This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Multispectral Photometric Stereo for Spatially-Varying Spectral Reflectances:
A well posed problem?

Heng Guo!  Fumio Okura’
Yasuhiro Mukaigawa*

!Osaka University
3Peng Cheng Laboratory

Boxin Shi%3

Takuya Funatomi*
Yasuyuki Matsushita'

ZPeking University

“Nara Institute of Science and Technology

Multispectral photometric stereo setup 0

®|LED |

LED 3

&® LED 4
@

C

Wi
LED arra;

Light direction distribution

D 10 LED 11 04

Hardware setup Light spectrum distribution

Input Output

=
S
2
=
£
Z
4
@
2
5
=
@

Surface normal

74

A .
7 f Wavelength [nm]
7

/ 500 600 00
SV-albedo Chromaticity

Recovered shape

Reflectance estimation

Spectral image observations

Figure 1: Our multispectral photometric stereo setup with 12 narrow-band spectral LEDs under varying spectrum and lighting
directions. Taking the spectral image observations as input, our method outputs a closed-form unique solution of both surface
normal and spectral reflectance for monochromatic surfaces with spatially-varying (SV) albedos.

Abstract

Multispectral photometric stereo (MPS) aims at recover-
ing the surface normal of a scene from a single-shot multi-
spectral image, which is known as an ill-posed problem. To
make the problem well-posed, existing MPS methods rely
on restrictive assumptions, such as shape prior, surfaces
having a monochromatic with uniform albedo. This pa-
per alleviates the restrictive assumptions in existing meth-
ods. We show that the problem becomes well-posed for a
surface with a uniform chromaticity but spatially-varying
albedos based on our new formulation. Specifically, if at
least three (or two) scene points share the same chromatic-
ity, the proposed method uniquely recovers their surface
normals and spectral reflectance with the illumination of
more than or equal to four (or five) spectral lights. Be-
sides, our method can be made robust by having many
(i.e., 4 or more) spectral bands using robust estimation
techniques for conventional photometric stereo. Exper-
iments on both synthetic and real-world scenes demon-
strate the effectiveness of our method. Our data and result
can be found at https://github.com/GH—-HOME/
MultispectralPS.git.

1. Introduction

Photometric stereo is effective for the detailed recovery
of three-dimensional (3D) surfaces. Classical photometric
stereo methods, originally proposed by Woodham [24] and
Silver [22], use images captured from a fixed camera un-
der varying lighting directions, which are commonly ob-
tained at different timestamps. Since conventional photo-
metric stereo methods stack images with time-multiplexing,
the target surface has to be static during the multiple shots.

With spectral-multiplexing, multispectral photometric
stereo (MPS) [13] recovers surface normals from a one-
shot multispectral image. An input image for MPS encodes
observations under different lighting directions in differ-
ent spectral bands, conveying the information about surface
normals and spectral reflectances. Figure 1 shows our MPS
setup, which contains a fixed camera and 12 narrow-band
spectral light sources located at different positions.

Unlike time-multiplexing photometric stereo, shape re-
covery in MPS with Lambertian surfaces is an ill-posed
problem. Under the illumination of f spectral lights, there
are f + 2 unknowns (f for the reflectance for each spec-

963


https://github.com/GH-HOME/MultispectralPS.git
https://github.com/GH-HOME/MultispectralPS.git

Spectral Reflectance Type (SRT) SRT I SRT III SRT IV
v = pv; G €(Lp) Gray-chromaticity: v; = vi = %r/l Mono-chromaticity: v; = vi = v | Mono-chromaticity: v; = v =¥ | SV-chromaticity: v;, vj, € R/,
iT P ISP SV-albedo: p;, pr € R, Uniform albedo: p; = py = SV-albedo: p;, oy, € R, SV-albedo: ;. py, € R,
Target g 3 o 5]
surface =] =] 2 2
)i < < < <
=i k5t kst 3t 5t
| ek = = = =
e % 8 e 3 e
e [0, A..,rkf| E E i =
2 % i =% =S
Light 1 “ 2 i 2 = “
igl .
Light 2 Light f ! Spectral band Q Spectral band Q Spectral band Q I
Input lighting f=3 Classical photometric stereo [5,16]N [7,13]1Y [231Y
condition f> urs,
diti 3 [22]N O N

N: Require no additional priors Y: Require additional priors

Figure 2: Visualization of four spectral reflectance types (SRT) categorized via the spatial distribution of the chromaticity v
and the albedo p. Blue and red dots show the spectral reflectance of two scene points at f spectral bands.

tral band and 2 for the surface normal) but only f observa-
tions for each scene point are given. To make the problem
tractable, existing methods use additional priors, e.g., ini-
tial shape [1, 2], trained neural networks [ 1, or local
smoothness regularization [15]. However, these priors are
rather restrictive and may not always comply with the actual
scene. Without these priors, existing methods [5, 16, 22]
provide a unique solution for MPS by assuming the sur-
face spectral reflectance types (SRT) to be gray chromatic
or monochromatic with uniform albedo (SRT I and II in
Fig. 2). However, these spectral reflectance assumptions are
also restrictive for real-world scenes. As shown in [5, 16],
incorrect surface normal estimates from the real captured
data occur in regions with roughly constant chromaticity but
continuously changing albedos. Besides, the solution meth-
ods [5, 16] for SRT II surfaces limit the input to be an RGB
3-channel image, making the methods less robust against
outliers such as shadows and specular highlights.

In this paper, we make MPS to work well under a more
general spectral reflectance type: Uniform chromaticity but
spatially-varying (SV) albedos (SRT III in Fig. 2). To this
end, we treat the estimation of spectral reflectance and sur-
face normal as a bilinear optimization problem and show
that they can be jointly estimated by solving a linear sys-
tem of equations. Different from existing MPS works, our
method provides a closed-form solution without relying on
any additional priors. In addition, we allow the use of arbi-
trarily many spectral channels as input, which enables us to
bring robust photometric stereo methods [4, 20, 25] to MPS
to deal with outliers such as shadows and specular high-
lights. Experiments show that our method can also be used
for surfaces with SV-chromaticities (SRT 1V), by combin-
ing with existing clustering methods [14, 17] that predict
image regions sharing the same chromaticity.

Contributions We show that MPS for monochromatic
surfaces with SV-albedos can be solved in a closed-form
without introducing any external priors. We also give the
minimal conditions based on the number of spectral lights
and scene points for the problem to have a unique solu-

Table 1: Comparison of MPS methods. Our method pro-
vides a unique solution for SRT III. It adapts to 4+ spectral
bands and requires no additional priors.

SRT Method Input # Lights Additional priors

I [22] MSI! f>3 None
I i3] RGB  f =3 Surfaceintegrability =
1I RGB f =3 Surface integrability
1I RGB f =3 Irradiance-normal mapping2
1I [5,16] RGB f=3 None
., Initial coarse shape
1 (23] RGB  f=3 Pixels with uniform albedo

Reflectance quantization

—_ —
—_—

IV [5,16] RGB

f= Piece-wise constant reflectance
IV [3,10-12] RGB f =3 Fixed lighting direction
v [1,2] RGBD? f=3 Piece-wise constant chromaticity
v [15] MSI >3 Reflectance smoothness

Surface normal smoothness
v [8] MSI  f>05 Spectral reflectance basis!
111 Ours MSI f>4 None

' Multispectral image 2 Require calibration 3RGB + depth

tion. Our method can handle 4+ spectral observations,
which allows the combination with off-the-shelf four or
more source photometric stereo methods to improve the ro-
bustness against shadows and specular highlights.

2. Related works

Following previous works [2, 5, 16], under f spectral il-
luminations, the surface spectral reflectance r € Ri can be

decomposed into two parts: Chromaticity v € Rfr with a
unit norm and albedo p € R, such that r = vp. As shown
in Fig. 2, based on the spatial distribution of chromaticity
and albedo, we categorize 4 different surface spectral re-
flectance types (SRT) and order them in a way from simple
to complex. In this section, we introduce existing methods
based on their assumptions on SRT and list their properties
for the comparison in Table 1.

SRT I If a surface has gray chromaticity, i.e., the chro-
maticity keeps constant w.r.t. varying wavelength, MPS is
identical to classical photometric stereo. Therefore, given a
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multispectral observation of more than 3 bands illuminated
by varying lighting directions, a closed-form solution for
surface normal can be obtained without ambiguity [22].

SRTII For monochromatic surfaces with uniform albedo,
all the scene points share the common chromaticity v and
albedo p. Existing methods [7, 13] showed that the surface
normal can be estimated from a single RGB image up to a
rotation ambiguity, which can be resolved by imposing an
additional integrability condition. Hernandez et al. [9] es-
tablished a one-to-one linear mapping between pixel mea-
surement and surface normal to reconstruct the deformable
cloth shape. This unknown linear mapping was calibrated
via a planar board with a cloth sample fixed in the center.
Existing methods [5, 16] have provided a unique solution
for surface normals if the crosstalk between spectral chan-
nels is negligible. However, their methods are restricted to
RGB 3-channel input and cannot be expanded to more chan-
nels (see the supplementary material).

SRT IIT Few methods have focused on the monochro-
matic surface with SV-albedos, which is commonly seen in
natural objects and human skins. Vogiatzis et al. [23] as-
sumed the reflectance of a human face follows SRT III and
obtained detailed face reconstruction in real-time. However,
their surface normal estimates rely on the initial geometry
and the detection of equal-albedo pixels.

SRT IV If the chromaticity and albedo are both spatially-
varying, MPS from a single multispectral image is ill-posed.
Chakrabarti et al. [5] and Ozawa et al. [16] clustered a
global spectral reflectance set by discretizing the spectral
reflectance space and then estimated surface normals in
predicted regions with the same spectral reflectance. The
method by Anderson et al. required a coarse shape from a
depth map [!] or stereo pairs [2], and applied it to guide
the chromaticity segmentation and the surface normal es-
timation. Some recent methods directly took an RGB im-
age as input and applied deep neural networks to estimate
surface normal [3, 10, 12]. However, fixed lighting direc-
tions during the training and test procedure are required.
Miyazaki et al. [15] recovered surface normal from a mul-
tispectral image with more than three channels, assuming
the spatial smoothness on the surface normal and the re-
flectance. Fyffe et al. [8] assumed the spectral reflectance
lie in a low-dimensional space and represented it with a sta-
tistical basis set, while their spectral reflectance bases are
scene-dependent and need to be calibrated.

Our method We formulate MPS as a well-posed prob-
lem and provide a closed-form solution for monochromatic
surfaces with SV-albedos (SRT III). Our method is adapted
to multispectral images with 4+ bands and requires no ex-
ternal priors or regularizations. Our method can work with

SRT IV surfaces by applying a clustering method [ 14, 17] to
segment the image observation into monochromatic regions
and then recovering the surface normals of each region.

3. Proposed method

Given a multispectral camera with a linear radiometric
response and f calibrated spectral directional lights, we
capture a multispectral image of a Lambertian surface with
all lights being turned on. If the crosstalk between spectral
bands is negligible, i.e., the observation under each spectral
light is only observed in its corresponding camera channel,
image observations for a pixel can be written as follows

m = diag(r)Ln, (1)

where n € S? C R? represents the unit surface normal vec-
tor, L € Rf*3 stacks all the calibrated lighting directions,
and diag(-) is a diagonalization operator. Here, r € Ri is
the surface spectral reflectance corresponding to f spectral
bands, with its element following

T = Ei(A)R(N)Si(A)dA, 2
AEQ;

where §2; is the wavelength range of the i-th spectral band,
E;(\) : Ry — R, denotes the spectra of the i-th light,
Si(A) : Ry — R, defines the camera spectral sensitivity at
i-th channel, and R(\) : Ry — R, is the material spectral
response for the scene point. As the spectral reflectance r
can be decomposed into chromaticity v and albedo p, we
rewrite the spectral image observations for a single pixel as

m = diag(v)pLn. 3)

With the surfaces of SRT III, we found the minimum
conditions to yield a unique solution of the surface normal,
albedo, and chromaticity are as follows.

Theorem 1 Given f spectral observations under varying
lighting directions of p scene points known to share the
same chromaticity v, their surface normals, albedos and the
common chromaticity can be uniquely determined, if either
one of the minimal requirements for the number of lights
and pixels is satisfied:

e Minimal pixel condition (MPC): p = 2, f > 5,
e Minimal lighting condition (MLC): f =4,p > 3.

In other words, if two scene points share the same chro-
maticity but varying surface normals, their surface normals
can be uniquely determined given more than 5 lighting di-
rections. On the other hand, if we know more than 3 scene
points sharing the same chromaticity and their surface nor-
mals are non-coplanar, we can recover their normal direc-
tions with 4+ spectral light sources. In the following sec-
tion, we present the unique solution for SRT III and give the
proof for the minimal solvable conditions MPC and MLC.
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3.1. Unique solution for SRT III

Suppose a surface with p scene points sharing the same
chromaticity v, by representing all pixels and lighting di-
rections in a matrix form, we rewrite Eq. (3) as

M= VLN'P, 4)

where V. = diag(V) is an f x f diagonal matrix of the
common chromaticity v, M € Rfrxp records the image ob-
servations of p scene points, N € RP*3 gtacks all the sur-
face normals in a row-wise manner, P is a p x p diagonal
matrix with its diagonal element defined by SV-albedos.

The above spectral image formation model has
a similar structure with semi-calibrated photometric
stereo (SCPS) [6]. However, the task and physical image
formation between SCPS [6] and our method are differ-
ent: SCPS [6] aims at solving conventional photometric
stereo without calibrating the lighting intensity, as denoted
by v, whereas ours focuses on the use of relatively general
reflectance assumption (SRT III) and multispectral image
cues to formulate MPS as a well-posed problem without ad-
ditional priors; the unknown chromaticity v in our method
encodes the integral of light spectra, camera spectral sensi-
tivity, and the material spectral reflectance.

Given image observations M and calibrated lighting di-
rections L, we recover chromaticity, surface normal, and
albedo by minimizing the following energy function:

{V*N*, P*} = argminHMfVLNTPHiﬁ, (5)
V,N,P
where || - || denotes the Frobenius norm.

We define B = PN € RP*3 as albedo-scaled surface
normals. Here, V is invertible since it is a diagonal ma-
trix whose elements are assigned by non-zero chromaticity.
Then we rewrite Eq. (4) as

V'M-LB' =o0. (6)
After vectorizing the unknowns V~! and BT, we get

(I, ® L)vec(BT)

7
— [diag(m;) - - - diag(m,)] T V~'1 = 0, @

where vec(+) and ® represent vectorization and Kronecker
product operators, respectively. I, € RP*? is an identity
matrix, 1 € RS is an all-ones vector, m; is the i-th col-
umn of M, indicating the image measurements at ¢-th pixel
position. By concatenating all unknowns of Eq. (7) into a
vector, we obtain a homogeneous linear system:

(-1, o Llding(any) - aing(m, )] ] [ 5, ] =0,
D ‘,—/

X

where D € RP/*(P+f) x have the dimension of 3p + f.

3.2. Minimal solvable condition

To obtain a non-trivial solution of the homogeneous sys-
tem in Eq. (8), the dimension of the nullspace of D should
be one. Therefore, we have

pf>3p+ f—1 )

This solvable condition can be interpreted in another way.
Given p pixels observed under f spectral bands, the to-
tal number of measurements is pf. Since we assume a
monochromatic surface with SV-albedos, we only need
to know the chromaticity for one pixel, whose number
of unknowns is f. For the remaining (p — 1) pixels,
we need to know albedos with the number of unknowns
(p—1). Besides, for each pixel, the surface normal
has 2 degrees of freedom. There are thus 2p unknowns
for surface normal. Totally, the number of unknowns is
f+®—1)+2p=3p+ f — 1. Since the number of mea-
surements needs to be no less than the number of unknowns,
we obtain the minimal solvable condition of Eq. (9).

To further analyze the minimal requirement for the num-
ber of lighting directions and pixels, we rewrite Eq. (9) as

(f=3)-1) =2, (10)

which leads to MPC and MLC in Theorem 1. If either the
MPC or the MLC is satisfied, the solution of x of Eq. (8) is
solved up to a scale ambiguity via SVD factorization on D.
This scale ambiguity can be further resolved based on the
prior that chromaticity v has unit norm. Therefore, from x
we obtain albedo-scaled surface normals B and the inverse
of chromaticity. Pixel-wise surface normals and albedos can
be further extracted via normalization on each row of B.

3.3. Robust multispectral photometric stereo

Although existing methods [5, 16] give a unique solution
for SRT II without external priors, their input is restricted to
3-channel RGB image and cannot be adapted to multispec-
tral images with unlimited spectral bands (a proof provided
in the supplementary material). Our solution can handle
multispectral images with 4+ spectral channels. As an ap-
plication for the multichannel input adaption, off-the-shelf
four or more source photometric stereo methods [4, 20, 25]
can be used in multispectra scenarios to improve the robust-
ness against shadows and specularities.

In this paper, we combine our method with the position
thresholding strategy used in [20, 21] to reject outliers in
the input observations. Specifically, for each pixel position,
we sort the pixel irradiance value and discard shadows and
specular highlights at the bottom and top-ranked observa-
tions respectively. The surface normal and reflectance can
be then calculated from these inlier image observations.
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Table 2: Surface normal estimation results for synthetic dataset under SRT II and SRT III
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Figure 3: Synthetic data rendering following the reflectance
of SRT II and SRT III. The spectral reflectance maps for
SRT II and III are generated by the multiplication of a
chromaticity vector shared by all the pixels with a uniform
albedo map and a SV-albedo map, respectively.

4. Experiments on synthetic data

We here introduce experimental results on synthetic
datasets. We call our method described in Sec. 3.1 as
“Ours,” and a variant of our method combined with position
thresholding strategy [20, 21] shown in Sec. 3.3 as “Ours
(r).” The position thresholds for shadows and specularities
were set to 25% and 80%. We first verify our method on
SRT III and then present the robustness comparisons with
existing methods against shadows and specularities to ad-
dress the merit of multiband spectral input adaption.

4.1. Experimental settings

Synthetic dataset As shown in Fig. 3(a), we regularly
sampled 24 synthetic lighting directions on a hemisphere
with the elevation angle larger than 45°. We choose the
BUNNY surface as our synthetic shape and show its surface
normal in Fig. 3(b). The mono-chromaticity shared by all
the scene points and the albedo map used in the rendering
are shown in Fig. 3(c). The upper one follows SRT II and
assumes all the scene points share the same chromaticity
and albedo. The lower one assumes SRT III and the albedo

is spatially-varying. As shown in Figs. 3(d) and (e), we
rendered image observations of the BUNNY with these two
SRTs based on Lambertian reflectance, respectively.

Baselines As the baseline of the experiments, we selected
three state-of-the-art MPS methods: CS16 [5], OS18 [16],
and JQI18 [12]. Since these methods take a three-channel
(i.e., RGB) image as input, we selected 3 out of 24 spec-
tral observations to mimic the input 3-channel image. To
assess the characteristics of our method on multiband in-
put adaption, we tested our method by changing the num-
ber of lights ¢ € [4,24] (denoted as Ours (f;)). CS16 [5]
is designed for SRT IV; to achieve fair comparisons on the
target objects with SRT II and III, we set the number of
chromaticities to be 1 and the patch size to be 4 in their al-
gorithm. OS18 [16] presents a unique solution for SRT II
and IV with and without chromaticity clustering. In this pa-
per, we re-implemented their method and compared using
the SRT II solver.

4.2. Normal estimation under SRT II and SRT III

Given the ground-truth surface normal, we evaluated
surface normal estimation accuracy by mean angular er-
ror (MAE) in degree. To evaluate our method for SRT II
and SRT III surfaces under the minimal solvable lighting
condition (MLC), we selected the observations under four
lighting directions (21 ~ 24) and manually remove shadow
pixels to avoid its influence on the accuracy.

As shown in Table 2, estimated surface normal from our
method under MLC (Ours (f4)) achieves zero angular er-
ror w.r.t. the ground truth on both SRT II and SRT IIL
Since OS18 [16] also provides a unique solution for MPS
under uniform albedo and chromaticity, its estimated nor-
mal map is accurate for SRT II. However, when the albedo
is spatially-varying (SRT III), the estimated surface normal
includes errors. The estimation error of CS16 [5] is mainly
distributed at regions with large normal variations, which
violates the local polynomial shape regularization in this
method. The input of JQ18 [12] is assumed to be captured
under three fixed lighting directions. Since our synthetic
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Figure 4: Robust surface normal estimation against shadow

and specular highlights given more observations. (a) Im-
age observations of SRT II and III rendered with specular
highlights and shadows. (b) Normal estimation error w.r.t.
varying number of lights. Blue and red color correspond to
SRT II and III. (c) Error maps of the normal estimates.

lighting distributions are different from the setting in their
paper, large errors occur in their surface normal estimates.

4.3. Robustness against outliers

As our method is adapted to the multispectral input with
44 channels, we assess our method’s robustness against
shadows and specular highlights under varying number of
input lighting directions. We rendered images with shad-
ows and specular highlights by applying the dichromatic
model [19] with Blinn-Phong reflectance [ 18] as the specu-
lar component. Figure 4(a) shows an example of the spec-
ular rendering of the BUNNY, where images shown in blue
and red boxes are corresponding to SRT II and SRT III.

As shown in the Fig. 4(b), blue and red color denote the
angular error of surface normal estimates under SRT II and
SRT III w.r.t. varying number of lights. With shadow and
specular highlights, the accuracy of our method under the
two SRTs was nearly the same. Given only 4 observations,
outliers make our estimates inaccurate and the mean an-
gular error was comparable with OS18 [16], which uses 3
lights as illumination. By increasing the input observations
under varying lights, the normal estimation error from our
method decreases from 7.14° to 2.5° in the case of SRT III.
In the experiment, our robust version takes at least 7 spectral
observations as input to maintain the MLC after removing
pixel measurements with position thresholds. By increasing
the number of lights, Ours (r) further improves the normal
estimation accuracy and achieves the smallest mean angular
error among all the methods.

Figure 4(c) visualizes the error distributions of the nor-
mal estimates under SRT III. We observe that inaccurate
surface normal estimates from existing methods mainly oc-

cur in the specular highlights and shadow regions such as
the leg and ear part of the BUNNY. With only 4 spectral
bands, our method is also influenced by these outliers. Since
we are adapted to 4+ spectral bands, surface normals in
the above regions become more accurate with the number
of lighting directions increasing. By adopting the position
thresholding strategy to remove outlier pixels with shadow
and specular highlights, our surface normal recovery be-
comes further more accurate and the error distribution is
uniform. Therefore, benefiting from the multispectral in-
put channel adaption, our method is more robust against
shadow and specular highlights compared to existing 3-
channel MPS methods.

5. Real-world experiment

To demonstrate the practicability of our method, we built
a multispectral photometric stereo setup to conduct experi-
ments on real data.

5.1. Hardware setup

Figure 1 shows our multispectral photometric stereo cap-
turing setup, spectral light direction distribution, and the
light spectra distribution. Our hardware consists of three
modules: 12 narrow-band spectral light sources, 256 white
light sources, and a monochromatic camera (FLIR Blackfly
S). We calibrated the lighting directions with a monochro-
matic mirror ball following Shi et al. [21]. The spectra
of our spectral light sources spans in the range of 400 to
750 [nm], as measured by a spectrometer Sekonic C-800.

To verify our method without the influence of crosstalk
artifacts, we captured multiple images with a monochro-
matic camera by turning on each spectral LED one after
another. Spectral observations under LEDs 2, 4, 10 with the
wavelength 450, 550, and 650 [nm] are selected to mimic
the RGB input for existing 3-channel MPS methods. We
use 4 image observations under LEDs 2, 4, 9, 11 to ver-
ify the minimal solvable lighting condition (MLC) of our
method. Similar to CS16 [5], besides capturing images un-
der spectral lights, we captured an image set illuminated
by 256 white LEDs sharing the same spectra. If the tar-
get surface follows Lambertian reflectance, we can obtain
the ground-truth surface normal via classical photometric
stereo [22]. Since the camera viewpoint was fixed, we can
use this surface normal map as a reference to compare ex-
isting MPS methods with ours on real data quantitatively.

5.2. Normal estimation results on real data

Normal estimation under SRT II and SRT III As
shown in Fig. 5, we selected two objects whose reflectance
follow SRT II (RELIEF) and SRT III (RABBIT). As the two
objects mainly contain diffuse reflection, the ground-truth
surface normals (GT Normal) were obtained from the ob-
servations under white lights. From the ground-truth sur-
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Figure 5: Surface normal estimation for real-world objects with SRT II (RELIEF) and SRT III (RABBIT). The horizontal and
vertical axes of the albedo distribution histogram denote the albedo value and the corresponding frequency density.

face normal and image observations, we also computed the
ground-truth albedo and visualize its distribution via his-
tograms in Fig. 5, where z-axis indicates the albedo and
y-axis shows the frequency density. From the distribution,
the albedo in RELIEF was gathered in a narrow range be-
tween 4 ~ 5 so that we assumed its spectral reflectance
follows SRT II. Since CS16 [5], OS18 [16], and our method
can handle SRT II, the estimated surface normal accuracy
was comparable. The inaccurate surface normal estimations
from JQ18 [12] were caused by unmatched lighting distri-
bution. On the other hand, the albedo distribution of the
RABBIT was scattered at a wide range between 10 ~ 40,
therefore we believe the albedo of the RABBIT is spatially-
varying (SRT III). Since the SV-albedo violates the SRT II
assumption made in existing methods, we observed large
estimation errors in CS16 [5], OS18 [16]. In contrast, even
under minimal solvable condition (Ours (f4)), our method
yields more accurate normal estimation results, which veri-
fies our strength on SRT III surface.

Robustness against outliers In Fig. 6, we compare exist-
ing methods with ours on objects with shiny surfaces. Since
the reflectance of the two objects were far from Lambertian,
we cannot refer surface normal estimates from the classical
photometric stereo [24] as the ground truth. Instead, we ap-
plied a normal integration method [26] to reconstruct 3D
shapes from estimated surface normal maps and provided a
qualitative comparison. Consistent with the synthetic exper-
iments, recovered surface shapes from few spectral image

observations are heavily influenced by the outliers like spec-
ular highlights. As shown in the close-up views, artifacts
occur in normal estimates from methods based on 3-channel
input (OS18 [16], CS16 [5], JQ18 [12]) and Ours (f4) tak-
ing only 4 spectral bands. By adding more spectral bands
under varying lighting directions as input (Ours (f12)), in-
accurate artifacts caused by specularities are significantly
suppressed. After applying the position thresholding strat-
egy to remove outlier pixels with specularities, our robust
version (Ours (r)) obtains more reasonable surface normals
and shape reconstructions on both objects.

Normal estimation under SRT IV  As discussed before,
existing methods [5, 12, 15] estimate surface normal map
for SRT IV surfaces from a multispectral image. Al-
though our method does not directly deal with the SV-
chromaticities, we can first apply existing clustering meth-
ods [14, 17] to group monochromatic surface regions and
then adopt our method in each region to recover the whole
surface normal map. We denote this variant of our method
as “Ours (seg).” Figure 7 shows an example result. From the
RGB image observation of the BUDDHA-RELIEF, we ob-
served three monochromatic regions distributed at the hair,
body, and cloth part of the object. By simply adopting k-
means clustering [14, 17] on the multispectral input and
setting the clustering number as 3, we obtain a chromatic-
ity segmentation result as shown in Fig. 7. The number of
chromaticities is also set as 3 in CS16 [5] to evaluate their
method on this SRT IV surface. Compared with CS16 [5]
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Figure 6: Multispectral photometric stereo for real-world shiny objects: BALL and DOG. Even and odd rows show surface
normal estimates and the integrated surfaces. Close-up views highlight the region with artifacts caused by the specularities.
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Normal map

GT normal

BUDDHA RELIEF
N

Shape recovery

Chromaticity
segmentation

Figure 7: Surface normal estimation and chromaticity clus-
tering results for the BUDDHA-RELIEF surface with SRT IV.
Monochromatic areas are labeled by the same color in the
chromaticity segmentation map. Red box highlights the re-
gion where existing methods output distorted shape.

and JQ18 [12], Ours (seg) outputs more plausible surface
normals, especially in the clothing region.

6. Conclusion

In this paper, we show that multispectral photomet-
ric stereo for surfaces with uniform chromaticity but SV-
albedos (SRT III) is a well-posed problem. The surface nor-

mal can be uniquely determined from a multispectral image
with 44 bands without introducing any external priors. We
believe our closed-form solution can be applied as a key
module to handle surfaces with spatially-varying spectral
reflectance (SRT IV) when the segmentation of monochro-
matic regions are provided. Since our method is adapted to
multispectral images with more than 4 bands, we allow out-
lier rejection in conventional photometric stereo methods to
be applicable in MPS and further improve the robustness
against shadow and specular highlights.

Our current setup obtains the multispectral observation
by capturing multiple images with a monochromatic cam-
era under varying spectral LEDs. Theoretically speaking,
our method is applicable to a one-shot scenario using the
multiband cameras such as EBA NH7' and XiSpec’. We
are interested in applying our method to dynamic scenes in
the future once we have any of them in our hands.
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