images, ∼ indicates the consistency measurement, and L is the classification loss.

branch network is trained in an end-to-end manner by min-

imizing both classification and consistency losses. During

the test phase, each test image is fed to both branches with-

out considering cross-branch paths and the average of pre-

dictions from the two branches is taken as the final predic-

tion.

Different from previous mutual learning methods [51,

27], where the two branches always take the input from

a single distribution, as shown in Fig. 1(a), our proposed

method learns two branches from different inputs generated

by different samplings and the same input for two branches

is only used for computing the consistency loss.

To summarize, the main contributions of this work are:

1 We propose the use of both uniform and re-balanced

samplings of the same training set for long-tailed

multi-label visual recognition.

2 We develop a two-branch network, as well as a cross-

branch loss to enforce the consistency between two

branches, for collaborative learning on both uniform

and re-balanced samplings.

3 We conduct extensive experiments on VOC-LT and

COCO-LT datasets to verify that the proposed method

can simultaneously improve the performance of both

head and tail classes.

2. Related Work

2.1. Multilabel Visual Recognition

In many traditional methods, multi-label visual recogni-

tion is reduced to multiple binary image classifications [38,

50] or finding k-nearest neighbors [49]. As CNNs [17, 34,

35, 11, 14] become a standard component in vision sys-

tems, many deep-learning based methods have been devel-

oped for multi-label visual recognition and they can be gen-

erally categorized into two main groups: label-localization

methods and label-correlation methods. Label-localization

methods [45, 54, 44, 8] attempt to localize the label-related

image regions using either supervised learning on manual

annotations or weakly supervised learning on class labels.

Label-correlation methods [2, 20, 21, 12, 40, 52, 5] im-

prove multi-label visual recognition by exploiting and lever-

aging the co-occurrence of different labels in the same im-

age. For examples, CNN-RNN [40] combines RNNs with

CNNs to learn the correlations between different labels.

ML-GCN [5] adopts Graph Convolutional Networks (GCN)

to embed the label correlations to the classifier learning.

When the training set is long-tailed, head classes usually

dominate the network training, resulting in inaccurate la-

bel localization and label correlations for tail classes, which

severely hurts the recognition performance on tail classes.

2.2. Rebalancing LongTailed Visual Recognition

Data re-balancing is a widely used strategy for han-

dling long-tailed visual recognition, by emphasizing tail

classes more in the network learning, and it has achieved

improved results on many long-tailed recognition tasks.

Re-balanced sampling [4, 32, 1, 10, 53] and cost sensi-

tive re-weighting [3, 6, 13, 43, 29, 19, 36] are the two

typical kinds of data re-balancing methods. The former

improves the class balance by either up-sampling the tail

classes or down-sampling the head classes, while the lat-

ter improves the class balance by weighting more on tail

classes in the loss functions. However, all these methods are

for single-label recognition, i.e., each image only has one

label. Wu et al. [47] extend re-balanced sampling and cost-

sensitive re-weighting methods to handle long-tailed multi-

label visual recognition and propose an optimized DB Focal

method, which does improve the recognition performance

of tail classes. However, because of label co-occurrence

in multi-label recognition, emphasizing the tail classes may

impair the head-class training. The re-balanced sampling

may simultaneously decrease the performance of some head

classes [47]. In this paper, we propose to collaboratively

train on uniform and re-balanced samplings to improve the

performance on both head and tail classes.

2.3. Network Consistency

In this paper, we use the consistency between two

branches to collaboratively train the model for the multi-

label visual recognition. Different kinds of network consis-

tency have been considered for improving network training
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Figure 2. An illustration of the proposed network for long-tailed multi-label visual recognition. GAP denotes the global average pooling.

in different tasks. Perturbation-based consistency requires

a trained network to produce same prediction after applying

a small perturbation to the input image [33, 31, 26, 46, 8, 42]

and it has been widely used for data augmentation [33].

Model-based consistency [18, 48, 51, 28, 27] is usually for-

mulated and applied between networks. It enforces the two

different networks to produce the same results when the

same image is taken as the input, as shown in Fig. 1(a). Ex-

amples include Π-model [18] and Mean Teacher [37] used

for semi-supervised learning, deep mutual learning [51] and

co-regularization [27] for training two networks collabora-

tively, and co-teaching [9] for handling noisy labels. How-

ever, by taking the input from the same distribution, two

branches trained in [51, 27] may collapse to each other if

their network parameters are not carefully initialized with

substantial difference. In [28], an adversarial scheme is

introduced to address this issue, while in this paper, we

use images of different samplings as the inputs of the two

branches, which adds diversity to each branch training.

3. Proposed Method

Let the training set for the long-tailed multi-label

visual recognition (LTML) be (X,Y), where X =
{x1,x2, · · · ,xN} are the N training images and Y =
{y1,y2, · · · ,yN} are their respective ground-truth class

labels. Specifically, each yi = [yi1, yi2, · · · , yiK ], i =
1, 2, · · · , N is a binary K-dimensional vector where yik =
1 indicates the presence of label k in image i and yik = 0
otherwise, with k = 1, 2, · · · ,K. K is the total number

of labels for the visual recognition. There may be multiple

elements of value 1 in each yi for multi-label visual recog-

nition.

3.1. Framework Overview

Given that (X,Y) follows a long-tail distribution in

terms of class labels, we use both uniform and re-balanced

samplings in preparing the inputs for network training. For

the uniform sampling, each image xi ∈ X is sampled with

an instance-level probability of 1/N . For the re-balanced

sampling [32, 16, 47], images of each class are sampled

with a class-level probability of 1

K
, and thus, each image

xi is sampled with a probability of 1

K

∑K

k=1

yik

Nk

, where Nk

is the number of images with class label k in the training

set. By sampling the original training set M times, the

re-balanced sampling actually provides us a new relatively

class-balanced training set (X′,Y′), with M samples, but

not real balanced due to label co-occurrence.

As shown in Fig. 2, the two branches of the proposed

network share the same bottom network ϕ, followed by an-

other CNN module, denoted as ‘Subnet-U’ in the branch

for the uniform sampling and ‘Subnet-R’ in the branch for

the re-balanced sampling. Subnet-U and Subnet-R have the

same architecture but trained with different parameters, as

shown in Fig. 2. To be specific, the shared bottom network

is the conventional ResNet [11] excluding the last stage. For

Subnet-U and Subnet-R, we first include an identical copy

of the last stage of ResNet, as shown by f1 and g1 in Fig. 2.

After that, a linear classifier in the form of a fully connected

layer is added to each branch, as shown by f2 and g2 in

Fig. 2 for multi-label recognition. When feeding images

xu
i ∈ X and xr

j ∈ X′ to the two branches respectively, we

obtain K-dimensional logits for the two branches as

{

ui = f2(f1(ϕ(x
u
i ))),

rj = g2(g1(ϕ(x
r
j))).

(1)

By formulating the task as multiple binary image classifica-

tions, we apply logistic linear regression on logits ui ∈ R
K

and rj ∈ R
K to learn the two branches, respectively. The

solid arrows in blue and red in Fig.2 indicate the classifica-

tion paths for the two branches, respectively. The binary-

cross-entropy-based classification losses Lcls(ui,y
u
i ) and

Lcls(rj ,y
r
j ) are adopted for respective branch optimization,

where (ui,y
u
i ) and (rj ,y

r
j ) represent the pair of predicted

logits and ground-truth labels for the i-th image in X and

the j-th image in X′, respectively.

We further cross the inputs of two branches and estimate

the logits, indicated by the blue/red dashed arrows in Fig. 2

and obtain
{

ûi = g2(g1(ϕ(x
u
i ))),

r̂j = f2(f1(ϕ(x
r
j))).

(2)

To enforce the two branches to make consistent predic-

tions from the same input, we introduce a mean-square-
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error based consistency loss Lcon(ui, ûi) and Lcon(rj , r̂j)
between the logits from different branches, indicate by the

same color arrows (one dashed and one solid) in Fig. 2.

Finally, the network is learned by jointly minimizing the

loss function

L(xu
i ,x

r
j ;y

u
i ,y

r
j ) =Lcls(ui,y

u
i ) + Lcls(rj ,y

r
j )+

λ(Lcon(ui, ûi) + Lcon(rj , r̂j)),
(3)

where (xu
i ,y

u
i ) ∈ (X,Y), (xr

j ,y
r
j ) ∈ (X′,Y′), and λ is a

hyper-parameter to balance the two kinds of loss functions.

3.2. Conventional Classification Loss

Conventionally, the weighted sigmoid cross entropy

loss [19, 8, 36] is used for multi-label visual recognition,

in the form of multiple binary image classifications. Taking

the branch for the uniform sampling as an example, this loss

is

Lcls(ui,y
u
i ) = − 1

K

K
∑

k=1

ωk (y
u
ik log(ς(uik))+

(1− yuik) log(1− ς(uik))) ,

(4)

where uik and yuik are the k-th elements of the predicted

logits ui and the ground-truth label yu
ik, respectively, corre-

sponding to the k-th label. Besides, ωk = yuike
1−ρ + (1 −

yuik)e
ρ is the loss weight for the k-th label, depending on its

ratio of positive samples ρ = Nk/N , and ς is the sigmoid

function converting logits in R to probabilities in the range

of [0, 1] by

ς(uik) = 1/(1 + e−uik). (5)

The classification loss Lcls(rj ,y
r
j ) for the other branch can

be defined in the same way.

3.3. Logit Compensation

As discussed in [3, 47], when using the weighted sig-

moid cross entropy loss for classification, the imbalance

between the numbers of positive and negative samples in

each class could push their unbounded logit values away

from zero with different distances, leading to class-specific

over-fitting. In this section, we address this issue by further

compensating the logits of positive and negative samples,

respectively.

For simplicity, we assume that logit output of the net-

work for each label recognition conforms to a normal dis-

tribution. Suppose the logit for positive samples of the k-th

label conforms to a normal distribution with mean µp
k and

standard deviation σp
k, and the logit for negative samples

of the same label conforms to a normal distribution with

mean µn
k and standard deviation σn

k . The mean logit values

{µp
1
, µp

2
, · · · , µp

K} and {µn
1
, µn

2
, · · · , µn

K}, and standard de-

viations {σp
1
, σp

2
, · · · , σp

K} and {σn
1
, σn

2
, · · · , σn

K} are then

used to compensate the logits before feeding to the classi-

fication loss in Eq. (4). Thus, the classification loss (4) is

upgraded to

Lcls(ui,y
u
i ) = − 1

K

K
∑

k=1

ωk (y
u
ik log(ς(uik · σp

k + µp
k))

+(1− yuik) log(1− ς(uik · σn
k + µn

k ))) .

(6)

The classification loss Lcls(rj ,y
r
j ) is upgraded with logit

compensation in the same way. All the above means and

standard deviations are learnable parameters. Compared

with previous logit-adjustment methods [3, 47], this sim-

ple compensation does not introduce additional empirical

hyper-parameters that require manually tuning.

3.4. Logit Consistency between Branches

In the ideal case, when we feed the same input image

to the two branches, the output predictions shall approx-

imate the ground-truth labels with the network optimiza-

tions. However, since the two branches attempt to fit the

different distributions of input data, they may produce dif-

ferent prediction results with the same input, e.g., the two

branches may show different recognition performance. As

mentioned above, we define a cross-branch consistency loss

based on the mean square error of logits computed from the

same input image but through different branches. Taking

the input from the uniform sampling as an example, this

loss is

Lcon(ui, ûi) =
1

K

K
∑

k=1

(uik − ûik)
2, (7)

where uik and ûik are the k-th elements of ui and ûi, re-

spectively. For the input from the re-balanced sampling, the

consistency loss Lcon(rj , r̂j) can be defined in the same

way.

Different from existing works on collaborative train-

ing [51, 27], which define consistency on probabilities,

e.g., softmax/sigmoid outputs, for visual recognition, here

we measure the consistency between logits of different

branches from the same input. In training multi-label classi-

fiers, due to the sigmoid normalization in Eq. (5), gradients

could vanish on highly confident probabilities. For exam-

ple, when the consistency loss is applied to probabilities, we

have loss Lcon(ς(ui), ς(ûi)) and the gradients propagated

to the logits ui would be:

∂Lcon(ς(ui), ς(ûi))

∂ui

=
∂Lcon(ς(ui), ς(ûi))

∂ς(ui)

∂ς(ui)

∂ui

=
∂Lcon(ς(ui), ς(ûi))

∂ς(ui)
ς(ui)(1− ς(ui)).

(8)

If the predicted probabilities are highly confident, e.g.

ς(ui) ≃ 1 or ς(ui) ≃ 0, the gradients from consistency loss
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are close to zero. Differently, we define the consistency loss

based on logits, with which the gradients propagated to the

logits ui would be:

∂Lcon(ui, ûi)

∂ui

=
2

K
(ui − ûi). (9)

We can see that these gradients do not have the above gra-

dient vanishing issue under high-confident predictions.

3.5. Model Inference

To conduct model inference on test images, we simply

feed all the test images to both branches of the trained net-

work one by one. The paths following the dashed arrows

in Fig. 2 are not used. For each input test image, the pre-

dictions of two branches are averaged as the final prediction

result.

4. Experiments

4.1. Datasets and Configurations

As in [47], we conduct experiments on two datasets

for long-tailed multi-label visual recognition: VOC-LT and

COCO-LT. They are artificially constructed from two multi-

label visual recognition benchmarks, VOC [7] and MS-

COCO [23], respectively.

VOC-LT is sampled from the 2012 train-val set of

VOC [7] based on a Pareto distribution as described in [25].

The training set contains 1,142 images and 20 class labels,

and the number of images per class ranges from 4 to 775.

The 20 classes are split into three groups according to the

number of training samples per class: a head class has more

than 100 samples, a medium class has 20 to 100 samples,

and a tail class has less than 20 samples. The ratio of head,

medium and tail classes after such splitting is 6:6:8. The

testing set is constructed on the 2007 test set of VOC, with

4,952 images.

COCO-LT is created from the 2017 version of MS-

COCO [23] by following a similar way. The training set of

this long-tailed dataset contains 1,909 images and 80 class

labels, and the number of images per class ranges from 6

to 1,128. The ratio of head, medium and tail classes is

22:33:25, following a similar split as in VOC-LT. The test

set consists of all 5,000 images in the test set of MS-COCO-

2017.

Configurations: Following [47] and the conventional

multi-label visual recognition [54, 44, 8], we use the mean

Average Precision (mAP) to evaluate the performance of

long-tailed multi-label visual recognition. We use the

similar configurations as in [47] in our experiments for

a fair comparison with this prior state-of-the-art method.

Specifically, we use the ResNet50 [10] pre-trained on Im-

ageNet [17, 30] as the backbone and input images are re-

sized to the spatial dimension of 224 × 224. The standard

data augmentations are applied as in [47]. The SGD with

momentum of 0.9 and weight decay of 0.0001 is adopted

as the optimizer. The hyper-parameter λ in Eq. (3) is set

to 0.1 constantly. In the classification loss with logit com-

pensation in Eq. (6), the mean values are initialized to 0,

while the standard deviations are initialized to 1. The initial

learning rate is set to 0.01. All experiments are conducted

on PyTorch 1.4.0.

4.2. Comparison with Prior Arts

First of all, to verify the effectiveness of the proposed

method, we compare the mAP performance between our

method and previous methods on both long-tailed datasets.

The comparison methods include Empirical Risk Minimiza-

tion (ERM), conventional Re-Weighting (RW) using the

inverse proportion to the square root of class frequency,

Re-Sampling (RS) [32], Focal Loss [22], ML-GCN [5],

OLTR [25], LDAM [3], CB Focal [6], BBN [53] and DB

Focal [47]. The mAP performance of different methods are

shown in Table 1. The prior best performance is achieved by

DB Focal [47] – mAP of 78.94% over all classes on VOC-

LT and 53.55% over all classes on COCO-LT. We further

reproduce DB Focal, denoted as DB Focal* in Table 1, on

our platform based on its implementation 1 and achieve sim-

ilar mAP performances as the ones reported in [47].

We train two baselines for the proposed method with

the conventional classification loss and different samplings.

Specifically, we train the proposed network only with one

branch using the uniform sampling and re-balanced sam-

pling, respectively, with the weighted classification loss in

Eq. (4). This way, we obtain two baselines: baseline-

uniform and baseline-re-balanced, respectively. From Ta-

ble 1, we can see that both baselines achieve lower mAP

performance than DB Focal (or DB Focal*) – mAP per-

formances of two baselines on VOC-LT are 77.15% and

78.36%, respectively, and those on COCO-LT are 53.15%

and 52.76%, respectively. The proposed method can sig-

nificantly increase the mAP performance on both datasets:

mAP performance is improved to 81.44% on VOC-LT (in-

creased by 3.02% from DB Focal*) and to 56.90% on

COCO-LT (increased by 2.63% from DB Focal*). Besides,

the proposed method also achieves the new state-of-the-art

mAP performance for both head, medium and tail classes

on both datasets.

4.3. Quantitative Analysis

4.3.1 Ablation Analysis

To further analyze how the proposed method improves

mAP performance for long-tailed multi-label recognition,

we conduct a set of ablation studies and report the results in

Table 2. We first conduct an experiment by using a simple

1https://github.com/wutong16/DistributionBalancedLoss
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Datasets VOC-LT COCO-LT

Methods total head medium tail total head medium tail

ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25

RW 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02

Focal Loss [22] ICCV’17 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14

RS [32] ECCV’16 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.70

ML-GCN [5] CVPR’19 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96

OLTR [25] CVPR’19 71.02 70.31 79.80 64.95 45.83 47.45 50.63 38.05

LDAM [3] NeurIPS’19 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92

CB Focal [6] CVPR’19 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85

BBN* [53] CVPR’20 73.37 71.31 81.76 68.62 50.00 49.79 53.99 44.91

DB Focal [47] ECCV’20 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06

DB Focal* [47] ECCV’20 78.42 74.13 83.19 78.06 54.33 50.06 57.22 54.27

baseline-uniform 77.15 73.14 83.49 75.41 53.15 51.61 57.17 49.21

baseline-re-balanced 78.36 71.72 83.58 79.41 52.76 48.67 56.87 50.94

Ours 81.44 75.68 85.53 82.69 56.90 54.13 60.59 54.47
Table 1. mAP performance of the proposed method and comparison methods. The notation * indicates the reproduced results based on

our experiment environment. Other comparison results are taken from [47].

uniform

branch

re-sampled

branch

logit

consistency

logit

compensation
aug-test

VOC-LT COCO-LT

total head medium tail total head medium tail√
77.15 73.14 83.49 75.41 53.15 51.61 57.17 49.21√
78.36 71.72 83.58 79.41 52.76 48.67 56.87 50.94√ √
79.42 73.98 84.67 79.56 54.71 51.85 58.62 52.06√ √ √
81.22 75.42 85.50 82.37 56.62 54.30 60.27 53.86√ √ √ √
81.44 75.68 85.53 82.69 56.90 54.13 60.59 54.47√ √ √ √ √
81.79 76.04 85.92 83.01 57.28 54.54 61.10 54.64

Table 2. Ablation analysis on different components of the proposed network.

branch-ensemble method which averages the predictions

from the two branches as the final prediction, without con-

sidering the consistency and compensation. The achieved

mAP performances are 79.42% on VOC-LT and 54.71% on

COCO-LT, which are better than the two baselines. One

possible reason is that the two branches learned from differ-

ent label distributions exploit complementary information

for recognizing the same label. By considering the pro-

posed cross-branch consistency but not logit compensation,

the mAP performance is improved to 81.22% on VOC-LT

and 56.62% on COCO-LT, with 1.80% and 1.91% incre-

ments, respectively. Finally, we add the logit compensation

to the classification loss, the mAP performance is further

improved to 81.44% and 56.90%, respectively. This verifies

that each component in the proposed method contributes to

the mAP performance improvement.

Besides, we also show that incorporating an augmented

testing (aug-test) strategy can further improve the mAP per-

formance. In this strategy, the average of the predictions es-

timated from the original image and its horizontally flipped

image is computed as the final prediction. Since this strat-

egy is not widely used in the previous works, we do not con-

sider it when comparing the performance of the proposed

method against the previous methods.

4.3.2 Consistency Analysis

We also compare the proposed logit consistency across

different training-data distributions with perturbation-based

consistency and model-based consistency, as discussed in

Sec. 2.3. The mAP performance from different logit con-

sistency is reported in Table 3. Given a single data sam-

pling, we add the perturbations of horizontal flipping as

in VAC [8] on the input images and feed both original

and perturbed images to the ResNet50 for model learn-

ing. The consistency of the estimated logits for the original

and perturbed images is considered for multi-label recogni-

tion. The perturbation-based consistency based on uniform

sampling and re-balanced sampling leads to mAP perfor-

mance of 78.18% and 79.39% respectively on VOC-LT, and

55.32% and 55.49% respectively on COCO-LT. While the

different data distributions are merged directly, i.e. “uni-

form ∪ re-balanced”, to train the network without enforc-

ing the logit consistency, the achieved mAP performance is

much lower. This is equivalent to learn the model based

on another distribution that combines the uniform and re-

balanced samplings.

For model-based consistency, we train the two branches

with the same sampling, either the uniform sampling or
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number of

branches

consistency

based on
sampling

VOC-LT COCO-LT

total head medium tail total head medium tail

single

data

perturbations

uniform 78.18 74.09 83.99 76.90 55.32 52.39 59.60 52.26

re-balanced 79.39 73.35 84.71 79.94 55.49 52.01 59.32 53.50

N/A
uniform ∪

re-balanced
77.85 72.48 82.68 78.26 53.12 50.14 57.18 50.38

dual
models

uniform×2 80.13 74.71 85.12 80.46 55.70 52.40 59.28 53.89

re-balanced×2 80.18 74.54 84.99 80.81 55.44 52.01 59.26 53.43

distributions
uniform;

re-balanced
81.22 75.42 85.50 82.37 56.62 54.30 60.27 53.86

Table 3. mAP performance by using different consistencies.

VOC-LT total head medium tail

logit 81.44 75.68 85.53 82.69

probability 80.32 74.00 85.84 80.92

COCO-LT total head medium tail

logit 56.90 54.13 60.59 54.47

probability 56.03 53.11 59.85 53.55
Table 4. mAP performance of the proposed network by using the

logit consistency and the probability consistency, respectively.

the re-balanced sampling, as well as considering the con-

sistency of logits across two branches, e.g. [51, 27]. The

model-based consistency from the uniform and re-balanced

samplings yields the mAP performance of 80.13% and

80.18% respectively on VOC-LT, and 55.70% and 55.44%

respectively on COCO-LT. We can see that the use of the

proposed consistency in our method achieves much better

mAP performance than both the uses of perturbation-based

and model-based consistencies on both long-tailed datasets.

Finally, we conduct an experiment to justify the pro-

posed logit consistency against the use of the probabil-

ity consistency after the sigmod normalization in the pro-

posed network. As shown in Table 4, the logit consistency

yields better performance than the probability consistency,

by avoiding gradient vanishing as discussed in Eq. (8).

4.3.3 Class-wise Analysis

In Fig.3, we show the class-wise average precision (AP) in-

crement made by the re-balanced branch, the branch ensem-

ble and the proposed network, respectively, when compared

to solely using the uniform branch. As shown in the top

row of Fig. 3, compared with uniform sampling for model

training, re-balanced sampling leads to AP increment on tail

classes (the right portion of each curve), since it increase the

sampling rate of tail-class instances. Meanwhile, it also re-

duces the sampling rate of some head-class images, result-

ing in underfitting on head-class recognition and decreased

AP performance on head classes, as shown in the left por-

tion of each increment curve in the top row of Fig. 3. We

can see that branch ensemble can alleviate the head-class
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Figure 3. Class-wise AP increment of re-balanced branch, the

branch ensemble and the proposed network over the uniform

branch. Class labels are sorted from head to tail classes left-right.

performance decrease, while keeping the AP increment in

tail classes, as shown in the middle row of Fig. 3. The pro-

posed method further improve the AP performance of most

head, medium and tail classes by considering logit consis-

tency between two branches and the logit compensation, as

shown in the bottom row of Fig. 3.

To further understand the proposed logit compensation,

we visualize the learned distribution parameters of Eq. (6)

in Fig. 4. From the top row of Fig. 4, we can see that the

mean values for positive and negative logit compensation

are almost opposite to each other. The absolute mean value

for each class largely follows a positive correlation with the

sample number in this class. Since the mean values for com-

pensating logits of positive samples and negative samples

are positive and negative, respectively, the absolute values

of logits increases for correct predictions. This helps de-

crease the loss values and prevents the logit values from

being away from 0 quickly. The standard deviations also

approximately follow a positive correlation with the sam-

ple number in each class, as shown in the bottom row of

Fig. 4. Besides, we can also notice that the standard devi-

ations learned for positive logits are usually smaller than 1

and those learned for negative logits are usually larger than

1. For most classes, positive samples are usually the minor-
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Figure 4. The visualization of learned logit compensation param-

eters for positive and negative logits, on VOC-LT and COCO-LT.

Class labels are sorted from head to tail classes left-right.

ity, while the negative samples are the majority. A standard

deviation lower than 1 inclines to increase the classification

loss from the logits, while a standard deviation greater than

1 tends to decrease the classification loss from the logits.

Therefore, the loss from positive samples, along with the

tail classes, are relatively emphasized to address the imbal-

ance issue.

4.3.4 Group-wise Analysis

For all the compared methods in Table 1, we can notice an

interesting phenomenon that mAP performance on medium

classes is usually higher than those on head classes and

on tail classes. The prior work [47] gives an conjecture

that sample numbers of medium classes (10 to 100 sam-

ples per class) may be more suitable for the specific multi-

label learning. We agree with this conjecture. With a sim-

plified assumption that there is only one label associated

to each image, a class is balanced if its number of sam-

ples is N
K

. On VOC-LT, N
K

= 1142

20
= 57 and on COCO-

LT, N
K

= 1909

80
= 23.9, both of which are in the range of

[10, 100] used for defining medium classes. Therefore, the

sample numbers of medium classes are already more bal-

anced than those of the head and tail classes.

In addition, the use of re-balanced sampling, such as DB

Focal, baseline-re-balanced, or the proposed method, usu-

ally leads to better performance on tail classes than on head

classes, as shown in Table 1. One possible reason is that

images with head class labels are usually associated with

more classes and show more diverse and complex appear-

ance features. As shown in Fig. 5, it is clear that head

classes have more co-occurred classes than tail classes. In

this case, without sufficient samples, the image diversity

and complexity for head classes are more difficult to learn

than simpler tail-class images.
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Figure 5. Number of co-occurred classes on the same image in

term of class labels sorted from head classes to tail classes on the

two datasets.

Figure 6. The effect of hyper-parameter λ to the mAP perfor-

mance.

4.4. Effect of Hyperparameter λ

Besides the conventional hyper-parameters for deep net-

work learning, the proposed method introduces one more

hyper-parameter to tune, i.e. λ in Eq. (3), which is end-

to-end training friendly. We further conduct a set of ex-

periments to study the effect of different configurations of

λ to the recognition performance. As shown in Fig. 6,

when λ = 0.2, the proposed method achieves the best mAP

performance of 81.49% on VOC-LT. When λ = 0.1, the

proposed method achieves the best mAP performance of

56.90% on COCO-LT. An overly small λ may not give suf-

ficient consideration for the consistency, while an overly

large λ may make the consistency dominate the training,

leading to decreased performance on the original task of

multi-label recognition.

5. Conclusion

In this paper, we tackled the task of long-tailed multi-

label visual recognition by learning a model using both uni-

form and re-balanced samplings from the same training set.

We proposed a network consisting of two branches for two

samplings, respectively. Meanwhile, we incorporated the

logit consistency across two branches for the same input to

achieve collaborative learning. With extensive experiments

on two long-tailed datasets for multi-label recognition, we

demonstrated the effectiveness of the proposed method by

achieving the new state-of-the-art performance, with signif-

icant margins over prior works.

15096



References

[1] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A

systematic study of the class imbalance problem in convo-

lutional neural networks. Neural Networks, 106:249–259,

2018. 1, 2

[2] Ricardo Cabral, Fernando De la Torre, Joao Paulo Costeira,

and Alexandre Bernardino. Matrix completion for weakly-

supervised multi-label image classification. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

37(1):121–135, 2014. 1, 2

[3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,

and Tengyu Ma. Learning imbalanced datasets with label-

distribution-aware margin loss. In Advances in Neural Infor-

mation Processing Systems, pages 1567–1578, 2019. 1, 2, 4,

5, 6

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and

W Philip Kegelmeyer. Smote: synthetic minority over-

sampling technique. Journal of Artificial Intelligence Re-

search, 16:321–357, 2002. 1, 2

[5] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen

Guo. Multi-label image recognition with graph convolu-

tional networks. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 5177–5186, 2019. 1, 2, 5, 6

[6] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge

Belongie. Class-balanced loss based on effective number of

samples. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 9268–9277, 2019. 1, 2, 5, 6

[7] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-

pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. Inter-

national Journal of Computer Vision, 111(1):98–136, 2015.

5

[8] Hao Guo, Kang Zheng, Xiaochuan Fan, Hongkai Yu, and

Song Wang. Visual attention consistency under image trans-

forms for multi-label image classification. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

729–739, 2019. 2, 3, 4, 5, 6

[9] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-

teaching: Robust training of deep neural networks with ex-

tremely noisy labels. In Advances in Neural Information

Processing Systems, pages 8527–8537, 2018. 3

[10] Haibo He and Edwardo A Garcia. Learning from imbalanced

data. IEEE Transactions on Knowledge and Data Engineer-

ing, 21(9):1263–1284, 2009. 1, 2, 5

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 2, 3

[12] Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng, Zicheng

Liao, and Greg Mori. Learning structured inference neural

networks with label relations. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2960–2968,

2016. 1, 2

[13] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou

Tang. Learning deep representation for imbalanced classifi-

cation. In IEEE Conference on Computer Vision and pattern

recognition, pages 5375–5384, 2016. 2

[14] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens

van der Maaten. Densely connected convolutional networks.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, volume 1, page 3, 2017. 2

[15] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan

Yang, Liqiang Wang, and Boqing Gong. Rethinking class-

balanced methods for long-tailed visual recognition from a

domain adaptation perspective. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 7610–7619,

2020. 1

[16] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,

Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-

pling representation and classifier for long-tailed recogni-

tion. arXiv preprint arXiv:1910.09217, 2019. 1, 3

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012. 2, 5

[18] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. arXiv preprint arXiv:1610.02242, 2016.

3

[19] Dangwei Li, Xiaotang Chen, and Kaiqi Huang. Multi-

attribute learning for pedestrian attribute recognition in

surveillance scenarios. In Asian Conference on Pattern

Recognition, pages 111–115. IEEE, 2015. 2, 4

[20] Qiang Li, Maoying Qiao, Wei Bian, and Dacheng Tao. Con-

ditional graphical lasso for multi-label image classification.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2977–2986, 2016. 1, 2

[21] Xin Li, Feipeng Zhao, and Yuhong Guo. Multi-label image

classification with a probabilistic label enhancement model.

In Uncertainty in Artificial Intelligence, volume 1, pages 1–

10, 2014. 1, 2

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In IEEE

International Conference on Computer Vision, pages 2980–

2988, 2017. 5, 6

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European Conference on Computer Vision, pages 740–755.

Springer, 2014. 5

[24] Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and

Wenhui Li. Deep representation learning on long-tailed data:

A learnable embedding augmentation perspective. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2970–2979, 2020. 1

[25] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, and Stella X Yu. Large-scale long-tailed

recognition in an open world. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2537–2546,

2019. 1, 5, 6

[26] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis

Tuia. Rotation equivariant vector field networks. In IEEE

International Conference on Computer Vision, pages 5048–

5057, 2017. 3

15097



[27] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen.

Multi-label co-regularization for semi-supervised facial ac-

tion unit recognition. In Advances in Neural Information

Processing Systems, pages 909–919, 2019. 1, 2, 3, 4, 7

[28] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan

Yuille. Deep co-training for semi-supervised image recogni-

tion. In European Conference on Computer Vision, pages

135–152, 2018. 3

[29] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-

sun. Learning to reweight examples for robust deep learning.

arXiv preprint arXiv:1803.09050, 2018. 2

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 5

[31] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.

Regularization with stochastic transformations and pertur-

bations for deep semi-supervised learning. In Advances in

Neural Information Processing Systems, pages 1163–1171,

2016. 3

[32] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-

propagation for effective learning of deep convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 467–482. Springer, 2016. 1, 2, 3, 5, 6

[33] Connor Shorten and Taghi M Khoshgoftaar. A survey on

image data augmentation for deep learning. Journal of Big

Data, 6(1):60, 2019. 3

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 2

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, Andrew Rabinovich, et al. Going deeper with

convolutions. In IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, 2015. 2

[36] Zichang Tan, Yang Yang, Jun Wan, Guodong Guo, and

Stan Z Li. Relation-aware pedestrian attribute recognition

with graph convolutional networks. In AAAI Conference on

Artificial Intelligence, pages 12055–12062, 2020. 2, 4

[37] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In Advances in Neural

Information Processing Systems, pages 1195–1204, 2017. 3

[38] Grigorios Tsoumakas and Ioannis Katakis. Multi-label clas-

sification: An overview. International Journal of Data Ware-

housing and Mining, 3(3):1–13, 2007. 2

[39] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,

Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and

Serge Belongie. The inaturalist species classification and de-

tection dataset. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 8769–8778, 2018. 1

[40] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang

Huang, and Wei Xu. Cnn-rnn: A unified framework for

multi-label image classification. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 2285–

2294, 2016. 1, 2

[41] Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan.

Dynamic curriculum learning for imbalanced data classifica-

tion. In IEEE International Conference on Computer Vision,

pages 5017–5026, 2019. 1

[42] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and

Xilin Chen. Self-supervised equivariant attention mecha-

nism for weakly supervised semantic segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 12275–12284, 2020. 3

[43] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-

ing to model the tail. In Advances in Neural Information

Processing Systems, pages 7029–7039, 2017. 2

[44] Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, and

Liang Lin. Multi-label image recognition by recurrently dis-

covering attentional regions. In IEEE International Confer-

ence on Computer Vision, pages 464–472, 2017. 1, 2, 5

[45] Yunchao Wei, Wei Xia, Junshi Huang, Bingbing Ni, Jian

Dong, Yao Zhao, and Shuicheng Yan. Cnn: Single-label to

multi-label. arXiv preprint arXiv:1406.5726, 2014. 1, 2

[46] Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance

to 3d rotation and translation. In European Conference on

Computer Vision, pages 567–584, 2018. 3

[47] Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and Dahua

Lin. Distribution-balanced loss for multi-label classification

in long-tailed datasets. arXiv preprint arXiv:2007.09654,

2020. 1, 2, 3, 4, 5, 6, 8

[48] Sergey Zagoruyko and Nikos Komodakis. Paying more at-

tention to attention: Improving the performance of convolu-

tional neural networks via attention transfer. arXiv preprint

arXiv:1612.03928, 2016. 3

[49] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learn-

ing approach to multi-label learning. Pattern Recognition,

40(7):2038–2048, 2007. 2

[50] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label

learning algorithms. IEEE Transactions on Knowledge and

Data Engineering, 26(8):1819–1837, 2013. 2

[51] Ying Zhang, Tao Xiang, Timothy M Hospedales, and

Huchuan Lu. Deep mutual learning. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4320–

4328, 2018. 1, 2, 3, 4, 7

[52] Rui-Wei Zhao, Jianguo Li, Yurong Chen, Jia-Ming Liu, Yu-

Gang Jiang, and Xiangyang Xue. Regional gating neural

networks for multi-label image classification. In British Ma-

chine Vision Conference, pages 1–12, 2016. 1, 2

[53] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen.

Bbn: Bilateral-branch network with cumulative learning for

long-tailed visual recognition. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 9719–9728,

2020. 1, 2, 5, 6

[54] Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and

Xiaogang Wang. Learning spatial regularization with image-

level supervisions for multi-label image classification. In

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 5513–5522, 2017. 1, 2, 5

15098


