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Abstract

We introduce a weakly supervised method for represen-

tation learning based on aligning temporal sequences (e.g.,

videos) of the same process (e.g., human action). The main

idea is to use the global temporal ordering of latent cor-

respondences across sequence pairs as a supervisory sig-

nal. In particular, we propose a loss based on scoring

the optimal sequence alignment to train an embedding net-

work. Our loss is based on a novel probabilistic path find-

ing view of dynamic time warping (DTW) that contains the

following three key features: (i) the local path routing de-

cisions are contrastive and differentiable, (ii) pairwise dis-

tances are cast as probabilities that are contrastive as well,

and (iii) our formulation naturally admits a global cycle-

consistency loss that verifies correspondences. For evalua-

tion, we consider the tasks of fine-grained action classifica-

tion, few shot learning, and video synchronization. We re-

port significant performance increases over previous meth-

ods. In addition, we report two applications of our temporal

alignment framework, namely 3D pose reconstruction and

fine-grained audio/visual retrieval.

1. Introduction

Temporal sequences (e.g., videos) are an appealing data

source as they provide a rich source of information and ad-

ditional constraints to leverage in learning. By far the main

focus on temporal sequence analysis has been on learn-

ing representations targeting distinctions at the global sig-

nal level, e.g., action classification, where abundant labeled

data is available for training. In this paper, we target a

weakly-supervised training regime for representation learn-

ing, capable of making fine-grained temporal distinctions.

Most previous approaches to temporally fine-grained un-

derstanding of sequential signals have considered fully-

supervised training methods (e.g., [56]), where labels are

provided at the sub-sequence level, e.g., frames. The ma-

jor drawback of these methods is the expense in acquiring

dense labels, and their subjective nature. In contrast, a key

consideration in our work is the selection of training signals

embedding space

video 1

video 2

Figure 1. We introduce a representation learning approach based

on (globally) aligning pairs of temporal sequences (e.g., video) de-

picting the same process (e.g., human action). Our training objec-

tive is to learn an element-wise embedding function that supports

the alignment process. For example, here we illustrate the align-

ment (denoted by black dashed lines) in the embedding space be-

tween videos of the same human action (i.e., tennis forehand) con-

taining significant variations in their appearances and dynamics.

Empirically, we show that our learned embeddings are sensitive

to both human pose and fine-grained temporal distinctions, while

being invariant to appearance, camera viewpoint, and background.

capable of scaling up to large amounts of data yet support-

ing finer-grained video understanding.

As outlined in Fig. 1, given a set of paired sequences

capturing the same process (e.g., tennis forehand) but highly

varied (i.e., different participants, action executions, scenes,

and camera viewpoints), our method trains an embedding

network to support the recovery of their latent temporal

alignment. We refer to our method as weakly supervised,

as only readily available sequence-level labels (e.g., tennis

forehand) are required to construct training pairings con-

taining the same process. Given such a pair of sequences,

we use their latent temporal alignment as a supervisory sig-

nal to learn fine-grained temporal distinctions.

Key to our proposed method is a novel dynamic time

warping (DTW) formulation to score global alignments be-

tween paired sequences. DTW enforces a stronger con-

straint over simply considering local (soft) nearest neigh-

bour correspondences [15], since the temporal ordering of

the matches in the sequences are taken into account. We de-

part from previous differentiable DTW methods [30, 8, 6]

11068



by taking a probabilistic path finding view of DTW that

encompasses the following three key features. First, we

introduce a differentiable smoothMin operator that effec-

tively selects each successive path extension. Moreover, we

show that this operator has a contrastive effect across paths

which is missing in previous differentiable DTW formula-

tions [30, 8, 6]. Second, the pairwise embedding similar-

ities that form our cost function are defined as probabil-

ities, using the softmax operator. Optimizing our loss is

shown to correspond to finding the maximum probability of

any feasible alignment between the paired sequences. The

softmax operator over element pairs also provides a con-

trastive component which we show is crucial to prevent the

model from learning trivial embeddings. This forgoes the

need for a downstream discriminative loss and the corre-

sponding non-trivial task of defining negative alignments,

e.g., [8, 6]. Third, as an additional supervisory signal,

our probabilistic framework admits a straightforward global

cycle-consistency loss that matches the alignments recov-

ered through a cycle of sequence pairings. Collectively, our

method takes into account long-term temporal information

that allows us to learn embeddings sensitive to fine-grained

temporal distinctions (e.g., human pose), while being in-

variant to nuisance variables, e.g., camera viewpoint, back-

ground, and appearance.

Contributions. We make the following key contributions:

• A novel weakly supervised method for representa-

tion learning tasked with discovering the alignment

between sequence pairings for the purpose of fine-

grained temporal understanding.

• A differentiable DTW formulation with two novel fea-

tures: (i) a smoothMin operation that admits a proba-

bilistic path interpretation and is contrastive across al-

ternative paths, and (ii) a probabilistic data term that is

contrastive across alternative data pairs.

• A global cycle consistency loss to further enforce the

temporal alignment.

• An extensive set of evaluations, ablations, and com-

parisons with previous methods. We report significant

performance increases on several tasks requiring fine-

grained temporal distinctions.

• Two downstream applications, namely 3D pose recon-

struction and audio-visual retrieval.

Our code and trained models will be available at:

https://github.com/hadjisma/VideoAlignment.

2. Related work

Representation learning. Most focus in representation

learning with videos has been cast in a fully supervised set-

ting, e.g., [47, 43, 7, 16]. Self-supervised learning with im-

ages or videos has emerged as a viable alternative to su-

pervised learning, where the supervisory signal is obtained

from the data. For video, a variety of proxy tasks have been

defined in lieu of training with annotations, such as clas-

sifying whether video frames are in the correct temporal

order (e.g., [32, 17, 28, 4, 55, 54]), predicting whether a

video is played at a normal or modified rate [3], solving

a spatiotemporal jigsaw puzzle task [1], predicting figure-

ground segmentation [35], predicting pixel [57, 29, 50, 26]

or region correspondences [52, 53, 25] across neighbouring

video frames, and predicting some aspect of future frames

conditioned on past frames [49, 51, 21]. Others have con-

sidered multimodal settings, such as predicting video-audio

misalignment [34]. Similar to [15], our method is best char-

acterized as weakly supervised, where sequence-level labels

are used to determine sequence pairings for training.

Sequence alignment. Several methods [42, 40] assume

paired, temporally synchronized videos of the same phys-

ical event for the purpose of representation learning. In

contrast, and more closely related to our work, are meth-

ods that seek the alignment between sequences capturing

the same process. One approach [15] is to cast the learning

objective as maximizing the number of elements between

sequences that can be brought into one-to-one correspon-

dence via (soft) nearest neighbours. This method does not

leverage the long-term temporal structure of the sequences

as done in dynamic time warping (DTW) [38]. Given a

cost function, DTW finds the optimal alignment between

two sequences defined between elements comprising the

sequences. Recent efforts [13, 30, 5, 8, 6] have explored

differentiable approximations of the discrete operations un-

derlying DTW to allow gradient-based training. Similar to

recent work [8, 6], we also incorporate a relaxed DTW as

our loss for sequence alignment. Our formulation is proba-

bilistic and includes a contrastive definition of the element-

wise similarities. A key distinction with these prior works

and our own, beyond differences in the target application

domain (e.g., video-transcript alignment [8]), is that rather

than incorporate contrastive modelling after the DTW step

(e.g., through the use of margin-based loss), our method in-

cludes contrastive signals in both the differentiable min ap-

proximation and the pairwise matching cost function used

in our DTW framework.

Contrastive learning. One can also draw parallels with

contrastive learning using the cross-entropy loss (i.e., neg-

ative log softmax) [20, 33, 48], where the goal is to learn

a representation that brings different views of the same

data together (i.e., positives) in the embedding space, while

pushing views of different data (i.e., negatives) apart. This

amounts to encoding information shared across the views,

while eschewing unique factors to each view. To con-

struct different views, previous work has explored a va-

riety of augmentation and sampling schemes [14, 45, 10,

21, 19, 23] and correspondences across different modal-

ities (e.g., video-audio, video-text, and luminance-depth
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[11, 45, 44, 36, 31]). In these works, the positive and neg-

ative pairings are known by construction, e.g., via image

augmentation. We also make use of contrastive losses, but

note that the correspondences (i.e., positives) between the

sequences are latent rather than known.

Cycle-consistency. In addition to alignment, our method

also incorporates cycle-consistency as a supervisory signal,

where the objective is to verify matches across sets. Simi-

lar to recent work [15], we apply cycle-consistency across

two temporal sequences. A key difference is that previous

work [15] applies cycle-consistency independently to local

matches across sequences; whereas, we consider both lo-

cal matches and their global temporal ordering, which we

demonstrate empirically leads to improved alignments.

3. Technical approach

In this section, we describe our weakly-supervised ap-

proach to representation learning based on the alignment

of sets of sequence pairs that capture the same process.

Our learning objective is the training of a shared embed-

ding function applied to each sequence element. In the case

of multimodal sequences (e.g., audio-video), we have sep-

arate encoders for each modality that map their inputs to a

common embedding space. Figure 2 provides an illustrative

overview of our alignment approach to representation learn-

ing, which we fully unpack in the following subsections.

3.1. Background

Dynamic time warping (DTW) computes the op-

timal alignment between two sequences, X and Y,

subject to certain alignment constraints. Let X =
⇥
x1 x2 · · · xM

⇤
∈ R

D⇥M and Y ∈ R
D⇥N de-

note the two sequences, where D corresponds to the di-

mensionality of the constituent sequence elements and M ,

N the respective sequence lengths. Given a cost matrix,

C ∈ R
M⇥N , with elements ci,j defined by a cost function,

c(xi,yj), that measures the cost of matching elements xi

and yj , we seek a feasible path between c0,0 and cM,N that

minimizes the total accumulated cost. The feasible paths

are subject to matching endpoints, monotonicity, and con-

tinuity constraints. While not used here, the endpoint con-

straint can be relaxed to allow for subsequence matching,

e.g., [39, 6].

The number of feasible alignments in DTW grows expo-

nentially with the sequence lengths. Fortunately, the struc-

ture of DTW with an appropriate cost function, c(xi,yj), is

amenable to dynamic programming [2] which shares both

quadratic time and space complexity. The optimal align-

ment (i.e., path through the cost matrix) is found by evalu-

ating the following recurrence [38]:

R(i, j) = c(xi,yj) + (1)

min([R(i− 1, j − 1) R(i− 1, j) R(i, j − 1)]
>
),

where R(0, 0) = 0, R(0, :) = R(:, 0) = ∞, and R(i, j)
stores the partial accumulated cost along the optimal and

feasible path ending with the alignment between xi and yj .

The minimum operation amounts to a first-order Markov

assumption, where the local path routing is deterministic.

Due to the discrete nature of the min operator in (1), re-

sponsible for local correspondence decisions, several works

[13, 8, 6] have considered smooth variants suitable for

gradient-based training. In Sec. 3.2, we introduce a smooth

relaxation of the min operator with favourable properties

for our representation learning setting. Then in Sec. 3.3,

we define our cost function which introduces a contrastive

learning signal throughout the alignment process.

3.2. Local differentiable decisions

For brevity we use the notation

ri,j = [R(i− 1, j − 1) R(i− 1, j) R(i, j − 1)]
>

(2)

to denote the incoming optimal accumulated costs from the

feasible paths leading into (i, j). We first modify (1) as

R(i, j) = c(xi,yj) + [s(ri,j)−min(ri,j)]
| {z }

d(ri,j)

+min(ri,j),

(3)

where s(ri,j) is a smooth approximation of the mini-

mum operator. The term d(ri,j) can be seen as a (non-

differentiable) additional penalty on any path that reaches

(i, j). With this added penalty term, (3) reduces to simply

R(i, j) = c(xi,yj) + s(ri,j). (4)

For an appropriate choice of s(·) the right hand side is now

differentiable. Note that any path that is optimal accord-

ing to (4) will correspond to a feasible path for the original

DTW problem (although perhaps not optimal for that prob-

lem). Moreover, the cost of such a path according to (4) will

be the original cost plus the sum of the penalties d(ri,j) over

all points (i, j) on that path.

We are left with choosing a smooth approximation s(·)
for the minimum operator. Here, we use a standard relax-

ation of the min operator [27] (specifically, the expected

value Ei⇠q(i)[ai] for q(i) := softmax({−ai/γ})):

smoothMin(a; γ) =

(
min{ai | 1 ≤ i ≤ N}, γ = 0

PN
i=1

aie
−ai/γ

PN
j=1

e−aj/γ
, γ > 0

,

(5)

where γ denotes a temperature hyper-parameter. We refer

to solving the recurrence relation (4), with the function s(·)
taken to be smoothMin, as the smoothDTW problem.

Previous alignment methods [13, 8, 6] have instead used

the following minγ formulation as a continuous approxima-
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loss 2: global cycle-consistency
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accumulated cost along optimal path (0,0) — (i, j)

LsmoothDTW(X,Y) =

LsmoothDTW(Y,X) =

φ(·) X,Y −)]>[softmax2(−)][softmax2(−)] IM×M

Y

X
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·

X

Y

≈−)]>

Figure 2. Our sequence alignment approach to representation learning begins by encoding each element comprising our sequences (e.g.,

image frames) using a trainable framewise backbone encoder plus embedding network, φ(·), yielding two sequences of embeddings, X

and Y. The cost of matching these two sequences is expressed as negative log probabilities and consists of two parts: (i) alignment losses,

smoothDTW(·, ·), from X to Y and Y to X based on the cumulative cost along the optimal respective paths and (ii) a global cyclic-

consistency loss that verifies the correspondences computed between each ordered pair of sequences, where · denotes matrix multiplication

and IM×M is the square identity matrix. Note, our alignment cost smoothDTW(·, ·) is not symmetric in its two arguments (due to the

pairwise matching cost in (8)). Higher intensities in the cells comprising the accumulated cost matrices indicate lower values.

0 1 2 3 4 5

−1

−0.5

0

0.5

∆/γ

d
(r

;γ
)/
γ

smoothMin vs min
γ

 

 

smoothMin((0, ∆, ∆); γ)

smoothMin((0, ∆, ∞); γ)
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γ
((0, ∆, ∆))

min
γ
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Figure 3. The penalty terms d(r; γ) = s(r; γ)−min(r) for the two

smooth min approximations given in (5) and (6). For simplicity we

can assume the ri’s are in sorted order. We evaluate two extreme

cases where r2 = r1 + ∆ for some ∆ ≥ 0 and the next largest

value, r3, is either equal to r2 or much larger. It can be shown

that d(r; γ) = γd(r/γ; 1) and therefore we need only plot one

scale-invariant curve for each case.

tion of the min operator:

minγ(a; γ) =

⇢
min{ai | 1 ≤ i ≤ N}, γ = 0

−γ log
PN

i=1 e
�ai/γ , γ > 0

, (6)

where again γ denotes a temperature hyper-parameter.

While both the minγ and smoothMin operators are dif-

ferentiable approximations of the min operator (with the

min operator subsumed as a special case), their different

behaviours have profound effects on learning in our setting.

These differences are illustrated in the plot in Fig. 3, where

without loss of generality we assume the costs are sorted

in increasing order, with r2 = r1 + ∆ for some ∆ ≥ 0
and r3 ≥ r2. As can be seen, the minγ function is strictly

monotonically increasing. As a result, with all other things

being equal, minimizing this function encourages ties, i.e.,

the penalty is minimized only when ∆ = 0. This is an un-

desirable behaviour as we seek the resulting embeddings to

yield a well-defined path (i.e., optimal alignment) in our cu-

mulative cost matrix, R(i, j). In contrast, our smoothMin

operator defines a contrastive watershed (at approximately

1.5γ), where values to the left of the watershed encourage

ties, while to the right the values are encouraged to be well

separated. Moreover, since d(r; γ) ≥ 0 for smoothMin, our

smoothDTW approach always provides an upper bound on

the cost of the optimal path. The supplemental presents an

expanded discussion and comparison.

3.3. Contrastive cost function

To complete the definition of our smoothDTW recur-

rence in (4), we now specify the cost function c(xi,yj).
Specifically, for each element xi in X, we wish to express

the cost of matching xi to any single item yj in Y, given

that at least one of the elements in Y must match. More-

over, in keeping with our probabilistic path finding formu-

lation, c(xi,yj) should be the negative log probability of

matching the given xi to a selected yj in Y. This leads to

the (non-symmetric) contrastive formulation

c(i, j;X,Y) = − log(softmax2(X̃
>Ỹ;β))i,j , (7)

= − log

 

exp(x̃>

i ỹj/β)
PN

k=1 exp(x̃
>

i ỹk/β)

!

, (8)

where the softmax2 operator is defined as the standard

softmax with a temperature hyper-parameter, β, over the

second matrix dimension, i.e. columns. Also the notation

x̃i denotes L2 normalization, so x̃i = xi/||xi||2, and so

on. The use of the negative log softmax operator over the

set of correspondences in (8) encourages a (soft) winner-

take-all, where one pair (xi,yj) has a significantly higher
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cosine similarity than all the other options. The normaliza-

tion across the column penalizes situations without a clear

winner.

With this cost function the resulting values R(i, j) are

the optimum value of the negative log probability for any

feasible path starting at (0, 0) and ending at (i, j). Here,

this negative log probability is the sum of the matching cost,

c(xm,yn) (cf. (8)), and the smoothness penalty d(rm,n)
(cf. (14)), at each vertex, (m,n), along the optimal path

ending at (i, j). Correspondingly, we define the alignment

loss for matching X to Y as:

LsmoothDTW(X,Y) = R(M,N). (9)

We use the sum of the alignment losses for matching X to

Y and vice versa as the overall alignment loss, as shown in

the left panel in Fig. 2.

The combination of the softmax over elements in Y, in

(8), and the use of smooth DTW to formulate the alignment

cost (9), rewards embeddings that are both: a) contrastive

across the elements in Y; and, moreover, b) have their best

matching pairs (xi,yj) arranged along a feasible path from

(0, 0) to (M,N). We show in our ablation study that the

ability to leverage these two properties during training are

key to our utilization of the temporal alignment proxy. In

contrast, dropping the softmax and simply computing the

inner-product between elements could lead to the collapse

of the embeddings around a single point during training,

thus allowing the network to trivially minimize the align-

ment cost. To avoid such collapse, previous DTW-based

methods have resorted to adding a discriminative loss down-

stream [8, 6].

3.4. Global cycle-consistency

An additional loss is based on the notion that the match

from sequence X to Y , composed with the match from Y to

X , should ideally be the identity. We formulate this directly

in terms of the cumulative cost matrix RX,Y for matching

sequence X to Y (as defined by (4), (5), and (8)), along with

the cost matrix for matching Y to X , namely RY,X . Given

the interpretation that RX,Y (i, j) is the optimal negative log

probability of a path from (0, 0) to (i, j) for matching X to

Y , consider the implied conditional distribution for match-

ing the prefix sequences X(1 : i) to Y (1 :j) for different j’s,

namely

pX,Y (j | i) := [softmax2(−RX,Y /α)]i,j

=
e�RX,Y (i,j)/α

PN
k=1 e

�RX,Y (i,k)/α
. (10)

Note that this distribution does not use any information for

elements k > i from sequence X , and is only obtained from

the forward pass of matching X to Y . We use the notation

PX,Y := [softmax2(−RX,Y /α)]
> (11)

to denote the N × M matrix with elements (PX,Y )n,m =
pX,Y (n |m).

Ideally, the contrastive matching in (8) is sharp and

forms a feasible path from (0, 0) to (i, j), thereby provid-

ing a strongly peaked conditional distribution pX,Y (j|i) for

each i. However, without knowing the ground truth match-

ing {(ik, jk)}
L
k=0, we cannot use an explicit log-likelihood

loss. This issue can be avoided by considering the com-

posed conditional distribution

pX,Y,X(j | i) :=

NX

k=1

pY,X(j | k) pX,Y (k | i), (12)

which is formed by treating pX,Y (k | i) and pY,X(j | k) as

conditionally independent distributions. It is easy to ver-

ify that this is indeed a distribution over elements j of X .

Moreover, following the above matrix notation, it is repre-

sented by the M ×M matrix PY,XPX,Y .

In the ideal case, this transport from elements in one se-

quence to another and back again should return to the same

starting element. From (12) this corresponds to PY,XPX,Y

equaling the identity matrix, IM⇥M . Thus, our global

cycle-consistency loss is the sum of cross-entropy losses:

LGCC(X,Y) = −

MX

i=1

log((PY,XPX,Y )i,i). (13)

The right panel in Fig. 2 provides a summary of our global

cycle-consistency loss.

3.5. Training and implementation details

Our final loss function is obtained by combining the con-

trastive alignment loss, (9), and the global cycle consistency

loss, (13), according to

L(X,Y) = λgLGCC(X,Y)

+ λs(LsmoothDTW(X,Y) + LsmoothDTW(Y,X)), (14)

where λg and λs are weights used to balance the two losses

and are empirically set to 1.0 and 0.1, respectively. The

temperature hyper-parameters, γ and β used in (5) and (8)

are both set to 0.1, while α in (10) is 1.

This overall loss is used to train a convolutional archi-

tecture composed of a backbone encoder applied frame-

wise followed by an embedding network. Specifically,

ResNet50-v2 [24] is used as our backbone encoder where

we extract features from Conv4c layer. We adopt the

same embedding network used in previous related work

[15] comprised of two 3D convolutional layers, a global

3D max pooling layer, two fully connected layers, and a

linear projection layer. The final embedding is L2 normal-

ized. To learn over sequence pairs (X,Y), we randomly

extract T = 20 frames from each sequence. Sampling of
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video frames is random to avoid learning potential trivial

solutions that may arise from strided sampling. For a fair

comparison to previous approaches using the same archi-

tecture (i.e., [15, 40, 32]), we use the same batch size of

four sequences. Finally, our learning rate is fixed to 10�4

for all our experiments.

4. Empirical evaluation

We evaluate the efficacy of our learned embeddings on

challenging temporal fine-grained tasks, thereby going be-

yond traditional clip-level recognition tasks. In particu-

lar, our proposed loss is evaluated on fine-grained action

recognition (i.e., action phase classification), few-shot fine-

grained classification, and video synchronization. In ad-

dition, we also show that learning to align temporal se-

quences supports different downstream applications such

as synchronous playback, 3D pose reconstruction and fine-

grained audio/visual retrieval.

4.1. Datasets

To evaluate our method, we use the PennAction [58] and

FineGym [41] video datasets. Both datasets contain a di-

verse set of videos of human-related sports or fitness activ-

ities. These datasets are selected as they allow for learning

framewise alignments and evaluating on tasks where fine-

grained temporal distinctions are critical.

PennAction [58] contains 2326 videos of humans perform-

ing 15 different sports or fitness actions. The videos are

tightly cropped temporally around the start and end of the

action. Notably, 13 categories contain non-repetitive ac-

tions. The dataset also includes ground truth 2D keypoint

labels which we later use to demonstrate a 3D pose recon-

struction application grounded on our alignment method.

FineGym [41] is a recent large-scale fine-grained action

recognition dataset that was specifically designed to evalu-

ate the ability of an algorithm to parse and recognize the dif-

ferent phases of an action. Each video in FineGym is anno-

tated according to a three-level hierarchy denoting the event

being performed in the video, the different sets involved in

performing the event, and the framewise elements (i.e., ac-

tion phases) involved in each set. To perform any event-

level action, a gymnast may perform the different sets in

any order. To train embeddings using our alignment-based

method, we re-organize the FineGym dataset such that all

sets belonging to the same event appear in the same order

in any given video. An example of this re-organization is

provided in the supplemental. Also, it should be noted that

while the videos of the vault event (VT) in FineGym de-

pict the gymnast performing the action in three phases, the

first two phases of the action are not explicitly labeled in

the original dataset. For the sake of completeness we use

the provided start and end times for these phases, thereby

adding two new fine-grained action labels in FineGym. The

Contrastive-Cost GCC FineGym101

SmoothDTW

- - 28.20

- X 28.20

X - 47.32

X X 49.51

minγ
X X 48.07

Table 1. Ablation study of the various components of our loss func-

tion, (14). Contrastive-Cost refers to our columnwise contrastive

cost, (8), and GCC refers to our global cycle consistency loss, (13).

remaining events in FineGym are otherwise unchanged. To

account for these minor additions to the annotations, we re-

fer to the extensions of FineGym99 and 288 as FineGym101

and FineGym290, respectively. Notably, we also report re-

sults on the original FineGym99 and 288 in the supplemen-

tal. Importantly, we do not use the element-level (i.e., action

phase) labels during training.

4.2. Baselines

We compare our approach to other weakly supervised

[15, 40, 8] and self-supervised [3, 32] methods that entail

temporal understanding in their definition. A detailed de-

scription of the baselines is provided in the supplemental.

4.3. Ablation study

We first present an ablation study that validates the con-

tribution of each component of our loss. For this purpose,

we evaluate fine-grained action recognition performance on

FineGym101. Following previous work [15], we use a Sup-

port Vector Machine (SVM) classifier [12] on top of the

learned embeddings to report framewise fine-grained clas-

sification accuracy. Notably, the classifier is trained on the

extracted embeddings with no additional fine-tuning of the

network. The results in Table 1 show the pivotal role of our

contrastive cost. In fact, turning off the contrastive com-

ponent of our cost, (8), and simply relying on the cosine

distance always leads to no improvement in learning from

the onset of training. Also, these results show the advan-

tage of adding our global cycle consistency, which further

validates the correspondences. Finally, we also compare

the performance of our smoothMin definition vs. the more

widely used minγ . The superiority of the adopted smooth

definition supports the laid out arguments in Section 3.2.

4.4. Fine-grained action recognition

We now compare our fine-grained action recognition

performance to our baselines using the FineGym dataset

and consider two training settings for the backbone frame-

wise encoder. (i) scratch: the backbone ResNet50 [24] is

trained from scratch with our proposed loss, (ii) only-bn:

we fine-tune batch norm layers of ResNet50 from a model

pre-trained on ImageNet [37]. The embedder is otherwise

trained from scratch in both cases. A third setting where all

layers are fine-tuned is presented in the supplemental.
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Method Training FineGym101 FineGym290

SpeedNet [3]

scratch

30.40 29.87

TCN [40] 36.52 37.40

SaL [32] 40.25 37.98

D3TW* [8] 32.10 32.15

TCC [15] 41.78 40.57

Ours 45.79 43.49

SpeedNet [3]

only bn

34.38 35.92

TCN [40] 41.75 39.93

SaL [32] 42.68 41.58

D3TW* [8] 38.21 34.04

TCC [15] 45.62 43.40

Ours 49.51 46.54

Table 2. Fine-grained action recognition accuracy on both organi-

zations of FineGym.

The results summarized in Table 2 (and the supplemen-

tal) speak decisively in favour of our method, where we

outperform all other weakly and self-supervised methods

with sizable margins. The gap is especially striking in the

case of SpeedNet. This poor performance can largely be at-

tributed to the fact that the task optimized in SpeedNet does

not require detailed framewise understanding. On the other

hand, the closest approach to ours is TCC as it also relies

on pairwise local matchings between videos of the same

class; however, the matchings are realized independently

and thus ignores informative long-term sequence structure.

This is in contrast to SaL which uses frames from the same

videos to solve tasks requiring temporal understanding. Im-

portantly, the superiority of our results compared to TCC

demonstrates that the global nature of our loss makes the

learned embeddings more robust to the presence of repeated

sub-actions as is the case for most of the FineGym videos.

Interestingly, the results obtained with D3TW* highlight the

limits of the downstream discriminative loss, which requires

an explicit construction of positive and negative examples

for training. Notably, while our method outperforms all al-

ternatives under both training settings, the best overall re-

sults are obtained under the only-bn setting and it is there-

fore used for all other experiments reported in this paper.

We also considered classification results of each event

separately where we also outperformed all alternatives. Im-

portantly, visualizations of the learned features suggests that

the proposed loss learns to adapt and identify the most reli-

able cues to learn the alignments. Please see supplemental

for detailed results, discussions, and visualizations.

4.5. Few-shot fine-grained action recognition

An advantage of our proposed weakly supervised

method is that it does not rely on framewise labels for train-

ing. To evaluate this advantage, we also report few-shot

classification results. In this case, the entire training set is

used to learn the embeddings, but only a few videos per

class are used to train the classifier. In particular, we use

FineGym101 for this experiment with an increasing num-

Figure 4. Few-shot fine-grained action recognition accuracy on

FineGym101.

Method Kendall’s Tau Phase classification

TCN [40] 65.29 69.3

SaL [32] 53.87 69.4

TCC [15] 71.0 77.51

Ours 74.84 78.90

Table 3. Video alignment results using Kendall’s Tau metric and

action phases classification on PennAction. Different from previ-

ous work, these results were obtained by training a single network

for all classes, thereby learning a joint representation.

ber of videos per class to train the classifier, starting from

the 1-shot setting all the way to using the entire dataset.

The plot in Fig. 4 further confirms the superiority of our

proposed method. As can be seen, our method outperforms

all others across the range of number of labeled training

videos used, with an especially strong performance even un-

der the challenging 1-shot setting.

4.6. Video synchronization

To evaluate the quality of the synchronization (i.e., align-

ment) between two videos we use Kendall’s Tau metric,

which does not require framewise labels. However, this

metric assumes little to no repetitions in the aligned videos.

We therefore follow previous work [15] and report results

only on the 13 classes without repetition in PennAction (i.e.,

strumming guitar and jumping rope are not included). Im-

portantly, while previously reported results [15] were ob-

tained by training a different network for each class of Pen-

nAction, we consider the more challenging setting of learn-

ing a joint representation over all classes (i.e., as done in all

previous experiments with FineGym). For a fair compari-

son, all baselines are also trained over all classes of Penn-

Action rather than one network per class.

Table 3 summarizes our video alignment results, where

we once again achieve state-of-the-art performance com-

pared to the baselines. Importantly, our performance is

also superior to previously reported results under the multi-

network training setting [15]. We report results under this

setting in the supplemental.

In addition to the quality of synchronization, we also re-
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Figure 5. 3D pose reconstruction results derived from the learned

alignments. Synchronized video frames from two sample training

videos in the pullup category of PennAction with overlayed 2D

keypoints are shown on the left. Reconstructed 3D pose from two

different viewpoints is shown on the right.

port in Table 3 state-of-the-art results on action phase clas-

sification. Notably, the action phase labels used here are

provided by the original authors of the PennAction dataset

[58] as the labels used previously [15] were not made pub-

lically available.

5. Downstream applications

3D pose reconstruction. As demonstrated by our evalu-

ations, our proposed weakly-supervised method is capable

of temporally aligning videos of similar actions even while

they are captured in different environments, at different ex-

ecution rates, and from different viewpoints. As a result, we

can align poses of the same action from different viewpoints

by forcing different videos to play synchronously. Exam-

ples of this video synchronization are provided in the sup-

plemental. Importantly, the synchronization of videos taken

at various viewpoints can serve as the basis for 3D pose

reconstruction. To demonstrate this ability, we use videos

from PennAction and their corresponding ground truth 2D

keypoint labels. In particular, given a random query video

from a given class in PennAction, we first start by align-

ing the remaining videos (from the same class) to it. Given

these aligned frames and their corresponding 2D keypoints

we use the Tomasi-Kanade factorization algorithm [46], fol-

lowed by bundle adjustment [22], to compute a temporally

aligned 3D model of the action performed. Fig. 5 presents

an example of our 3D pose reconstructions; additional re-

sults are available in the supplemental material.

Audio-visual alignment. Finally, we demonstrate that our

alignment based representation learning method can be ap-

plied to other types of sequences by applying it on separate

audio and visual inputs. Given that any audio-visual pair

is by default aligned and to avoid learning trivial solutions,

we sample audio segments and video frames differently to

make the task of learning the alignment harder on the net-

Figure 6. Sample fine-grained audio/visual retrieval using nearest

neighbor matches in embedding space, showing that the audio of

the explosion can be used to retrieve corresponding visual event.

works and consequently learn strong audio and visual em-

beddings. In particular, while the audio signal is uniformly

sampled into consecutive one second long segments, video

frames are on the other hand randomly sampled along the

temporal dimension. This sampling strategy encourages our

model to learn different alignment paths due to the random-

ness in the video frame selection. For visual features, the

same backbone and embedding network described in Sec.

3.5 is used to encode video frames, while we use VGGish

[18] to encode audio signals. In particular, each one sec-

ond long audio segment is first converted into a log mel

spectogram and used as an input for the VGGish network.

Training is otherwise performed as described in Sec. 3.5.

For this sample application, we use the firing cannon

class from the VGGSound dataset [9] for training and test-

ing. This class is selected as it is strongly visually indicated

with an easily identifiable salient auditory signal (i.e., the

explosion sound emitted upon firing of a cannon).

To demonstrate the quality of the learned audio and vi-

sual embeddings, we evaluate them on the task of fine-

grained audio/visual retrieval. In particular, given a one

second long audio signal corresponding to the moment of

firing a cannon, we extract its corresponding audio embed-

ding from the VGGish network trained using our approach.

This embedding is then used to query corresponding visual

embeddings from the vision network. The top-5 nearest

frame embeddings from all videos in the test set are ex-

tracted. Sample correspondences, shown in Fig. 6, clearly

depict that the corresponding visual embeddings also cap-

ture the moment of the firing visually. More details and

sample results are presented in the supplemental.

6. Conclusion

In summary, this work introduced a novel weakly su-

pervised method for representation learning relying on se-

quence alignment as a supervisory signal and taking a prob-

abilistic view in tackling this problem. Because the latent

supervisory signal entails detailed temporal understanding,

we judge the effectiveness of our learned representation on

tasks requiring fine-grained temporal distinctions and show

that we establish a new state of the art. In addition, we

present two applications of our temporal alignment frame-

work, thereby opening up new avenues for future investiga-

tions grounded on the proposed approach.
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[27] Mandy Lange, Dietlind Zühlke, Olaf Holz, and Thomas Vill-

mann. Applications of lp-norms and their smooth approxi-

mations for gradient based learning vector quantization. In

ESANN, 2014. 3

[28] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-

Hsuan Yang. Unsupervised representation learning by sort-

ing sequences. In ICCV, pages 667–676, 2017. 2

[29] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-

supervised learning of optical flow with a bidirectional cen-

sus loss. In AAAI, pages 7251–7259, 2018. 2

[30] Arthur Mensch and Mathieu Blondel. Differentiable dy-

namic programming for structured prediction and attention.

In ICML, pages 3459–3468, 2018. 1, 2

[31] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan

Laptev, Josef Sivic, and Andrew Zisserman. End-to-end

learning of visual representations from uncurated instruc-

tional videos. In CVPR, pages 9876–9886, 2020. 3

[32] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: Unsupervised learning using temporal order

verification. In ECCV, pages 527–544, 2016. 2, 6, 7

[33] Andriy Mnih and Koray Kavukcuoglu. Learning word em-

beddings efficiently with noise-contrastive estimation. In

NeurIPS, pages 2265–2273, 2013. 2

11076



[34] Andrew Owens and Alexei A. Efros. Audio-visual scene

analysis with self-supervised multisensory features. In

ECCV, pages 639–658, 2018. 2

[35] Deepak Pathak, Ross B. Girshick, Piotr Dollár, Trevor Dar-

rell, and Bharath Hariharan. Learning features by watching

objects move. In CVPR, pages 6024–6033, 2017. 2

[36] Mandela Patrick, Yuki Markus Asano, Ruth Fong, João F.

Henriques, Geoffrey Zweig, and Andrea Vedaldi. Multi-

modal self-supervision from generalized data transforma-

tions. CoRR, abs/2003.04298, 2020. 3

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 115(3):211–252, 2015. 6

[38] Hiroaki Sakoe and Seibi Chiba. Dynamic programming al-

gorithm optimization for spoken word recognition. TASSP,

26(1):43–49, 1978. 2, 3

[39] Yasushi Sakurai, Christos Faloutsos, and Masashi Yama-

muro. Stream monitoring under the time warping distance.

In ICDE, pages 1046–1055, 2007. 3

[40] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine

Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-

contrastive networks: Self-supervised learning from video.

In ICRA, pages 1134–1141, 2018. 2, 6, 7

[41] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. FineGym: A

hierarchical video dataset for fine-grained action understand-

ing. In CVPR, pages 2613–2622, 2020. 6

[42] Gunnar A. Sigurdsson, Abhinav Gupta, Cordelia Schmid,

Ali Farhadi, and Karteek Alahari. Actor and observer: Joint

modeling of first and third-person videos. In CVPR, pages

7396–7404, 2018. 2

[43] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NeurIPS, pages 568–576, 2014. 2

[44] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia

Schmid. Contrastive bidirectional transformer for temporal

representation learning. CoRR, abs/1906.05743, 2019. 3

[45] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. CoRR, abs/1906.05849, 2019. 2,

3

[46] Carlo Tomasi and Takeo Kanade. Shape and motion from

image streams under orthography: A factorization method.

IJCV, 9(2):137–154, 1992. 8

[47] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. Learning spatiotemporal features

with 3D convolutional networks. In ICCV, pages 4489–4497,

2015. 2
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