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Abstract

Self-attention has been successfully applied to video rep-

resentation learning due to the effectiveness of modeling

long range dependencies. Existing approaches build the

dependencies merely by computing the pairwise correla-

tions along spatial and temporal dimensions simultane-

ously. However, spatial correlations and temporal corre-

lations represent different contextual information of scenes

and temporal reasoning. Intuitively, learning spatial con-

textual information first will benefit temporal modeling. In

this paper, we propose a separable self-attention (SSA)

module, which models spatial and temporal correlations se-

quentially, so that spatial contexts can be efficiently used in

temporal modeling. By adding SSA module into 2D CNN,

we build a SSA network (SSAN) for video representation

learning. On the task of video action recognition, our ap-

proach outperforms state-of-the-art methods on Something-

Something and Kinetics-400 datasets. Our models often

outperform counterparts with shallower network and fewer

modalities. We further verify the semantic learning abil-

ity of our method in visual-language task of video retrieval,

which showcases the homogeneity of video representations

and text embeddings. On MSR-VTT and Youcook2 datasets,

video representations learnt by SSA significantly improve

the state-of-the-art performance.

1. Introduction

Video representation learning is crucial for tasks such as

detection, segmentation and action recognition. Although

2D and 3D CNN based approaches have been extensively

explored to capture the spatial-temporal correlations for

these tasks, learning strong and generic video representa-

tions is still challenging. One possible reason is that videos

contain not only rich semantic elements within individual

frames, but also the temporal reasoning across time which

links those elements to reveal the semantic-level informa-

tion for actions and events. Effective modeling of long
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Figure 1. Comparison between separable self-attention and

spatial-temporal self-attention on Kinetics. The red points are

query regions, and the arrows point to the relevant regions (Top-10

attention weights) with the query regions. Separable self-attention

learns more action related regions (hand and basket).

range dependencies among pixels is essential to capture

such contextual information, which current CNN operations

can hardly achieve. RNN based methods [23] have been

used for this purpose. However, they suffer from the high

computational cost. More importantly, RNN cannot estab-

lish the direct pairwise relationship between positions re-

gardless of their distance.

Self-attention mechanism has been recognized as an ef-

fective way to build long range dependencies. In natural

language processing, self-attention based transformer [35]

has been successfully used to capture contextual informa-

tion from sequential data, e.g., sentences. Recent efforts

have also introduced self-attention to computer vision do-

main for visual tasks such as segmentation and classifica-

tion [40, 47, 37, 14]. The work from Wang et al. [37] pro-

posed a generic self-attention form, i.e., non-local mean,

for video action recognition, which builds pairwise corre-

lations for pixel locations from space and time simultane-

ously. However, the correlations from space and time rep-

resent different contextual information. The former often

relates to scenes and objects, and the latter often relates

to temporal reasoning for actions (short-term activities) and
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events (long-term activities). Human cognition always no-

tices scenes and objects before their actions. Learning cor-

relations along spatial and temporal dimensions together

might capture irrelevant information, leading to the ambigu-

ity for action understanding. This drawback becomes even

worse for videos with complex activities. To efficiently cap-

ture the correlations in videos, decoupling the spatial and

temporal dimensions is necessary. Meanwhile, short-term

temporal dependencies should also be considered for cap-

turing episodes of complex activities.

In this paper, we fully investigate the relationship be-

tween spatial and temporal correlations in video, and pro-

pose a separable self-attention (SSA) module, which can

efficiently capture spatial and temporal contexts for tempo-

ral modeling. In our design, spatial self-attention is first

performed independently for input frames. The attention

maps, which convey the spatial contextual information, are

then aggregated along temporal dimension and sent to tem-

poral attention module. In this way, the spatial contextual

information will help better capture the temporal correla-

tions for both short-term and long-term, so that the actions

in videos can be fully understood.

We verify our approach on video action recogni-

tion task on Something-Something and Kinetics datasets.

Something-Something (V1&V2) contains fine-grained

video action classes with high temporal reasoning, e.g.,

“Moving something across a surface without it falling”.

By comparing with state-of-the-art 3D [26, 39] and 2D

[20, 36, 6, 44] based methods, our models show the supe-

rior performance. Moreover, our methods can outperform

counterparts with shallower network structure, i.e., ResNet-

50 vs. ResNet-101, and fewer modalities, i.e., RGB-only

vs. RGB and optical flow. Since the goal of our design is to

capture semantic information as well as possible, we further

demonstrate the effectiveness of SSA in video-language

task, i.e., video retrieval, which searches candidate video

clips by text query. As text embeddings contain explicit

semantic information, the homogeneity of video represen-

tations and text embeddings can better prove the efficiency

of video learning method.

2. Related Work

2.1. Video Learning Networks

With the success of CNN [34, 38, 43, 4] in image tasks,

great efforts have been put on video tasks. CNN networks

are also extended from image to video. There are mainly

two branches for video learning architectures: 2D based

methods [16, 36, 24] and 3D based methods [2, 32, 39, 25].

I3D [2] network proposed to inflate ImageNet pre-trained

models from 2D to 3D by copying the weights. S3D [39]

proposed to decompose 3D convolutions to spatial and tem-

poral convolutions. TSN [36] proposed an efficient 2D

based video learning structure. And TSM [20] proposed

to capture temporal dependency by simply shifting the fea-

tures between frames. SlowFast [7] used two branches with

different temporal resolutions to capture temporal correla-

tions. 3D based methods suffer from the overhead of param-

eters and complexity, while 2D based methods need careful

temporal feature aggregation. To take the flexibility of 2D

based methods for video frames, we employ 2D CNN as our

baseline in this work.

2.2. Action Recognition

Action recognition, also known as video classification

[8, 34, 33], has been extensively explored in recent years.

The accuracy of action recognition is highly related to video

representation learning. Early works try to use 2D based

methods to video. Later, 3D convolution networks are ex-

plored and achieve excellent performance. However, huge

complexity makes these methods expensive to be used.

Moreover, 3D based methods always take several consec-

utive frames as input, so that videos with complex actions

can not be well handled. Recently, 2D convolution net-

works with temporal aggregation achieve significant im-

provements, which have flexible structures and inputs, as

well as much lower computational and memory costs than

3D based methods. Representations learnt for action recog-

nition are always used as initialization for other tasks.

2.3. SelfAttention

Self-attention mechanism has been successfully used in

machine translation domain [35]. Recently, there have

been extensive efforts to study its applications on com-

puter vision tasks such as classification and segmentation

[40, 47, 37, 46, 13, 9, 10, 14]. There are also efforts to use

attention instead of convolutions for feature extraction [1].

For video classification, non-local network [37] proposed to

use non-local mean, which is based on self-attention, to cap-

ture global dependency among pixel positions. Each pixel

position attends to all other positions from both spatial and

temporal dimensions. The full connections among pixels

do take broader attention fields. However, this also intro-

duces irrelevant information. Our work is closely related to

non-local block, and try to investigate the relation of spatial

attention and temporal attention.

2.4. VisualLanguage Learning

Recently, joint vision and language training [28] is more

and more popular for vision tasks. By adding language

models, such as BERT [5], the semantic information can be

efficiently learned from videos for multi-modal tasks, such

as retrieval and captioning [31, 45]. VideoBERT [30] pro-

posed to use a visual-linguistic model to learn high-level

features without any explicit supervision. Sun et al. [29]

then proposed to use contrastive bidirectional transformer
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Figure 2. Design of separable self-attention attention module. Spatial attention (SA) part is highlighted in yellow. Temporal attention (TA)

part is highlighted in blue.

(CBT) to perform self-supervised learning for video repre-

sentations. UniViLM [27] also proposed a joint video and

language pre-training scheme by adding generation tasks in

the pre-training process, which is more efficient than CBT

in some downstream tasks. However, these methods only

focus on the training of the transformer encoder and de-

coder, while take the video networks as feature extractors.

Therefore, it is still important to improve video learning net-

works to efficiently learn real semantic information.

3. Separable Self-Attention Network

In this section, we describe our proposed separable self-

attention network in details.

3.1. SelfAttention in Vision

Let X ∈ R
T×H×W×C be the input features with T

frames. H, W and C denote spatial size, temporal size

and channel number, respectively. A typical 3D self-

attention/3D NL block [37] maps X into query, key and

value embeddings using three 1×1×1 convolutions, which

are denoted as Xq , Xk and Xv . The three embeddings are

then reshaped to the sizes of THW × C, C × THW and

THW × C, respectively. After that, the similarity matrix

M ∈ R
THW×THW , which builds the full pairwise relation-

ships for locations from spatial and temporal dimensions, is

calculated using matrix multiplication as

M = Xq ×Xk. (1)

M is then normalized with softmax function and dis-

tributed to each location to generate the attention map Y

as

Y = softmax(M)×Xv, (2)

where Y ∈ R
THW×C . Each element mij in matrix M

measures the similarity between position i and position j

in spatial and temporal dimensions. Attention Y is then

transformed by 1×1×1 convolution Wz and added back to

the original query feature X , like a residual connection, to

generate the output feature Z:

Z = Wz(Y ) +X. (3)

3.2. Separable SelfAttention Module

The 3D based self-attention can successfully model long

range dependencies from space and time simultaneously.

However, such dependencies are first-order correlations

which mainly capture the similarity between single pixels,

but not semantic-level correlations. For example, if i and j

are positions from different frames, lacking the prior spatial

correlations between i and other positions in the same frame

with i, the calculated correlation between i and j may not

describe the true temporal relationships of the scenes and

objects they belong to. Furthermore, Equation 1 shows that

the existing self-attention design, such as non-local block

[37], considers more on position-wise correlations, but less

on channel-wise correlations, which contain important clas-

sification information. This may lead to information loss for

scenes and objects.
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Based on above analysis, we carefully design a separable

self-attention module, which follows two principles. Firstly,

the spatial and temporal attentions are performed sequen-

tially, so that temporal correlations can fully consider the

spatial contexts. Secondly, spatial attention maps exploit as

much context information as possible.

The main structure of our proposed SSA is illustrated in

Figure 2 highlighted in grey. The input feature X is first

mapped into spatial query, key and value embeddings using

2D 1×1 convolutions, denoted as Xt
q , Xt

k and Xt
v , where

t ∈ [0, T ] is time index. Then, the embeddings are used to

generate T spatial attention maps independently, which are

then concatenated together as a 4D intermediate attention

maps X̂ with the dimension of T ×H×W ×C. After that,

X̂ is transformed to temporal embeddings X̂q and X̂v us-

ing 3×1×1 convolution. Note that in our design, the spatial

attention and temporal attention share the same value em-

bedding with different shapes, i.e., Xt
v and X̂v . The three

temporal embeddings are then used to generate the tempo-

ral attention. We describe the details of spatial attention and

temporal attention as follows.

Spatial attention: For spatial attention, we consider

both position-wise attention and channel-wise attention.

For this purpose, we design a two-branch structure, i.e., po-

sition branch and channel branch, to calculate them inde-

pendently. The details are highlighted in yellow in Figure 2.

The two branches share the same embeddings Xt
q and Xt

k.

Each of the embeddings is reshaped to the size of HW ×C

and C × HW . The position branch generates spatial sim-

ilarity matrix MS ∈ R
N×N , where N = H · W . This is

also the design of most existing 2D self-attention methods

[47]. The channel branch generates channel similarity ma-

trix MC ∈ R
C×C to explore the dependencies along chan-

nel dimension. The two branches are calculated as

MS = Xt
q(S) ×Xt

k(S) (4)

MC = Xt
q(C) ×Xt

k(C), (5)

where S and C denote position branch and channel branch,

respectively. The spatial attention maps for time t are then

calculated as

X̂t = (MS ×Xt
v(S)) + (MC ×Xt

v(C)). (6)

The intermediate attention maps X̂ = Cat[X̂0, X̂1...X̂T ]
can be generated for the next stage, i.e., temporal attention.

Temporal attention: Temporal attention is performed

using the spatial attention maps X̂ as input. Unlike the 3D

self-attention that uses three 1×1×1 convolutions to gen-

erate the embeddings, we use one 3×1×1 convolution in-

stead. This design allows temporal fusion on spatial atten-

tion maps and builds the short range correlations along tem-

poral dimension, so that the short-term activities can also

Figure 3. Network architecture of SSA on ResNet-50. SSA mod-

ule is inserted within residual block, i.e., Res2 and Res3, right

after the first 1×1 convolution. There are totally 5 blocks contain-

ing SSA, 2 from Res2 and 3 from Res3. Temporal interactions of

input frames only happen in SSA modules (blue arrow lines). The

features are fused together at the end of the network.

be attended to. The feature maps of X̂ are then reshaped

to generate X̂q and X̂k for calculating similarity matrix

MT ∈ R
T×T as

MT = X̂q × X̂k (7)

Thus, the final output attention map Y is calculated as

Y = MT × X̂v. (8)

3.3. Network Architecture

The recent works on video learning show the excellent

performance of 2D CNN based frameworks such as TSN

[36], TRN [44] and TSM [20] . Comparing with the 3D

CNN based methods, 2D based methods can better decou-

ple the spatial and temporal modeling, thereby achieve su-

perior performance on video clips with high dynamics. We

choose TSN framework as our baseline, which uniformly

splits a video clip into T snippets and selects only one frame

per snippet. We insert SSA module into different layers to

establish separable self-attention network (SSAN). Figure

3 shows an example of SSAN on ResNet-50 backbone. In

this architecture, SSA module is inserted into the residual

blocks to capture spatial and temporal contextual informa-

tion in different stages. Particularly, we insert SSA module

in Res2 and Res3 blocks right after the first 1×1 convolu-

tion. Please note that there is temporal fusion only at the

end of TSN. Thus, the temporal information exchange in

middle layers comes only from SSA module, which better

illustrates the temporal modeling ability of SSA. SSA is a

flexible building module and can also be easily added in 3D

based architecture.

4. Experiments

To demonstrate the effectiveness of our approach, we

conduct comprehensive experiments on the standard vi-
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Method Backbone Modality Frames Val Top-1 Val Top-5 Test Top-1

I3D [2] Inception RGB 64 45.8 76.5 27.2

NL I3D + GCN [2] ResNet-50 RGB 32+32 46.1 76.8 45.0

S3D [39] Inception RGB 64 47.3 78.1 -

S3D-G [39] Inception RGB 64 48.2 78.7 42.0

TSN [36] BNInception RGB 8 19.5 - -

TRN [44] BNInception RGB 8 34.4 - 33.6

bLVNet-TAM [6] bLResNet-50 RGB 16×2 48.4 78.8 -

bLVNet-TAM [6] bLResNet-101 RGB 16×2 49.6 79.8 48.9

TSM [20] ResNet-50 RGB 8 45.6 74.2

TSM [20] ResNet-50 RGB 16 47.2 77.1 46.0

TSMEn [20] ResNet-50 RGB 24 49.7 78.5 -

TSM 2-stream [20] ResNet-50 RGB+flow 16+16 52.6 81.9 50.7

SSA(Ours) ResNet-50 RGB 8 49.5 79.5 -

SSA(Ours) ResNet-50 RGB 16 51.7 81.3 -

SSAEn(Ours) ResNet-50 RGB 16+8 55.1 84.9 54.0

Table 1. Comparisons with state-of-the-art methods on Something-Something-V1 validation and test sets.

sion task of video action recognition where the large-scale

Something-Something dataset and Kinetics benchmark are

used. Furthermore, to verify the efficiency of the video

representations learnt by SSAN, we also conduct a vision-

language task of text-based video retrieval which searches

the corresponding video clips by text query. This task show-

cases the homogeneity between language and video repre-

sentations, thereby the semantic-level information the video

representations contain.

4.1. Dataset

Something-Something: Something-Something dataset

[12] is a large scale benchmark dataset for video action

recognition, containing 174 video categories of human-

object interactions, e.g., “moving something across a sur-

face without it falling”. Temporal reasoning is critical to in-

fer the actions in this dataset. There are two versions, which

contain 108k and 220k videos, respectively. Videos in

Something-Something-V1 are split into 86K, 11K and 11K

as training, validation and test sets. Something-Something-

V2 is an updated version and contains 129K, 25K and 27K

videos for training, validation and test. We conduct the ex-

periments on both validation and test sets. It is noteworthy

that labels for test sets are not publicly available. We sub-

mitted the inference results to the benchmark and report the

scores published in the leaderboards.

Kinetics-400: Kinetics-400 [2] is a popular bench-

mark for action recognition collected from Youtube, which

contains 400 action categories. There are totally 300K

video samples, which are divided to 240K, 20K and 40K

as training, validation and test sets, respectively. Videos

in Kinetics-400 are relatively longer and more complex.

Each video is trimmed to around 10-second clip. Kinet-

ics is less sensitive to temporal relationships compared with

Something-Something.

4.2. Experimental Setups

Video action recognition: We adopt the sparse sam-

pling and data augmentation in TSN [44] to train our model.

Specifically, we first divide a video clip into T uniform seg-

ments and then select one random frame from each segment

as the input. The input frames are resized as 256×256 and

randomly cropped to the size of 224×224. We take sin-

gle clip and the 224×224 central crop for evaluation unless

otherwise specified.

Our model is initialized with the weights pre-trained on

ImageNet. For Something-Something dataset, we train our

models for around 80 epochs. And for Kinetics-400 dataset,

the models are trained for around 200 epochs. For all the

models, the initial learning rate is 0.01 and decays by 0.1

when the validation loss reaches the plateau. We adopt a

linear warmup strategy [11] for the first epoch. Batch size

is set as 64. We utilize the Nesterov momentum optimizer

with a weight decay of 0.0005 and a momentum of 0.9.

Dropout rate of 0.5 is also used to reduce over-fitting.

Text-based video retrieval: This task aims at retriev-

ing the most relevant video clip given an input text query.

We adopt the method in [22], which uses a gated recur-

rent unit (GRU) based text-video joint embedding network

to measure the similarity between video representations

and text embeddings. We adopt the training and infer-

ence strategies in [22] including text pre-processing, ex-

cept that the video representations are extracted using our

SSA with ResNet-50 instead of the original 3D ResNeXt-
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Method Backbone Val Top1

3D NL ResNet-50 60.6

2D NL ResNet-50 60.3

1D NL ResNet-50 60.1

2D+1D NL ResNet-50 61.0

SSA ResNet-50 62.3

Table 2. Comparisons with NL block on Something-Something-

V2 validation set. All models use TSN based framework and

ResNet-50 backbone initialized with the pre-trained weights on

ImageNet. The input frame number is 8.

101 pre-trained on Kinetics dataset. We also pre-train our

SSA with ResNet-50 on Kinetics dataset using video clas-

sification task. Then, we use SSA as a feature extractor to

get video representations for retrieval. The GRU network

can be pre-trained on HowTo100M [22] dataset, which is

a video-language pre-training dataset containing one mil-

lion narrated instructional web videos, then fine-tuned on

MSR-VTT and Youcook2 datasets. The evaluation metric

is “Recall at K” (R@K), which is the percentage of video

candidates retrieved in the top K video clips. We report this

recall metrics on two popular video-language datasets, i.e.,

MSR-VTT and Youcook2.

4.3. Experiments on Action Recognition

Comparisons with non-local block: Non-local block

[37] has been proved to significantly improve performance

in video classification. We compare our approach with NL

block to demonstrate the effectiveness of our separable de-

sign. In Table 2, we show the results of 3D NL (spatial-

temporal), 2D NL (spatial) and 1D NL (temporal). We can

see obvious performance improvement of SSA over 3D NL.

This demonstrates that separating spatial and temporal at-

tention is a right way to better model temporal reasoning.

We also show the results of 2D+1D NL, which is a

straightforward way to separate self-attention module along

spatial and temporal dimensions. In specific, 1D NL is per-

formed right after 2D NL. We insert NL block into the same

locations with SSA for fair comparison, and observe supe-

rior performance of SSA. This interesting result shows that

separable self-attention does need careful design.

Comparisons with state-of-the-art: We compare

our approach with previous state-of-the-art methods

on Something-Something and Kinetics datasets. For

Something-Something-V1 and V2, we report our results on

both validation and test sets.

The results of SSA and other state-of-the art methods on

Something-Something-V1 are summarized in Table 1. The

first section shows the results of I3D and S3D, as well as

their enhanced variants NL I3D + GCN and S3D-G, which

enable full temporal fusion and attention mechanism. With

Method Frames Val Top-1 Test Top-1

TSN 8 31.9 -

TRN† [44] 8 48.8 50.9

bLVNet-TAM [6] 16+16 61.7 -

bLVNet-TAM‡ [6] 16+16 61.9 -

TSM [20] 8 59.1 -

TSM [20] 16 63.4 64.3

TSM 2-stream [20] 16+16 66.0 66.6

SSA(Ours) 8 62.3 -

SSA(Ours) 16 66.0 -

SSAEn(Ours) 16+8 67.4 68.2

Table 3. Comparisons with state-of-the-art 2D CNN based meth-

ods on Something-Something-V2 validation and test sets. † rep-

resents BNInception backbone, and ‡ represents ResNet-101.

Method Frames Val Top-1 Val Top-5

C3D† [15] - 65.6 85.7

I3D† [2] 64 71.1 89.3

S3D† [39] 64 72.2 90.6

TSN† [36] 8 70.6 89.2

TSM [20] 8 74.1 91.2

TSM [20] 16 74.7 -

bLVNet-TAM [6] 8+8 71.0 89.8

bLVNet-TAM [6] 16+16 72.0 90.6

bLVNet-TAM [6] 24+24 73.5 91.2

A
2-Nets [3] 8 74.6 91.5

NL I3D [37] 8 73.8 91.0

NL I3D [37] 128 76.5 92.6

SSA(Ours) 8 75.8 92.4

SSA(Ours) 16 76.4 92.7

SSAEn(Ours) 8+16 77.5 93.3

Table 4. Comparisons with state-of-the-art methods on Kinetics-

400. The methods with † adopt Inception as backbone, while oth-

ers adopt ResNet-50 as backbone.

much fewer input frames, our 16-frame model outperforms

these methods by a large margin (5.9%, 4.3%, 5.6% and

3.2%, respectively). The second section shows the results

of TSN and TRN. TSN has no temporal fusion operation, so

that the performance is much lower. Our approach is built

upon TSN framework. From the table, we can see a signif-

icant improvement of SSA (30.0%) when using 8-frame in-

put. Though TRN has a temporal fusion at the end of trunk

network, the performance is still relatively low. This shows

the fact that modeling temporal context across different lay-

ers is important. That is also why we choose to insert SSA

module into the layers of the backbone, but not add it at the

end as a head. Our RGB-only ensemble model (SSAEn),

which is the ensemble of 8-frame input and 16-frame input,
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2D+1D NL SA SVE TA Val Top1

X 61.0

X X 61.5

X X X 61.4

X X X X 62.3

Table 5. Ablation study of individual performance for spatial at-

tention (SA), temporal attention (TA) and shared value embedding

(SVE) on Something-Something-V2.

Method Backbone Res2 Res3 Val Top1

SSA ResNet-50 X 61.2

SSA ResNet-50 X 61.8

SSA ResNet-50 X X 62.3

Table 6. Ablation study of different locations that SSA is inserted

in. Note that we insert SSA into 5 residual blocks (2 from Res2

and 3 from Res3).

outperforms TSM 2-stream model with fewer input frames

(24 vs. 32).

We also compare our approach on Something-

Something-V2 with state-of-the-art 2D CNN based meth-

ods in Table 3. Compared with Something-Something-

V1, the videos in Something-Something-V2 are more sen-

sitive to the number of input frames. It can be seen that

SSA model with 16-frame input achieves comparable per-

formance with TSM 2-stream model with 32-frame input.

And compared with bLVNet-TAM, which has two branches

of different spatial resolutions, our method achieves much

better results.

In both Table 1 and Table 3, SSA outperforms deeper

network (ReNet-101) by a large margin (4.5% and 5.5% re-

spectively), which show the strong video learning ability.

We also show per class results in Figure 4 to figure out

the efficiency of our method in individual classes. We list

the results of TSM, which uses temporal shifting to ex-

change information among frames, to better understand the

difference between temporal fusion and temporal attention.

The performance comparisons on Kinetics-400 are sum-

marized in Table 4, including two recent self-attention

based methods, i.e., A2-Nets [3] and NL block [37]. Since

Kinetics-400 dataset is less sensitive to the depth of net-

work, we compare the results mainly on ResNet-50 back-

bone. From the table, we can see that our models outper-

form other methods when the numbers of input frames are

the same. Our result with 16-frame input is comparable

with that of NL I3D with 128-frame input, which demon-

strates the strong temporal modeling ability of SSA. And

our ensemble model (SSAEn) achieves 1% higher accu-

racy than NL I3D with much fewer input frames (24 vs.

128).

Ablation study: Although SSA has been proven to be

efficient for video representation learning, we still like to

fully investigate and understand this idea. Therefore, we

conduct ablation experiments to showcase how each design

affects the overall performance.

As shown in Figure 2, our design consists of two sequen-

tial parts, i.e., spatial attention (SA) and temporal attention

(TA). SA has a two-branch structure, which contains posi-

tion branch and channel branch. The position branch is sim-

ilar to 2D NL block. Therefore, SA is an enhanced version

of 2D NL block by adding channel branch. In TA, we use

3×1×1 convolution instead of 1×1×1 convolution in NL

block. We use 2D+1D NL as baseline and add our modifi-

cations one by one to demonstrate their contributions to the

overall performance. Besides SA and TA, we also evaluate

the performance of shared value embedding (SVE), which

aims to reduce complexity by removing a 1×1×1 convolu-

tion. The ablation study is shown in Table 5. The results

show that both SA and TA improve performance. When

using them together, there is significant performance boost.

Table 6 shows the results of different locations that SSA is

inserted in. We can see that inserting SSA to either one of

Res2 and Res3 can take significant improvement. Accord-

ing to our experiments, inserting SSA to the later blocks

such as Res4/Res5 has lower performance than Res2/Res3

(around 0.5%-0.7%). This may be due to the reduction of

spatial resolution.

4.4. Experiments on Video Retrieval

Video retrieval is a standard video-language task to find

video candidates by text query. The normal process is to

jointly train a cross encoder of video representations and

text embeddings to learn their similarity. Text embeddings

contain explicit semantic information. As a consequence,

the more semantic information that video representations

contain, the better the accuracies are. That is also major

reason that we verify our method on this task. We em-

ploy two popular large-scale video-language datasets, i.e.,

MSR-VTT and Youcook2. MSR-VTT contains videos in

20 domains such as music, sports and movies. For each

video, 20 captioning sentences are annotated by human

workers. There are totally 200K unique clip-caption pairs.

We adopt the test strategy of JSFusion [41] and use 1000K

clip-caption pairs as test data. Youcook2 is a cooking video

data set, including 14K video clips from 89 recipes. Since

the video clips are much longer (5.26 minutes on average)

and contain some uncorrelated scenes other than cooking

instructions, Youcook2 is a challenging dataset.

Table 7 summarizes the performance comparisons on

MSR-VTT dataset. To demonstrate the affection of video

features to the retrieval performance, no pre-training is ap-

plied on these methods. The first section shows previous

state-of-the-art methods. From the results, we can see that

text-to-video retrieval is really a challenging task. The sec-
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Figure 4. The top 15 categories which are improved by SSA (orange) compared to TSM (blue) On Something-Something-V2. There are

some fine-grained categories that contain challenging actions such as “Putting something that can’t roll onto a slanted surface, so it

stays where it is”. Our model also works better on some categories with very small differences such as “Putting something behind

something and Putting something into something”.

Method R@1↑ R@5↑

Random 0.1 0.5

C+LSTM+SA [31] 4.2 12.9

VSE-LSTM [18] 3.8 12.7

Kaufman et al. [17] 4.7 16.6

CT-SAN [42] 4.4 16.6

JSFusion [41] 10.2 31.2

GRU+ResNeXt-101 [22] 12.1 35.0

GRU+SSA 24.4 49.3

Table 7. Results of text-based video retrieval on MSR-

VTT dataset. The only difference between our method and

GRU+ResNeXt is the video representation.

Method R@1↑ R@5↑

Random 0.03 0.15

HGLMM FV CCA [19] 4.6 14.3

GRU+ResNeXt-101 [22] 4.2 13.7

GRU+ResNeXt-101† [22] 8.2 24.5

GRU+SSA 5.5 15.9

GRU+SSA† 10.9 28.4

Table 8. Results of text-based video retrieval on Youcook2 dataset.

† represents pre-trained on a subset of HowTo100M dataset

(around 1.2M videos).

ond section shows the results from [22], which our method

outperforms by a large margin (12.3%).

Table 8 summarizes the performance comparisons on

Youcook2 dataset. The results show that pre-trained GRU

using video representations learnt by SSA can be signifi-

cantly improved (5.4%), which is larger than 3D ResNeXt

(4.0%). This also shows that SSA is generic on different

videos.

It is noteworthy that MIL-NCE in [21] also reports the

retrieval results on the two datesets. However, MIL-NCE

is pre-trained on HowTo100M (around 1.2M videos), while

SSA is pre-trained on Kinetics-400 (around 240K videos).

Our experiments show that SSA outperforms MIL-NCE on

MSR-VTT by 14.5%, but is outperformed by MIL-NCE on

Youcook2. Since they are not on the same basis, we don’t

include the comparison in above tables.

5. Conclusion

We proposed a separable self-attention network (SSAN)

for video representation learning, which learns spatial and

temporal correlations in a separable way. In specific, we in-

vestigate the relationship between spatial attention and tem-

poral attention and design a sequential structure to model

temporal reasoning with the priori of spatial contextual

information. By adding the SSA module into 2D CNN

backbone, we built a SSA network based on TSN frame-

work. We conducted extensive experiments on large-scale

Something-Something dataset and Kinetics-400 dataset to

verify our approach. Our SSAN outperforms state-of-

the-art methods on both datasets. Furthermore, we also

verify the video representations learnt by our method on

video-language task of video retrieval. On MSR-VTT

and Youcook2 datasets, our method significantly improves

state-of-the-art performance.
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