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Abstract

Deep learning based object detection approaches have

achieved great progress with the benefit from large amount

of labeled images. However, image annotation remains a

laborious, time-consuming and error-prone process. To fur-

ther improve the performance of detectors, we seek to ex-

ploit all available labeled data and excavate useful sam-

ples from massive unlabeled images in the wild, which is

rarely discussed before. In this paper, we present a positive-

unlabeled learning based scheme to expand training data

by purifying valuable images from massive unlabeled ones,

where the original training data are viewed as positive data

and the unlabeled images in the wild are unlabeled data. To

effectively utilized these purified data, we propose a self-

distillation algorithm based on hint learning and ground

truth bounded knowledge distillation. Experimental results

verify that the proposed positive-unlabeled data purification

can strengthen the original detector by mining the massive

unlabeled data. In particular, our method boosts the mAP

of FPN by +2.0% on COCO benchmark.

1. Introduction

As a fundamental but challenging task in computer vi-

sion, object detection has attracted increasing attention from

both academia and industry due to its significant role in nu-

merous fields, including autonomous driving and surveil-

lance video analysis. Recently, many object detection meth-

ods [4, 42, 28, 31, 41, 15, 9, 25, 14] have been proposed

and achieved great progress, pushing the related applica-

tions forward to the real world. However, most existing

methods rely on a great volume of fine annotated images as

training data to obtain a high-performance detector as illus-

trated in Figure 1(c) and keep benefiting from more avail-

able labeled data [30, 10, 24]. When the labeled data are

scarce, detectors are easy to severely overfit and fail to gen-
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eralize. However, it is a time-consuming and expensive pro-

cess to build a qualified object detection dataset. According

to [45, 50], it takes annotators about 42 seconds to perform

one annotation task after they receive a thorough training

on that project. A label composed of bounding box coordi-

nates and corresponding category needs to be annotated for

multiple objects in one image, each with a different label.

Many works have observed heavy dependence of ob-

ject detection task on huge amount of training data. Some

of them try to tackle it from few-shot learning perspec-

tive [59, 22, 47, 11, 12, 53], which eliminates this phe-

nomenon by transferring knowledge from data-abundant

base classes to the data-scarce novel classes as illustrated in

Figure 1(a). However, the inherent data imbalance problem

proposes an even greater challenge for these novel meth-

ods, e.g. the “train2017” set of COCO benchmark [30] con-

tains 26k annotation boxes for category ”person” while only

198 for “hair drier”. Such cases of data scarce problem can

hardly be handled by few-shot learning.

Another trend of eliminating label dependence in ob-

ject detection belongs to semi-supervised learning [44, 40,

46, 48, 34, 49, 52]. This line of work either generates la-

beled/unlabeled data by splitting a fully annotated dataset,

or directly using unlabeled data that have the same distribu-

tion with labeled ones as shown in Figure 1(b). The former

usually needs a predefined data scale and inevitably limit

the performance of detectors, while the latter often results

in the largely neglected problem of dataset bias, which is a

well known limitation of semi-supervised learning [35].

In contrast to the existing methods which only utilize

limited data, this paper aims at both improving the per-

formance of object detectors and eliminating label depen-

dence by exploiting massive unlabeled data from the wild.

As shown in Figure 1(d), the detector not only exploits as

much well annotated data (e.g. COCO [30] and VOC [10])

as possible, but also is provided with unlimited unlabeled

data from the wild (e.g. Flickr [19], ImageNet1 [5] and

1Although ImageNet has image-level labels, there is no extra box-level

annotation, we choose to ignore all labels and treat the images as unlabeled.

2653



(d) Positive-Unlabeled learning

All labeled train2017 Massive unlabeled data from the wild

(c) Supervised learning 

All labeled train2017

(a) Few-shot learning (b) Semi-supervised learning

Sub labeled train2017 Sub labeled train2017

base (abundant) support (few)

All labeled train2017 All unlabel2017

Figure 1. Different types of object detection setting and corresponding training images. The “train2017” and “unlabel2017” indicate the

118k images and 123k images provided by COCO benchmark [30], respectively. Images marked with red-dotted boxes denote the positive

images from the unlabeled set.

Open Images [24]). In such setting, data from the wild

may contain potentially positive images, in which objects

are the same with that appeared in original detection bench-

mark, and these data can further help enlarge the training

set. Nevertheless, the trained detector could also be con-

taminated by other negative images that contain unrelated

objects from the unlabeled data. A popular solution to

utilize the unlabeled data is the self-training based semi-

supervised methods [40, 44]. However, directly training

the detector under the self-training framework [26] which

uses a teacher model to generate pseudo labels on unlabeled

images may inject extra noises to the augmented dataset.

To tackle this challenge, we propose a two-stage frame-

work to adaptively utilize the positive data and meanwhile,

avoid noise from negative data for improving the detector’s

performance. Firstly, a PU (Positive-unlabeled) classifier

for data purification is trained with the given labeled data

and massive unlabeled data from the wild. Then the ex-

panded training set is constructed by combining the original

training data and the positive data from massive unlabeled

data purified by the trained PU classifier. In addition, we

develop a self-distillation based training scheme to utilize

the expanded dataset where the teacher’s architecture is the

same with the student’s. We demonstrate the efficiency of

our positive-unlabeled data purification for object detection

(PUDet) on COCO benchmark [30] in general two-stage de-

tection framework FPN [28]. In particular, the proposed

method can improve the mAP of baseline FPN from 37.4%

to 39.4% without annotating any data manually.

2. Related Work

Fully-supervised object detection. Object detection is

considered as one of the most challenging problems in com-

puter vision which aims at determining what and where

the object is when given an image. Following the success

of CNNs, promising improvements in accuracy have been

made in object detection with sufficient amount of anno-

tated data [41, 31, 29, 36, 25, 9, 42, 60, 15, 4, 28, 38].

These methods take advantage of the well-annotated object

detection datasets and concentrate on consistently revising

detector architecture or loss function to achieve a satisfying

performance. On top of that, increasing attention has been

paid to employ unlabeled training data in a semi-supervised

way to improve object detectors. In this work, we explore

a realistic situation by using unlabeled data to improve the

detection performance.

Semi-supervised object detection. Semi-supervised learn-

ing [44, 55, 54] is of great significance by using read-

ily available unlabeled data to improve supervised learning

tasks. There are several works exploring semi-supervised

object detection [39, 20, 51, 49]. Generally, these meth-

ods can be divided into self-training based and consistency

regularization based approaches. Jeong et al. [20] uses con-

sistency constraints to let the predictions of unlabeled im-

ages be consistent with their flipped counterparts. Tang et

al. [51] combines self-supervised learning and consistency

losses to learn proposal features from both labeled and un-

labeled data. Radosavovic et al. [39] ensembles predictions
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Figure 2. The proposed two stage framework for object detection. We first train a PU classifier to select useful images from the massive

unlabeled data from the wild. Then we utilize the self-training based method and propose self-distillation to promote the detector’s

performance.

from multiple transformations of unlabeled data, using a

single model to automatically generate new training anno-

tations. Sohn et al. [49] uses a pretrained detector to gen-

erate pseudo labels on unlabeled images. In training phase,

they leverage abundant augmentation strategies, e.g. color

transformation, global geometric transformation, box-level

geometric transformation and cutout, to train a better de-

tector. More specifically, CSD [20] takes “VOC07” as la-

beled data and “VOC12” as unlabeled data, both provided

by VOC benchmark [10]. [39, 51, 49] take “train2017” as

labeled data and “unlabel2017” as unlabeled data, both pro-

vided by COCO benchmark [30].

Webly-supervised learning. There are several works that

have explored to use web-crawled images or videos to learn

CNN features for different tasks. Chen et al. [3] collects

both easy and hard web images to train CNNs for classifi-

cation and detection tasks. Wei et al. [57] and Jin et al. [21]

exploit web images to progressively learn features for se-

mantic segmentation in a simple-to-complex manner. How-

ever, all these methods require extra human efforts to divide

web images into different groups. Luo et al. [32] leverages

several models to distill the student together with color in-

formation to select webly data for salient object detection.

We are particularly interested in a natural question: Are

previous methods applicable in “real-world” settings? We

argue that conventional semi-supervised learning does not

address this question in a satisfying way. In above setting,

the unlabeled data have similar distribution with the labeled

data, in other words, the unlabeled images only contain ob-

jects of the same categories that have appeared in the la-

beled images [35]. They only need to assign coordinate

and category generated by teacher detector to accomplish

the data purification. In this work, our intuition is to use

the massive web images as unlabeled set, which creates a

closer scenario to realistic semi-supervised object detection.

Those unlabeled images can also contain other puzzling ob-

jects (see more cases in Figure 3), so that directly leverag-

ing the self-training based method in our setting can lead

to suboptimal results. To this end, we propose a positive-

unlabeled learning based scheme to consummate the data

purification framework and a self-distillation scheme to fur-

ther boost the performance of object detector for targeting

at this challenging task.

3. PUDet

3.1. Positiveunlabeled Classifier for Training Data
Purification

Preliminary. There are massive web images in the wild

for different tasks (e.g. ImageNet, Flickr and Open Image)

which have not been exploited for object detection task. To

probe into the utilization of these data, we first propose to

achieve data purification by positive-unlabeled (PU) learn-

ing [23, 27, 8, 58], we treat typical classification benchmark

ImageNet as the massive unlabeled data, and “train2017”

from COCO benchmark as the labeled data.

Problem setting. The goal of data purification is to screen

out the images containing the positive objects from massive

unlabeled ones. For this purpose, a classifier Npu is trained

using given labeled “train2017” and unlabeled ImageNet.

Given x ∈ X ⊆ R
d as input image, y ∈ Y = {+1,−1}

as output label, nl and nu are the numbers of labeled set

L and unlabeled set U , respectively. In this section, the

positive-unlabeled setting refers to the “labeled” and “unla-

beled” data.
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PU classification. We first review the formulation of

positive-negative (PN) classification. Consider a binary

classification problem from x to y, and given three sets of

samples: labeled set L, negative set N , and unlabeled set

U , then we have:

Xp = {xp
i }

nl

i=1
i.i.d.
∼ pp(x) = p(x | y = +1), (1)

Xn = {xn
i }

nn

i=1
i.i.d.
∼ pn(x) = p(x | y = −1). (2)

Xu = {xu
i }

nu

i=1
i.i.d.
∼ p(x) = πppp(x) + πnpn(x) (3)

where πp = p(y = +1) indicates the probability of class

prior and πn = p(y = −1) = 1 − πp. We assume πp as

known in all our experiments as it can be estimated from

labeled and unlabeled data [33, 18]. We denote g : Rd → R

as an arbitrary decision function, and ℓ : {+1,−1} → R

as an arbitrary loss function such that ℓ{g(x), y} indicates

the loss computed by the input x and the ground truth y. In

normal PN learning, Xn rather than Xu would be available

and the decision function g can be optimized from Xp and

Xn:

R̃pn(g) = πpR̃
+
p (g) + πnR̃

−

n (g) (4)

where R̃+
p (g) = 1

nl

∑nl

i=1 ℓ(g(x
p
i ),+1) and R̃−

n (g) =
1
nn

∑nn

i=1 ℓ(g(x
n
i ),−1). However, it is initially unknown

which images are negative, in the given set of “train2017”

and ImageNet. In this positive-unlabeled (PU) setting, Xn

is unavailable, the key idea is to utilize unlabeled ImageNet

data to evaluate the risk for negative samples in the PU

risk. As shown in [8, 7], πnpn(x) = p(x) − πppp(x),
and R−

n (g) can be approximated indirectly by πnR
−

n (g) =
R−

u (g) − πpR
−

p (g). Thus the decision function g can be

optimized as following:

R̃pu(g) = πpR̃
+
p (g)− πpR̃

−

p (g) + R̃−

u (g) (5)

where R̃−

p (g) = 1
nl

∑nl

i=1 ℓ(g(x
p
i ),−1) and R̃−

u (g) =
1
nu

∑nu

i=1 ℓ(g(x
u
i ),−1). Nevertheless, the PU classifier in

Eq. 5 relies on unbiased risk estimators. According to [23],

we adjust the estimator to alleviate the overfitting problem

as following:

R̃pu(g) = πpR̃
+
p (g) + max{0, R̃−

u (g)− πpR̃
−

p (g)}. (6)

The training set T of the PU classifier can be formulated as:

T = L ∪ U = {xl,+1}nl

p=1 ∪ {xu, yu}
nu

u=1. (7)

Data purification. Given the labeled set L
(e.g. “train2017” from COCO) and unlabeled set U
(e.g. ILSVRC 2012), we firstly train a PU classifier Npu

based on Eq. 6. Then we can utilize Npu to select images

containing the objects that have appeared in L from the

massive unlabeled dataset U , and construct the selected

Algorithm 1 Data purification and corresponding pseudo

label generation.

Input: Network Npu, labeled set L, unlabeled set U
1: Step 1: Train the PU Classifier Npu

2: while not converge do

3: Collect mini batch {xl, xu}
N from L ∪ U

4: Optimize Npu following Eq. 6;

5: end while

6: Step 2: Construct selected unlabeled dataset

7: Utilizing Npu to select images from U , construct set

Up

8: Step 3: Generate pseudo label

9: Train a teacher detector Dt on labeled set L
10: Generate pseudo labels on Up using Dt

11: Obtain extended dataset L ∪ Up;

Output: Teacher detector Dt, dataset L ∪ Up

unlabeled dataset UP for following object detector training.

After selecting the unlabeled data from the massive data,

we develop a self-distillation scheme for training object

detector, via the self-training way (pseudo label). First,

we train a teacher detector Dt using all available labeled

data (e.g. “train2017” from COCO). Then pseudo labels

of selected unlabeled images are generated by the teacher

detector. Last, we train the student detector using both

labeled and unlabeled data. We also use a threshold

τ = 0.5 to control the quality of pseudo labels in object

detection inspired by [48, 49]. High threshold can filter

lower-quality pseudo labels out, while lower threshold can

bring more instances during training phase. Considering

that the data purification has excluded the noisy images,

a lower threshold τ is helpful to generate more instances

which are comprised of box coordinates and corresponding

categories. A more specific procedure is depicted in

Algorithm 1.

3.2. Selfdistillation on Expanded Data

In this work, we adopt the FPN [28] as object detection

framework, which is composed of four modules: (i) a back-

bone for extracting semantic features, e.g. ResNet-50 [16];

(ii) a feature pyramid network for fusing multi-level fea-

tures; (iii) a region proposal network (RPN) for generating

region proposals; and (iv) a head that contains two branches

for object classification and bounding box regression. As

shown in Figure 2, we use FPN for both teacher and student

detector to guarantee the exactly same architecture, with the

only difference that the teacher detector has been pretrained.

In Sec. 3.1, we first train the teacher detector on the origi-

nal set L to generate the pseudo labels for the selected un-

labeled data UP . The student detector is then trained on

the expanded dataset L ∪ UP . In the training phase of the

student detector, we propose the self-distillation scheme to
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further exploit the pretrained teacher detector.

We propose to distill features from feature pyramid net-

work and head to fully exploit the pretrained teacher de-

tector. Both the RPN and the head take the output of

feature pyramid network as input features, so the quality

of these features is critical for object detectors to achieve

higher performances. We adopt the hint based learning

[43, 13] to transfer the knowledge inside the feature rep-

resentation from teacher detector to student detector. And

we apply knowledge distillation to the classification branch

in the head, by using teacher detector’s classification logits

to guide the student. Then we use the ℓ1 loss to distill the

bound box regression branch in the head. p and t are used

to indicate the predictive probability and box coordinate, re-

spectively. The overall learning objective can be written as

following:

L = Ldet + γLhint + λLkd, (8)

Ldet(pi, ti, p
∗

i , t
∗

i ) =
1

Ncls

∑

i

Lcls(pi, p
∗

i )

+
1

Nreg

∑

i

p∗iLreg(ti, t
∗

i ),

(9)

Lkd(p
′

i, t
′

i, p
t
i, t

t
i, p

∗

i , t
∗

i ) = Lkdc(p
′

i, p
t
i, p

∗

i )

+ Lkdr(t
′

i, t
t
i, t

∗

i ),
(10)

where the hyper-parameters γ and λ are used to control the

different loss items. Ldet is the regular detection training

loss. And the knowledge distillation losses Lhint, Lkdc and

Lkdr will be described in the following.

Multi-layer hint for feature adaption. Simplest distil-

lation transfers knowledge by using a soft target distribu-

tion on the final output. However, Adriana et al. [43]

demonstrates that using the intermediate feature represen-

tation from teacher network as hint can improve the fi-

nal performance of student network. And considering that

both the RPN and the head in object detectors need to

use the intermediate features from feature pyramid net-

work for later classification and regression, we propose

to utilize hint learning to distill the multi-layer features

generated by feature pyramid network. Define S =
[S(1),S(2),S(3),S(4),S(5)] as student detector’s output and

T = [T (1), T (2), T (3), T (4), T (5)] as teacher detector’s

output. We select the imitation region on each layer fol-

lowing [56] and perform hint learning accordingly, with the

binary mask denoted as Ih,w. Although the architectures of

student and teacher are the same, we still add five adapta-

tion layers to each feature for better generation according

to [1]. The hint learning objective is to minimize:

Lhint =
1

2NI

5∑

i=1

H∑

h=1

W∑

w=1

C∑

c=1

Ih,w(φi(S
(i)
h,w,c)− T

(i)
h,w,c)

2

(11)

where NI = C
∑5

i=1

∑H

h=1

∑W

w=1 Ih,w, which is the nor-

malization factor. φi(·) is the i-th adaptation layer, which is

a 3× 3 convolution layer in our implementation.

Ground truth bounded distillation for classification.

Here we propose the ground truth bounded distillation for

guiding the classification branch of the student detector.

The RPN will generate region proposals with different prior

size and pool corresponding features accordingly, so that the

classification branch in head will then classify the proposals

based on these features. To make sure teacher and student

will classify the same region, we feed the region proposals

generated by teacher detector into the student’s head and let

the student generate extra p′ based on teacher’s proposals.

Given the logits z of each proposal, we distil the knowledge

by a temperature T for teacher and student as:

p′(c | x, θ) =
exp(z′c/T )∑C

j=1 exp(z
′

j/T )
, c ∈ Y (12)

pt(c | xt, θt) =
exp(ztc/T )∑C

j=1 exp(z
t
j/T )

, c ∈ Y (13)

where θ and θt denote the parameters of the student and

teacher detectors, respectively. z′ and zt indicate the logits

(based on the same region proposals) of student and teacher

detectors, respectively. Y = {1, 2, ..., C} is the classes of

detection benchmark. T is a temperature that controls the

distribution of output labels. To avoid introducing interfer-

ence caused by teacher’s wrong judgements to the student,

we use the ground truth of categories to bound the process

of distillation. To quantify the knowledge between student

and teacher detectors in their classification outputs, we use

the Kullback Leibler (KL) divergence written as:

Lkdc =
∑

i

qiT
2

C∑

c=1

pt(c | x, θt) log
pt(c | x, θt)

p(c | x, θ)
(14)

Where qi = 1 if the teacher correctly classifies the pro-

posal. We multiply the knowledge distillation loss by T 2

to ensure the scale of the gradient magnitudes. Considering

that object detection is a challenging task where the predic-

tion error is already high, a larger T may introduce more

noise to the student detector [17, 61, 6]. Empirically, we set

T = 2 in all our experiments.

Ground truth bounded distillation for bounding box re-

gression. Classification and bounding box regression are

two core tasks in object detection; thus training a better re-

gression branch is critical for a higher performance. In ad-

dition to the above distillation for classification branch, we

also propose to distill the bounding box regression branch

of the student detector bounded by ground truth. We use t′

to indicate the extra parameterized coordinates of the pre-

dicted bounding box based on the teacher’s region propos-

als. Given the ground truth t∗ and teacher detector’s output
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tt, the objective can be written as:

Lkdr =
1∑
i qi

∑

i

qi min{‖t′i − tti‖1, ‖t
′

i − t∗i ‖1} (15)

where qi is the binary label of i-th region proposal with

respect to the foreground boxes. Instead of only distilling

student by the soften output from teacher detector, we pe-

nalize the student by teacher’s output when the ℓ1 loss be-

tween them is smaller than that between student and ground

truth, and vice versa. This knowledge distillation loss can

encourage the student to be better than the teacher by pre-

venting the case that teacher’s regression outputs provide

sub-optimal guidance.

4. Experiments

We investigate the efficiency of the proposed data purifi-

cation method and self-distillation algorithm by conducting

elaborate experiments on COCO [30] benchmark, which

contains 80 object classes and 118k labeled images for

training (train2017). We evaluate the detection performance

on COCO minival (val2017) by the Average Precision (AP)

with different IoU thresholds from 0.5 to 0.95 with an inter-

val of 0.05, i.e., mAP. We also report the AP with thresh-

olds of 0.5 and 0.75, i.e., AP50 and AP75, as well as AP on

objects with small, medium and large sizes, i.e., APS, APM

and APL.

4.1. Implementation Details

Our implementation is based on mmdetection [2] with

Pytorch framework [37]. For data purification, we use Ima-

geNet dataset [5] as the massive unlabeled data pool, which

contains over 1.2M images. We refer to it as the unlabeled

set U with nu=1.2M in our experiment, and refer to the

“train2017” in COCO as the labeled set L with nl=118k,

according to Eq. 7. We use the proposed PU classifier

to select 118k images from ImageNet (UP ) together with

“train2017” to evaluate the efficiency of our data purifica-

tion. We also randomly select 236k images from ImageNet

(UR) to serve as a comparison. The πp in Eq. 3 can be

calculated by πp = p(y = +1) = 118k/1280k ≈ 0.1 ac-

cording to [23]. To perform the data purification, we first

train a ResNet-50 based FPN on “train2017”, the backbone

of which is used as the PU classifier Npu. Then we train the

Npu on gathered dataset T = L ∪ U . The model is trained

for 100 epochs and optimized by SGD. We set the learn-

ing rate as 0.01 and divide it by 10 after 60 epochs. The

momentum and weight decay is set to be 0.001 and 0.9, re-

spectively. The λ and γ in Eq. 8 are set to be 1 empirically.

We choose the ResNet-50 based FPN [28] as our base-

line detection model. Labeled and selected unlabeled data

are gathered together to train the detector. All input im-

ages are resized for a fixed number of 800 pixels for the

shorter side. We use SGD optimizer with a batch size of

32 images to train the detector for 12 epochs, known as 1×
schedule. The initial learning rate is 0.04 and is divided

by 10 at the 8th and 11th epoch. The momentum is set to

0.9 and the weight decay is 0.0001. We use horizontal flip-

ping as data augmentation for both labeled and unlabeled

images, and color transformation is applied for unlabeled

images additionally. No data augmentation is adopted dur-

ing testing phase. The model is trained on 8 NVIDIA Tesla

V100 GPUs.

4.2. Main Results

We report the comparisons between our method and

fully supervised baselines, as well as two recently proposed

methods for deep semi-supervised learning [49, 51] in Ta-

ble 1. The first row indicates the results of FPN [28] under

fully supervised setting, and the second row is the result af-

ter adding our self-distillation scheme. The last three rows

show the results of training the detector by self-distillation

on L ∪ UP . As can be observed, our proposed data purifi-

cation can obviously bring better performances compared

to the baseline method. These results show that training

detectors on both labeled and unlabeled data can easily out-

perform training detectors on labeled data only, confirming

our intuition to boost detector without extra annotations. In

addition, our data purification surpasses the randomly se-

lected one by 1.2% even though the randomly selected data

have more images and boxes during training phase, which

demonstrates that the PU classifier can filter out dirty im-

ages and select high quality positive images from massive

unlabeled dataset.

PLLD [51] proposes to learn proposal features from

RPN by adding random noise to original feature maps, and

use the unlabeled data provided by COCO dataset to further

boost the two-stage detector. Different with PLLD, we con-

centrate on exploring semi-supervised learning under more

complicated situation that the unlabeled data can have large

amount of dirty images. And we think the features from

neck and head are more decisive for object detection. Re-

sults demonstrate that our approach outperforms PLLD by

1% in mAP with less unlabeled data. STAC [49] leverages

abundant data augmentation strategies to improve the per-

formance upon semi-supervised learning. In particular, we

achieve better results under a more complicated scenario,

and only use horizontal flipping and color transformation to

the unlabeled data.

To evaluate the effects of our proposed PU classifier for

data purification, we use a simple threshold on the confi-

dence of classes predicted by the teacher detector on the

unlabeled set as a baseline. It can be seen from Table 1 that

the expanded training data selected by PU classifier outper-

forms its randomly selected counterpart by 1.2% mAP on

COCO minival with only half of the extra images. This
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Table 1. Comparisons between training with proposed data purification and random selection manner on COCO minival. ‘thr’ means

threshold for pseudo label generating. The predicted box is considered as pseudo label if its confidence score is higher than ‘thr’. ‘# boxes’

is the number of instances in unlabeled dataset accordingly.

Training data nu thr # boxes mAP AP75 AP50 APS APM APL

Positive (baseline) - - - 37.4 58.3 40.5 21.8 41.0 47.8

+ Self-Distillation - - - 38.4 59.1 41.9 22.2 42.0 50.1

PLLD [51] 123k - - 38.4 59.7 41.7 22.6 41.8 50.6

STAC [49] 123k 0.5 - 39.2 - - - - -

236k 0.5 455k 37.4 57.8 40.8 21.9 41.0 48.3

+ Randomly selected 236k 0.7 301k 38.0 58.4 41.3 21.7 41.6 48.9

236k 0.9 182k 38.2 58.6 41.7 22.2 42.0 49.4

118k 0.5 444k 39.4 60.1 42.9 23.4 43.0 50.9

+ PU selected 118k 0.7 296k 39.3 59.9 42.8 23.2 42.8 50.9

118k 0.9 175k 39.0 59.7 42.7 22.8 42.7 50.6

Table 2. Evaluation results of different nu on COCO minival.

Unlabeled data nu thr # boxes mAP

Randomly Selected 118k 0.5 304K 37.7

Randomly Selected 118k 0.9 103K 37.9

Randomly Selected 1.3M 0.5 3287K 36.6

Randomly Selected 1.3M 0.9 1117K 37.0

PU Selected 236k 0.5 802K 39.5

PU Selected 236k 0.9 299K 39.3

result demonstrates the necessity and effectiveness of the

proposed PU classifier.

In addition, we find that randomly selecting unlabeled

data and using PU classifier to select unlabeled data achieve

their best results at different thresholds. The detector

trained by labeled and randomly selected data achieves

38.2% mAP when the threshold is set as 0.9, and the mAP

decreases to 37.4% when the threshold is set as 0.5. Even

though lower threshold can bring more instances during

training phase, the randomly selected data may contain

other dirty images that could withhold the pretrained FPN of

generating high quality pseudo labels. Detector trained by

labeled and PU selected data achieves 39.4% mAP when the

threshold is set as 0.5, which indicates that our data purifi-

cation is effective enough to filter out dirty images. Lower

threshold can bring more instances thus induces a better per-

formance. Another interesting fact is that the 118k images

selected by PU classifier have similar number of instances

(# boxes in Table 1) compared to 236k randomly selected

images. This phenomenon also demonstrates the efficiency

of our proposed data purification method.

We also report the result of training with different num-

bers of unlabeled images as shown in Table 2. We can find

that using 118K randomly selected data achieves 37.9%

mAP while using all unlabeled data only ahieves 37.0%

mAP. These comparisons indicate that more unlabeled data

with different distributions inject more severe bias, lead-

ing to a worse performance. And this result is different

with the recently proposed method [62], one main reason

is the different strategies on constructing mini-batch. [62]

uses a batch size of 512 with 256 from COCO (118K im-

ages) and 256 from the pseudo dataset (i.e. 1.3M images

in ImageNet), and the “epoch” COCO is trained for is dif-

ferent from that of ImageNet. In our setting, we first con-

struct mini-batch using only ImageNet images then con-

struct mini-batch using only COCO images.

4.3. Ablation Study

In this section, we conduct the ablation study on the pro-

posed self-distillation loss and present the visualization of

selected unlabeled images by two different methods. The

study analyzes the impact of hint learning on FPN fea-

tures, ground truth bounded distillation on the classification

branch and the regression branch.

Self-distillation loss. We investigate the proposed self-

distillation loss, which is depicted in Eq. 8, in two set-

tings: (i) student detector has smaller backbone compared

to teacher detector, i.e. student is ResNet-18 based FPN and

teacher is ResNet-50 based FPN and (ii) student detector

has the same overall architecture as teacher detector. The re-

sults are shown in Table 3. In the first setting, hint learning

improves result of the baseline model from 33.4% to 34.6%.

Distilling the classification branch further boosts the mAP

by 0.7%, and distilling the regression branch finally helps

the detector achieve an mAP of 35.8% on COCO minival

set. In the second setting, the proposed self-distillation loss

enhances the ResNet-50 based FPN by 1.0% mAP, which

validates that our proposed self-distillation loss is of signifi-

cant benefit for student detector to fully exploit the potential

of pretrained teacher detector.

Quality of data purification. We visualize the selected

images from unlabeled set and the corresponding pseudo

labels with scores predicted by the teacher detector in Fig-

ure 3. It can be seen that if we directly use self-training

based algorithm that simply use a threshold to select im-

ages on the massive unlabeled data, the pretrained teacher
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Table 3. Ablation study of the proposed self-distillation on COCO “val2017” (minival). All models are trained on “train2017” only.

Model Teacher hint kdc kdr mAP AP50 AP75

Res18 FPN (baseline) - - - - 33.4 53.6 35.9

X 34.6 54.6 37.2

Res18 FPN Res50 FPN X X 35.3 55.4 38.2

X X X 35.8 56.0 38.8

Res50 FPN (baseline) - - - - 37.4 58.3 40.5

X 37.8 59.1 41.0

Res50 FPN Res50 FPN X X 38.2 58.7 41.8

X X X 38.4 59.1 41.9

Randomly Selected PU Classifier Selected 

Figure 3. Visualization of the generated pseudo labels on unlabeled images. Images on the left are selected randomly while images on the

right are selected by our proposed PU classifier (Best viewed in color).

detector will generate wrong annotations on the negative

images. For example, the COCO dataset doesn’t have the

category “goldfish”. However, the pretrained FPN classi-

fies the “goldfish” into “carrot” with a confidence of 0.88.

Although one can use a higher threshold to alleviate this

situation, the number of training boxes will inevitably de-

crease accordingly. The qualities of PU classifier selected

images are much better than the randomly selected ones.

5. Conclusion

In this work, we explore a more complicated and real-

istic situation on semi-supervised object detection, where

we intend to exploit all available labeled data and excavate

useful samples from unlabeled web images. While semi-

supervised learning has achieved great success in classifi-

cation task, not much effort has been put on the above sit-

uation. To accomplish the data purification, we propose a

positive-unlabeled learning based scheme that can filter out

the dirty images from the unlabeled data. Further more, we

present a self-distillation algorithm which can enhance the

object detector by exhausting a single model. Experiments

on COCO benchmark demonstrate the efficiency of our pro-

posed two stage framework.
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