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Abstract

Multiview shape-from-shading (SfS) has achieved high-

detail geometry, but its computation is expensive for solv-

ing a multiview registration and an ill-posed inverse ren-

dering problem. Therefore, it has been mainly used for

offline methods. Volumetric fusion enables real-time scan-

ning using a conventional RGB-D camera, but its geom-

etry resolution has been limited by the grid resolution of

the volumetric distance field and depth registration errors.

In this paper, we propose a real-time scanning method

that can acquire high-detail geometry by bridging volumet-

ric fusion and multiview SfS in two steps. First, we pro-

pose the first real-time acquisition of photometric normals

stored in texture space to achieve high-detail geometry. We

also introduce geometry-aware texture mapping, which pro-

gressively refines geometric registration between the texture

space and the volumetric distance field by means of normal

texture, achieving real-time multiview SfS. We demonstrate

our scanning of high-detail geometry using an RGB-D cam-

era at ∼20 fps. Results verify that the geometry quality of

our method is strongly competitive with that of offline multi-

view SfS methods.

1. Introduction

Shape-from-shading (SfS) has been commonly used to

enhance geometric details in 3D scanning. When surface

reflectance and illumination are known, SfS factorizes re-

flected irradiance of camera signals to photometric normals

in the camera’s resolution [12]. When a high-resolution

camera is used, the geometry quality can be improved sig-

nificantly by combining base geometry and normals [21].

However, when reflectance and illumination are unavail-

able, SfS becomes a very ill-posed problem. Multiview SfS

estimates distributions of illumination and albedo by lever-

aging multiview input [1, 10] and then obtains high-detail

normals from shading. The geometry quality of these mul-

tiview SfS methods is significantly higher than that of real-

time scanning methods using a conventional RGB-D cam-
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Figure 1: Result of our real-time normal fusion method,

compared with the conventional fusion method that accu-

mulates TSDFs of depth maps in the canonical space. We

decompose camera signals to photometric normals and ac-

cumulate them in texture space associated with voxel grids

of TSDFs, enabling high-resolution geometry in real-time.

Refer to the supplemental video for real-time demo.

era. However, when a camera is unstructured and scenes

are uncontrolled, multiview SfS becomes highly under-

determined; therefore, the ill-posed multiview SfS prob-

lem needs to be solved by expensive non-linear optimiza-

tion with strong assumptions of scene and lighting condi-

tions [29, 28] in addition to multiview registration.

Despite the strong benefits of multiview SfS to high-

resolution geometry, it has been hardly achieved in real-

time RGB-D scanning due to several challenges. First, mul-

tiview color and depth frames need to be registered by it-

erative closest point (ICP) [26] in general. However, per-

fect geometric registration by ICP is theoretically impossi-

ble with real systems due to noise in depth frames. It results

in blurry reconstruction [18].

Second, to handle noise and inaccurate registration of

depth information, the truncated signed distance function
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(TSDF) [6] of depth maps has been accumulated in the

canonical space. However, the TSDF-based algorithms in-

troduce an inevitable tradeoff between spatial resolution of

geometry and real-time performance [15, 22, 14, 11, 8]. A

hashing technique was used to mitigate the tradeoff [23] by

reducing memory footprint, but still, details of geometry of-

ten need to be compromised for performance.

To mitigate these challenges, we propose a real-time

scanning method that can capture high-detail geometry by

integrating two different techniques, volumetric fusion, and

multiview SfS via geometry-aware texture mapping. First,

we introduce the first real-time acquisition method of pho-

tometric normals, enabling us to capture the fine level of

geometry stored in high-resolution texture space. Second,

we propose geometry-aware texture mapping, which pro-

gressively refines geometric registration between the tex-

ture space and the canonical space of TSDFs so that we can

solve multiview SfS with high accuracy.

We demonstrate that our method can acquire high-detail

geometry, in addition to photometric normals and albedo

textures in a high resolution at ∼20 fps using a conventional

RGB-D camera. In particular, the geometry quality of our

method is strongly competitive with that of offline multi-

view SfS methods. All codes and demo will be published

online to ensure reproducibility.

2. Related Work

Online 3D Representation. Real-time 3D scanning meth-

ods [15, 22, 14, 11, 8, 23] accumulate TSDFs of depth maps

in the canonical space. Since the depth frame is available in

real-time, the camera pose for each frame is estimated by

ICP. The spatial resolution of the reconstructed geometry is

still determined by the voxel grid resolution in existing real-

time methods. While the voxel hashing data structure can

improve memory efficiency [23], the geometry resolution

still needs to be compromised for real-time performance.

Traditionally, appearance attributes have been stored in

the volumetric voxel grid [7, 14, 23, 15]. The camera pose is

estimated by the depth information and is used to backpro-

ject the captured color information to the voxel grid. How-

ever, color and depth frames are captured asynchronously.

Hence, accumulated color information tends to be blurred

in real-time methods. Also, like the geometry informa-

tion, the color information has been commonly stored in

the voxel grid, which causes the aforementioned tradeoff

between resolution and performance even applied for tex-

ture information. Recently, a tile texture atlas on the vol-

umetric distance field has been proposed to enhance color

texture, ensuring the quality of the texture more detailed

than the geometry [18]. Also, they find out the photomet-

ric correspondence and register the current input frame to

the existing texture space. However, they decouple geomet-

ric registration from texture mapping, focusing on texture

alignment only, resulting in misalignment between texture

and geometry. Our method achieves high-accuracy regis-

tration between the baseline geometry and texture space by

means of photometric normals stored in the texture space.

Online Geometry Enhancement. The quality of depth

frames from conventional RGB-D cameras is lower than

that of color frames in terms of spatial resolution and noise.

Also, the noise level of depth frames is significantly higher

than that of color frames. In order to mitigate the prob-

lem, a probabilistic uncertainty model of depth measure-

ment was proposed for better alignment of the depth cam-

era and improved fused geometry [4]. By leveraging high-

quality RGB data, several shading-based geometric refine-

ment techniques have also been proposed for real-time scan-

ning by formulating an SfS problem in a single view to re-

fine depth images [30, 24]. While these methods have im-

proved the geometry quality clearly, the refined geometric

information is still accumulated in the volumetric distance

field, inheriting the tradeoff between resolution and perfor-

mance. Also, the current real-time shading-based meth-

ods [30, 24] do not account for geometric misalignments

of multiview frames when computing inverse rendering. To

the best of our knowledge, we present the first real-time

scanning method that can acquire photometric normals in

real-time. It enables us to achieve high-quality geometry

scanning by combining the baseline geometry and high-

resolution normals.

Offline Geometry Enhancement. When surface re-

flectance and illumination are known, shape information

can be decomposed from captured images. It is called

shape-from-shading [12]. Leveraging multiview input, mul-

tiview SfS methods [25, 19, 29, 17, 16] have been pro-

posed to enhance the detail of geometry. Multiview stereo

is used to obtain the baseline geometry, which is refined

later with shading cues via inverse rendering. However,

as reflectance and illumination are unknown, they formu-

late inverse rendering problems with strong assumptions on

scene and lighting conditions [29, 28] in addition to mul-

tiview registration. In order to solve nonlinear optimiza-

tion, computational time increases significantly, even with

a moderate resolution of geometry. These multiview SfS

methods are thus inapplicable to real-time scanning. To mit-

igate the ill-posedness of the inverse rendering problem in

uncontrolled scenes, multiview SfS has been applied to the

multiscale voxel grid structure of TSDFs in offline scanning

methods [32, 20]. However, they still require offline opti-

mization of camera pose, per-voxel color, and geometry due

to inaccurate depth information obtained from the RGB-D

camera [32, 20]. In contrast, we reformulate multiview SfS

by leveraging our geometry-aware texture mapping, which

registers texture and normals from inverse rendering to the

volumetric distance field with high accuracy.
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3. Online Normal Fusion

Our real-time RGB-D scanning consists of three main

steps: First, we estimate unknown illumination as spherical

harmonics coefficients, allowing us to obtain photometric

normals and diffuse albedos using SfS. Second, depths are

integrated to the volumetric distance field. Third, photo-

metric normals and albedos are warped via geometry-aware

texture warping and blended in texture space. Figure 2 pro-

vides an overview.
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Figure 2: Overview of our reconstruction pipeline.

3.1. Online Inverse Rendering

3.1.1 Illumination Estimation

Under unknown illumination, we acquire color and depth

streams as input using an RGB-D camera. Based on the dif-

fuse surface assumption, we approximate unknown incident

environment illumination using the first nine basis functions

up to 2nd order spherical harmonics [11, 30]. Based on this

simplification, the reflected irradiance B can be formulated

as a function of diffuse albedo a, surface normal n at pixel

u = (i, j), and incident illumination:

B(u) = a(u)
∑8

k=0

l
k
H

k
(n(u)), (1)

where Hk are the spherical harmonics basis functions, and

lk are the spherical harmonics coefficients of incident illu-

mination.

We optimize the spherical harmonics coefficient set Lt at

frame t by solving the following energy function: E(Lt) =
Eldata +λltempEltemp, where Eldata is the shading term, Eltemp

is the temporal illumination regularizer term, and λltemp is

its corresponding weight. Our shading term Eldata mini-

mizes the difference between the rendered image of dif-

fuse reflected irradiance Bt and the input color image Ct

at frame t as follows:

Eldata =
∑

u∈Ut
c

||Y (Bt(u))− Y (Ct(u))||2, (2)

where U t
c

is the set of valid pixels in the current color/depth

frame, and Y is a luminance function that converts color

values to a luminance intensity value. Solving the spherical

harmonics coefficients of illumination is an overdetermined

problem, which is solved by least-squares. In addition, we

assume that illumination is consistent over time. The tem-

poral regularizer of illumination Eltemp is set to force the

current light parameters similar to the previous estimated

light parameters: Eltemp =
∑

8

k=0
||lt

k
− lt−1

k
||2.

3.1.2 Normal and Albedo Estimation

Factorizing normal and albedo from reflected irradiance is

an ill-posed nonlinear problem, which needs to be solved

in an iterative optimization. To reduce complexity, we op-

timize scalar depth values, rather than normals, as the lat-

ter would require an additional conversion step that con-

verts normals to depth values before integrating them to TS-

DFs [9, 30, 24]. Note that normals can be estimated from

depth values by computing finite differences over neighbor-

ing pixels.

We minimize the following energy function to optimize

two unknown variables: depth D̂ and albedo a:

E(D̂,a) = Edata + λdregEdreg + λdsensorEdsensor

+λaregEareg + λatempEatemp,
(3)

where Edata is the data term of shading, Edreg is the spa-

tial regularization term, Edsensor is a depth constraint term,

λdreg and λdsensor are corresponding weights for depth regu-

larization/constraint terms, Eareg and Eatemp are spatial and

temporal regularizer terms of albedo, λareg and λatemp are

corresponding weights for albedo regularizers, respectively.

Our data term Edata forces the reflected irradiance to be

the same as color observation using Equation (1):

Edata =
∑

u∈Ut
c

||Bt(u)− Ct(u)||2. (4)

As commonly observed in previous SfS methods [24, 30], it

is challenging to differentiate the impact of shading and re-

flectance from observation of a single view shading. There

is a potential risk that diffuse albedo could be imprinted to

the optimized surface normals.

Therefore, we design two regularization terms to prevent

texture copy artifacts on normals. Edreg enforces depth val-

ues to be spatially regularized using Laplacian smoothness:

Edreg =
∑

u∈Ut
c

||∇2D̂t(u)||2, (5)

where ∇2 is the Laplacian operator that enforces the cur-

rent depth value similar to the average value of neighboring

pixels’ depth values.

Edsensor ensures that the optimized depth D̂t does not

deviate too much from the input depth imageDt: Edsensor =
∑

u∈Ut
c

||D̂t(u)−Dt(u)||2.

In contrast to the Laplacian smoothness term of depth,

Eareg imposes albedos to be similar to its neighboring pix-

els:

Eareg =
∑

u∈Ut

c

∑

z∈Nu

φ(Γt(u)− Γt(z))||at(u)− at(z)||2,

(6)

where Nu is the set of neighbors of pixel u, Γt(u) =
Ct(u)/Y (Ct(u)) is the chromacity at pixel u, and φ(q) =
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1/(1 + b||q||)3 is the robust kernel function [32] with a pre-

defined parameter b to avoid texture blurriness with chro-

maticity outliers. We set b = 5 for all results.

Eatemp is a temporal regularization term that makes the

current albedo similar to the albedo we optimized in the

previous frame. It prevents albedo values from overfitting

by the data term over time, enforcing temporal smoothness:

Eatemp =
∑

u∈Ut

c
∩U

t−1

s

||at(u)−at−1(u)||2, where U t−1

s
is

the set of valid pixels in the previous frame canonical mesh

rendered using the current camera pose.

3.1.3 Hierarchical Nonlinear Optimization

Estimating two unknowns, normals and albedos, from re-

flected irradiance is severely ill-posed like other SfS meth-

ods [30, 32]. In order to solve the nonlinear optimization

problem of inverse rendering using a GPU-based Gauss-

Newton optimization [27] that sequentially computes two

sparse matrix-vector (SpMV) multiplication kernels [33],

we formulate a total energy function that seeks optimal

depths and albedos x = {D̂,a}. Refer to mathematical

details in the supplemental document.

Given input color/depth frame, three different un-

knowns: albedos, normals, and illumination, need to be

estimated simultaneously; therefore, this inverse rendering

problem is severely ill-posed. And thus, we solve this SfS

problem via a two-step optimization of estimating (1) illu-

mination and (2) normals and albedos, iteratively repeating

from the coarsest to the finest level. To estimate illumi-

nation at the coarsest level of the first frame, the reflected

irradiance Bt in Equation (1) is calculated with the initial

surface normals obtained from the current depth map and

the initial diffuse albedo, set to uniform albedos, which is

the averaged albedo of the color frame (Section 3.1.1). To

estimate albedos and normals in the level, the optimized il-

lumination is used. From the subsequent finer level, the

previous results of albedos and normals are used for illu-

mination estimation. The refined illumination is used for

finer optimization of albedos and normals. From the second

frame, the previously optimized albedo results are used for

initialization in the optimization of normals and albedos at

the coarsest level. Others are processed in the same way as

the first frame.

3.2. Online Normal Mapping

Our inverse rendering step decomposes input depth and

color images at the current frame into four different at-

tributes: refined depth, diffuse albedos, surface normals,

and illumination. The refined depth values are integrated

to the canonical space of TSDFs. The surface normals and

diffuse albedos are stored as a normal map and an albedo

tile texture map, respectively. These high-resolution texture

maps are associated with the voxel grid of the signed dis-
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Figure 3: Overview of our normal/albedo texture optimiza-

tion. Once refined depths, albedos, normals, and illumina-

tion are obtained in the current frame, these quantities are

used to update albedos and normals in texture space, in ad-

dition to geometry in the canonical space of TSDFs.

tance field. Here, our fusion method inherits the data struc-

ture of the recent real-time texture scanning method [18].

As shown in Figure 3, albedos, normals, and geometry ac-

cumulated up to the previous frame (t−1) are updated using

the output from the inverse rendering step in three folds: (1)

geometry update and texture transfer, (2) geometry-aware

texture warping, and (3) normals/albedos blending.

3.2.1 Progressive Normals Transfer

Once we refine depth via coarse-to-fine inverse rendering,

the depth values are integrated to the canonical space of

TSDFs, updating geometry at the current frame. However,

this geometry update breaks the relationship between the

geometry in the canonical space and the associated texture

maps as discussed in [18]. We, therefore, transfer the previ-

ous texture to the updated geometry by projecting the previ-

ous textures to the current one in normal orientations of the

updated geometry by means of ray casting, following [18].

Different from the existing texture fusion method [18], our

method needs to transfer not only albedos but also normal

texture. Since normals are directional attributes, we must

account for rotation when transferring normals.

Once we find out correspondence between the previous

normals nt−1 and the current ones nt, we compute rotation

matrices of normals R using Rodrigues’ rotation formula as

follows: R = I+ [v]× + [v]2×
1−c

s2
, where v = nt−1 × nt,

[v]× is a skew symmetric matrix of v, c = nt−1 · nt is

the cosine of the angle between two normal vectors, and

s = ||v|| the sine of the angle between two normal vectors.

3.2.2 Geometry-aware Texture Mapping

Depth vs. Geometry. In the standard fusion framework,

we first need to estimate camera pose per frame using depth

information via ICP. Depth frames are aligned with respect

to the intermediate geometry in the canonical space. There

is an inevitable camera pose error due to the imperfectness
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of the progressively estimated geometry and noise in the

depth map. It results in an inaccurate projection of input

depth values in subsequent frames. This error has been mit-

igated using the truncated signed distance functions in the

voxel grid. However, geometry results tend to be smoothed.

Color vs. Geometry. It is worth noting that unavoidable

error of geometric registration causes the mismatch between

color frames and intermediate geometry (even with the per-

fectly synchronized camera). When resolving the mismatch

problem between color frames and intermediate geometry

(accumulated from erroneous depth frames), there is no di-

rect correspondence between appearance and geometry.

The matching problem has been tackled by offline op-

timization, exhaustively creating synthetic textures [2, 13],

or is not even explicitly handled, potentially including mis-

match errors between texture and geometry [18]. Enhanc-

ing 3D geometry using SfS requires ideal registration of the

captured shading normals to the base geometry. The exist-

ing work [18] can align only a group of textures regard-

less of geometry due to lack of the constraint for image-to-

geometry alignment. It suffers from wrong projection of

textures.

In contrast, we additionally optimize geometric corre-

spondence between normals in the texture space and geom-

etry in the canonical space of TSDFs by formulating an en-

ergy optimization problem as follows:

E(Wt) = λnwarpEnwarp + λcwarpEcwarp, (7)

where W is a set of spatially-varying warp functions,Enwarp

is a normal-based energy term, Ecwarp is a color-based en-

ergy term, and λnwarp and λcwarp are corresponding weights,

respectively.

In particular, our novel normal-based energy term Enwarp

enforces the current texture normal map N̂ to the surface

normals of the canonical geometry Ñ through the local grid

window Ω based on the grid-based warping method [18].

This energy term suppresses the misalignment between two

different normals:

Enwarp =
∑

z∈Ω(u)

ω(z)
∣

∣

∣

∣

∣

∣
N̂(π(W(u)TṼ (z)))− Ñ(z)

∣

∣

∣

∣

∣

∣

2

,

(8)

where z is a pixel within the local grid window Ω(u),
Ṽ is the 3D vertex map of the canonical geometry in the

camera space, T is the extrinsic camera transformation, π
is the camera projection matrix, ω is a Gaussian weight

ω(z) = exp(−||u − z||2/σ) with a spatial parameter σ to

control the regularity of the estimated camera motion, and

W is the unknown spatially-varying warping field in the

matrix form at the grid node u. We estimate the camera

motions W at each regular lattice grid u at each level and

then interpolate them via the Gaussian weight ω for every

pixel. We empirically found that three levels are sufficient

and that the width between grid points is set to 64 pixels.

We optimize this energy term W with weight decay. Note

that normals from the canonical space Ñ have less details

of normals from SfS. To match the level of detail in opti-

mization, we apply a low-pass filter to high-detail normals

from SfS N̂ .

For color texture, we include a color-based energy term

Ecwarp to enforce photometric consistency of the current

color frame C to the rendering reflected irradiance image

B̄t through the local window Ω following [18]:

Ecwarp =
∑

z∈Ω(u)

ω(z)
∣

∣

∣

∣

∣

∣
Y (C(π(W(u)TṼ (z))))− Y (Ḃ(z))

∣

∣

∣

∣

∣

∣

2

,

(9)

where Ḃ is the reflected irradiance image with the current

camera motion by using the newly updated geometry with

the transferred normal and albedo texture.

3.2.3 Normal/Albedo Blending

Once we know the spatially-varying warp function Wt, we

are ready to blend normals N̂ t with the transferred normals

Ṅ t at the current frame t to the canonical texture space N̄ t.

For each texel of a 3D point p in the canonical space of TS-

DFs, we evaluate the spatial resolution and registration cer-

tainty of each image pixel by computing blending weights

following the current methods [18, 3] as follows:

N̄ t(p) =
Ψt−1(p)Ṅ t(p) + ψ(p)N̂ t(ũ)

Ψt−1(p) + ψ(p)
, (10)

where ũ is a pixel that corresponds to point p via the warp-

ing function W at the current frame t. In addition, weight Ψ
is the accumulated weight for normal/albedo blending at

the current frame: Ψt(p) = min(Ψt−1(p) + ψ(p), ψmax),
where ψmax is a predefined parameter that controls the upper

bound of the blending weight, ψ(p) is the blending weight

for a given camera pose. The current blending weight ψ(p)
can be computed by accounting for the area size, the camera

angle, and occlusion: ψ(p) = ψarea(p) ·ψangle(p) ·ψocc(p),
following the weight formulae defined in [18].

4. Results

Implementation Details. We implement our normal fu-

sion method based on the ground of two real-time meth-

ods [23, 18]. It runs on a conventional desktop environment

equipped with an Intel Core I9-10920X CPU of 3.5 GHz

with 64 GB RAM, and an NVIDIA RTX TITAN graphic

card. We acquire color and depth frames using a Prime-

Sense Carmine RGB-D camera of 640×480 resolution. We

use a 4mm voxel size of the voxel grid of TSDFs with 4×4
tile textures for most of our results. For the Fountain [31],

Lion, Bricks, and Tomb scenes from Intrinsic3D [20] in our

results, we use the image resolution of 640×480. When
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Figure 4: We compare our scanned results with two real-time methods [23, 30]. For fair comparison, we make the camera

pixel resolution projected to the voxel grids with the same size. Our method can achieve the high level of geometric details

significantly against the state-of-the-art methods thanks to geometry-aware texture mapping of high-resolution normals.

input frames were severely degraded by motion blur, we

discarded the input frames using a blurriness metric [5].

To produce our results, our hyperparameters were con-

sistently set to: λltemp=200 (except for Lion, λltemp=500),

λdreg=100, λdtemp=100 (except for Fountain, λdtemp=50),

λareg=0.1, λatemp=0.01, λnwarp=0.3, and λcwarp=1.0.

Qualitative Comparison. We qualitatively evaluate the

spatial resolution of scanned geometry by our algorithm,

compared with two real-time fusion algorithms [23, 30]

with synthetic and real scenes. For fairness of comparison

of all three methods, we make the camera pixel resolution

projected to the voxel grids with the same size. To this end,

we employ a denser voxel resolution (1mm voxel size) for

both Niessner et al. [23] and Wu et al. [30] (our implemen-

tation) than that of ours (4mm voxel size mapped with 4×4

texture tiles). Note that our voxel grid resolution is 43 times

lower than those of these compared methods in this exper-

iment. For comparisons, we obtain high-resolution mesh

model by combining our normal texture with the baseline

geometry from the voxel grid using Nehab’s method [21].

Again, for fairness, we use subdivision surfaces two times

to match our spatial resolution to other methods. Refer to

the supplemental video for real-time demo and more results.

Figure 4 compares scanned results. The traditional fu-

sion method [23] accumulates TSDFs to the hashed canon-

ical space directly. Since there is no correction for both
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Figure 5: Geometry results of our real-time scanning re-

sults are highly competitive to those of an offline SfS-based

method [20].

(a) Lee et al. [18] (b) OursCloseups Closeups

Figure 6: We render two scanned objects using novel-

light/view rendering. Compared with the existing texture

fusion [18], our method presents improved texture appear-

ance and better shading and shadow thanks to our geometry-

aware texture mapping algorithm.

(a) Illumination (b) GT SH illumination (c) Our estimated illumination

Figure 7: (a) Illumination (a.k.a. Grace) used for creating

a synthetic dataset, shown in Figure 8. (b) GT illumina-

tion projected to 2nd-order spherical harmonics. (c) Our

estimated illumination. Our method successfully estimates

low-frequency illumination.

depth noise and ICP registration errors in the traditional

method, the reconstructed results look blurred. The SfS-

based fusion method [30] improves the geometry through

the shading-based refinement of depth maps. However,

the shading-based method’s results still appear blurry due

to disagreement of inter-frame ICPs and misalignment be-

tween color and depth frames. Even though the correspond-

ing output voxel sizes are the same, our method can achieve

a higher level of details in captured geometry, thanks to the

high-resolution normal information in the texture space.

We compare the quality of geometry with an existing

offline SfS-based method [20]. As shown in Figure 5,

our method can capture high-frequency details of geome-

try in terms of geometry and normals, and our results are

strongly competitive with those of the state-of-the-art of-

(a) Our result (b) Wu et al. [30] (c) Ours 0mm

8mm

Figure 8: We compare the geometry accuracy of our

scanned model with a SfS-based fusion method [30].

(a) presents 3D model scanned by ours. (b) and (c) com-

pare Hausdorff distance errors between the results of two

methods and the ground-truth. Our method improves the

geometric accuracy against the state-of-the-art method.

fline method. Moreover, our method takes only 58.5 ms for

this frame, achieving real-time performance without com-

promising geometric quality.

We compare the accuracy of our texture mapping with

the existing texture fusion method [18] (Figure 6). We ren-

dered two scanned results using a novel light in a novel

view. Thanks to our geometry-aware texture mapping

that mitigates geometric misalignment between geometry

and texture (Section 3.2.2), the accuracy of registered tex-

ture maps improves significantly than the state-of-the-art

method. Our method can achieve the high-quality appear-

ance of textured objects in terms of shading and shadow.

In addition, Figure 7 compares the estimated environ-

ment illumination profile against the ground-truth. The

GT illumination profile is used for creating the synthetic

dataset, shown in Figure 8.

Quantitative Comparison. In order to evaluate the accu-

racy of the reconstructed geometry, we built a synthetic

RGB-D image dataset by rendering an object through a syn-

thetic RGB-D camera model. We add spatial blur to the

ground-truth depth rendering and also add Gaussian noise

to the depth and color pixel signals. The standard devia-

tions of depth and color images are set to 0.002 and 1, re-

spectively. Also, to simulate asynchronous capture of color

and depth frames in real RGB-D cameras, we apply random

offsets to translation (0 − 3mm) and rotation (0 − 0.1◦) of

the synthetic RGB-D camera. We make the projected pixel

size be the same size by setting the voxel resolution of Wu

et al. [30] is 22 times higher than that of ours. Figure 8 com-

pares the Hausdorff distance errors of our scanned geometry

against the ground-truth with that of the real-time SfS-based

fusion method. Over convex- and concave-shaped surfaces,

our method improves the geometric accuracy clearly. The

average distance error of ours is 3.11mm, which is smaller

than that of the compared method (3.32mm).

Performance Evaluation. Table 1 presents the compu-

tation times for our algorithms with different configura-
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Scene
Texture tile,

voxel unit

Geometry

integration

Input

enhancement

Texture

optimization

Total time

per frame

Fountain
4×4 tile, 4mm 8.3 ms 12.1 ms 54.7 ms 75.1 ms

8×8 tile, 10mm 3.5 ms 10.1 ms 43.3 ms 56.9 ms

Tomb
4×4 tile, 4mm 4.1 ms 10.6 ms 27.5 ms 42.2 ms

8×8 tile, 10mm 2.9 ms 10.5 ms 27.1 ms 40.5 ms

Lion
4×4 tile, 4mm 5.0 ms 11.1 ms 42.4 ms 58.5 ms

8×8 tile, 10mm 3.2 ms 11.1 ms 37.0 ms 51.3 ms

Bricks
4×4 tile, 4mm 4.5 ms 10.5 ms 33.7 ms 49.8 ms

8×8 tile, 10mm 3.2 ms 9.8 ms 31.6 ms 44.7 ms

Relief
4×4 tile, 4mm 3.7 ms 10.3 ms 38.1 ms 52.1 ms

8×8 tile, 10mm 2.6 ms 9.7 ms 35.7 ms 48.1 ms

Plasters
4×4 tile, 4mm 3.5 ms 10.0 ms 26.1 ms 39.6 ms

8×8 tile, 10mm 2.4 ms 9.5 ms 22.7 ms 34.6 ms

Table 1: Performance of our method with different configu-

rations of voxel grids and tile textures. Our algorithm runs

in real-time with average 20 fps. We mainly use the first row

of each scene, which is 4×4 texture tile and 4mm voxel size

for our results.
From TSDFs in voxels Normal texture

(a) 4 mm (b) 10 mm (c)10 mm, 8×8

L
io

n
F

o
u

n
ta

in

Our results

Figure 9: Impact of voxel resolution. (a) and (b) present

reconstructed normals using two different voxel size: (a)

4 mm, (b) 10 mm. (c) shows normals reconstructed from

10 mm voxels with 8×8 tile texture. Our method achieves

high-detail geometry with significantly less memory.

(a) Base geometry (b) Without warp (c) With warp

Figure 10: Verification of our geometry aware texture warp.

(a) Reconstructed baseline geometry. (b) Normal texture

blended without our geometry-aware warping. (c) Normal

texture blended with our geometry-aware warping.

tions of voxel grids and title textures when producing result

scenes. Our algorithm runs in real-time with average 20

fps. For comparison, the offline method [20] runs in about

six hours for the Lion scene while ours is able to update the

geometry in real time, capturing the scene in 30 seconds in

total. Figure 9 compares the impact of the resolution of tex-

ture mapping against those of the baseline geometry from

the canonical space of TSDFs.

Impact of Geometry-aware Texture Mapping. Figure 10

presents the impact of our geometry-aware texture warping

algorithm. Images (a) shows geometry from the canonical

space of TSDFs. They look blurry by the resolution of the

voxel grids. Images (b) and (c) compare normal-textured

geometry with and without our geometry-aware texture-

warp term (Equation (9) in Section 3.2.2). As shown in (a)

and (c), our normal texture is well aligned with the baseline

geometry in the voxel grid. This high-accuracy registration

between texture and baseline geometry allows us to export

our high-detail normal texture map as a high-detail geome-

try model by combing it with the baseline geometry [21].

5. Discussion

Our algorithm is not free from limitations. First, our al-

gorithm proceeds under the assumption of Lambertian sur-

faces in a static illumination environment like other SfS

methods. Thus, it is difficult to obtain accurate results

when the illumination changes or objects are highly specu-

lar. Figure 11 shows that the accuracy of our inverse render-

ing method is degraded by specular reflection. Estimating

SVBRDF in real-time will be an interesting future work.

(a) Input color (b) Our color texture (c) Our normal texture

Figure 11: Limitations. (a) Input color from sensor. (b) Our

color texture result. (c) Our normal texture result.

6. Conclusion

We have presented a real-time 3D scanning method that

can capture high-detail geometry and albedo texture using

a conventional RGB-D camera. Our main contributions are

summarized as follows: First, our multiview SfS algorithm

solves the inverse rendering problem in real-time, yielding

photometric normals, diffuse albedos, and illumination, in

addition to the baseline geometry in voxel grids. Second,

our geometry-aware texture mapping registers the texture

space to the canonical space of TSDFs with high accuracy,

enabling geometric enhancement with high-detail normals

and baseline geometry. The level of details of our method

is strongly competitive with that of the existing offline SfS-

based methods while our method can run in real-time on a

conventional desktop computing environment.
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