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Figure 1. Heterogeneous grid convolution exploits the heterogeneity in the image to enable adaptive, efficient, and controllable computation

for a range of image understanding tasks such as semantic segmentation, road extraction, and salient object detection from left to right.

Abstract

This paper proposes a novel heterogeneous grid convolu-

tion that builds a graph-based image representation by ex-

ploiting heterogeneity in the image content, enabling adap-

tive, efficient, and controllable computations in a convolu-

tional architecture. More concretely, the approach builds

a data-adaptive graph structure from a convolutional layer

by a differentiable clustering method, pools features to the

graph, performs a novel direction-aware graph convolu-

tion, and unpool features back to the convolutional layer.

By using the developed module, the paper proposes het-

erogeneous grid convolutional networks, highly efficient yet

strong extension of existing architectures. We have evalu-

ated the proposed approach on four image understanding

tasks, semantic segmentation, object localization, road ex-

traction, and salient object detection. The proposed method

is effective on three of the four tasks. Especially, the method

outperforms a strong baseline with more than 90% reduc-

tion in floating-point operations for semantic segmentation,

and achieves the state-of-the-art result for road extraction.

We will share our code, model, and data.

1. Introduction

Our world is heterogeneous in nature. Looking at a scene

from a car (See Fig. 1), the road occupies one third of the

image with homogeneous textures. At the far end of the

road are full of objects such as cars, pedestrians, or road

signs. The density of semantic information varies per lo-

cation. Our attention to the world is also heterogeneous in

nature. With a specific task in mind, we focus our attention

to a specific portion of an image, for example, tracing a road

network in a satellite image.

While a regular grid feature representation has been suc-

cessful, such a representation contains redundant informa-

tion in low density regions, whereas the spatial resolution

is insufficient in high density regions. Features should be

stored adaptively based on the information density.

This paper studies a novel “heterogeneous grid convolu-

tion”, which has the following three advantages. (Adaptive)

The node features are adaptively allocated where necessary.

(Efficient) The adaptive allocation reduces redundant com-

putations. (Controllable) An agent can focus computation

to a region of interest with an additional input.

There are two technical challenges in learning such a

flexible feature representation: (a) how to adaptively allo-

cate nodes while exploiting image heterogeneity, and (b)

how to define a convolution operation on a heterogeneous

grid structure. We propose a differentiable clustering-based

graph pooling for the first challenge and a direction-aware

extension of the graph convolution for the second challenge.

The combination of our graph pooling and direction-

aware graph convolution forms a neural model, dubbed
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heterogeneous grid convolution, that can be inserted into

any existing CNN architecture. By exploiting the proposed

module, we also propose a heterogeneous grid convolu-

tional neural networks (HG-CNNs) as a highly efficient yet

strong extension of existing CNN architectures.

We have evaluated the proposed approach on four im-

age understanding tasks, semantic segmentation, object lo-

calization, road extraction, and salient object detection.

The proposed HG-CNNs are effective for three of the

four tasks; the HG-CNN outperforms strong baselines with

fewer floating-point operations (more than 90% reduction)

on semantic segmentation; it achieves the state-of-the-art

result on road extraction task; it yields compelling perfor-

mance against state-of-the-arts on salient object detection.

The current neural processors (i.e., NPU and GPU) are op-

timized for regular grid computations, and the proposed

module is not necessarily computationally faster or more

efficient in practice. However, the paper opens up a new

avenue of research, potentially leading to an impact in ver-

tical application domains, such as embedded devices with

specialized hardware. We will share all our code and data

to promote further research.

2. Related works

The literature of convolutional neural architecture is

massive. The section focuses the description on the graph

convolution, the graph pooling, and other closely related en-

hancement techniques in computer vision.

Graph convolution: Hammond et al. [12] and Defferrard

et al. [9] formulated a convolution operation on graph-

structured data based on spectral graph theory, approximat-

ing filters in the Fourier domain using Chebyshev polyno-

mials. Kipf and Welling [17] further proposed a first-order

approximation of the spectral graph convolution. Since the

above works assume general graph data as inputs, they lack

the capability of capturing spatial relationships between

nodes for embedded graphs. To remedy this, various meth-

ods have been proposed [10, 20, 26, 32, 34, 38]. For in-

stance, Spline-CNN [10] extends a regular kernel function

to a continuous kernel function using B-spline bases, where

convolution weights for the adjacent nodes can be modified

according to their relative spatial position. In our experi-

ments, we compare our direction-aware graph convolution

to the above methods.

Ci et al. [7] extends widely used GCN for 3D pose esti-

mation by using different weight parameters for every pair

of nodes. However the application of the method is limited

to the tasks where the graph structure is pre-defined, e.g., a

skeleton body model in 3D pose estimation.

Graph pooling: Graph pooling is a key operation for learn-

ing hierarchical graph representations. DiffPool was pro-

posed as a differentiable graph pooling method, in which

soft-cluster assignments are directly estimated using graph

convolution layers in an end-to-end manner [37]. Other

methods defined graph pooling as a node selection prob-

lem. In such methods, the top-k representative nodes are se-

lected using a trainable vector p [3] or self-attention mech-

anism [19]. Whereas the above methods globally select dis-

criminative nodes, AttPool [15] also applies a local atten-

tion mechanism to prevent the pooling operation from being

stuck within a narrow sub-graph.

Non-grid representations in computer vision: Graph-

based representations have been proposed for modeling

long-range dependencies in an image. Li et al. pro-

posed a module that performs graph reasoning on a fully-

connected graph acquired from a clustering-based graph

projection [21]. Similar ideas are also proposed by [6]

and [45]. To reduce the computational complexity of the

fully-connected graph reasoning, recent work proposed a

dynamic graph message passing that adaptively constructs

a local graph for each location of a feature map [46].

These methods aim to refine a regular grid representation by

adding an extra graph reasoning module on it, and thus still

depend on regular convolution for spatial feature extraction.

On the other hand, our aim is to replace the redundant reg-

ular convolutions by the proposed HG-Conv that gives a

unified method for spatial feature extraction and long-range

message passing on compact graph representations.

Marin et al. proposed a non-uniform downsampling

method that learns deformations from uniform sampling

points such that the points near semantic boundaries are

sampled as many as possible [24]. More recently, Gao

et al. proposed a method that constructs an adaptive tri-

angular mesh on an image plane, and applied the method

as learnable downsampling on semantic segmentation task

[11]. The method predicts deformations from an initial tri-

angular mesh such that each mesh has a small feature vari-

ance. These methods differ from our method in two points;

1) they applied conventional regular convolutions after non-

uniform downsampling; 2) for this reason, the deforma-

tions are restricted so that the regularity of the output are

kept. For this purpose, the methods introduced regulariza-

tion terms. On the other hand, our graph convolution can

operate directly on non-uniform inputs, and hence the pro-

posed graph pooling can generate pooling regions of arbi-

trary shapes and sizes in a purely data adaptive manner.

PointRend [18] is proposed as a point-based feature re-

finement module. To generate high-resolution output, the

module adaptively samples points from upsampled feature

maps and apply MLP to refine the point features. The

method is orthogonal to our method.

Ning et al. [28] proposed an efficient convolution

method by reusing computation among similar features.

While the method achieves an efficient approximation of a

regular convolution, the method cannot be applied on non-
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Figure 2. Illustration of heterogeneous grid convolution. From input feature map, HG-Conv 1) finds groups of pixels shown in colored

grids, 2) computes group feature vectors by taking average inside the groups, 3) performs convolution as direction-wise graph-convolutions

over the groups, and 4) copies the group feature vector back to the pixels for each group.

grid inputs.

Other enhancement techniques: Dilated convolutions

[39, 40] take a strategy of maintaining the feature reso-

lution throughout the networks. Despite being a success-

ful technique [41, 42, 43, 47], Dilated convolutions suf-

fer from large memory consumption and computations due

to the high-resolution feature maps. More recently, multi-

resolution features [33] or a course-to-fine strategy [1, 4, 22,

23, 29, 31] have been proposed to alleviate the issue.

Multi-scale feature fusion has been studied for aggregat-

ing long-range contextual information [4, 13, 36, 39, 47].

The methods build multi-scale features by applying pyra-

mid pooling [47] or dilated convolutions with different di-

lation rates [4]. Recent works [5, 41, 42, 43, 44] have pro-

posed adaptive context aggregation methods that are based

on the feature relation. For instance, OCNet [42] identi-

fies the context for each pixel by adopting a self-attention

mechanism. A2-Net [5] applies a double attention mecha-

nism, where the key features in a scene are aggregated dur-

ing the first “gather” attention, and are distributed to each

pixel during the second “distribute” attention.

3. Convolution as a set of graph-convolutions

Convolution is a direction-wise set of graph-

convolutions. We first show this not well-known fact,

which will allow us to define heterogeneous grid convo-

lution with the language of graph-convolutions towards a

simple and efficient implementation in the next section.

Considering convolution as a message-passing architec-

ture, (3×3) convolution passes messages along nine direc-

tions ∆ = {←,→, ↑, ↓,տ,ր,ւ,ց,	} (See Fig. 3):

−→zp =
∑

δ∈∆

−−−→xp+δWδ. (1)

−→xp is the (1×Nin) input feature vector at pixel p. −→zp is

the (1×Nout) output feature vector. With abuse of notation

δ(∈ ∆) is a positional displacement for a given direction.

Wδ is the (Nin ×Nout) kernel matrix for direction δ. 1

Let X and Z denote the set of feature vectors for all the

pixels as the (Npix × Nin) and (Npix × Nout) matrices,

where Npix is the number of pixels. The above message-

passing equation can be written for all the pixels as

Z =
∑

δ∈∆

(

Dδ
)−1

AδXWδ. (2)

Aδ is the (Npix × Npix) asymmetric adjacency matrix for

direction δ, that is, Aδ
ij is 1 if the ith pixel is connected to

the jth pixel along direction δ. Dδ is the (Npix × Npix)

degree matrix of Aδ: Dδ
ii = max

(

∑

j A
δ
ij , ǫ
)

, where

(ǫ =1e-7) is used to avoid divide-by-zero in computing its

inverse. The formula inside the summation is the widely

used graph-convolution formulation by Kipf and Welling

[17], which is summed over the message passing directions.

4. Heterogeneous Grid Convolution

Heterogeneous grid convolution (HG-Conv) is a natural

extension of convolution in the heterogeneous grid domain.

1A kernel set is a 4D tensor, usually interpreted as a 2D matrix for a

pair of input and output channels. Wδ is a 2D slice of the 4D tensor per

pixel, while masking out the contributions outside the given direction δ.
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Figure 3. Illustration of direction-wise adjacency matrices. Adjacency matrices for group of pixels are defined by the summation of

connections between groups. To avoid clutter, we exclude diagonal directions.

Understanding that the convolution is equivalent to the sum

of direction-wise graph-convolutions (Eq. 2), HG-Conv is

defined as a four-step process shown in Fig. 2: (1. Cluster-

ing) Find groups of pixels sharing similar features; (2. Pool-

ing) Compute the group feature vector by taking the average

over its pixels; (3. Graph-convolution) Perform convolu-

tion as direction-wise graph-convolutions over the groups;

and (4. Unpooling) Copy the group feature vector back to

the pixels for each group. The four steps are defined in the

following formula:

Z = S
∑

δ∈∆

(

D̂δ
)−1

ÂδSTXWδ, (3)

Âδ = STAδS. (4)

S is a Npix × Ngrp group assignment matrix, where Spg

defines an assignment weight from pixel p to group g. Âδ

is the Ngrp × Ngrp adjacency matrix for the groups. D̂δ

is the Ngrp × Ngrp degree matrix of Âδ . Starting from

the stack of input feature vectors X , (1. Clustering) is to

compute S; (2. Pooling) is the left-multiplication of ST ; (3.

Graph-convoluion) is the left-multiplication of (D̂δ)−1Âδ

and right-multiplication of the learnable kernel Wδ; and (4.

Unpooling) is the multiplication of S.

4.1. Differentiable clustering

The group assignment S is computed by sampling clus-

ter centers from input pixels, and associating input fea-

tures to the cluster centers using differentiable SLIC algo-

rithm [16]. Note that S is a soft-assignment and trainable

in an end-to-end manner. The cluster centers are sampled

based on “importance” of each pixel. The importance is

defined as L2 distance between a pixel’s feature and its ad-

jacent features. As an extension, the importance map can

be incorporated as an attention map for controlling node al-

location as shown later.

4.2. Pooling

Given the group of pixels, group feature vectors are com-

puted by the average pooling, which can be written as:

X̂ = S̄TX. (5)

S̄ is a column-wise normalized assignment matrix, i.e.,

S̄ = SZ̄−1 and Z̄jj =
∑

i Sij . The unpooling operation is

defined via its transpose:

X = S̃X ′ (6)

where S̃ is a row-wise normalized matrix, i.e., S̃ = Z̃−1S

and Z̃ii =
∑

j Sij .

4.3. Graphconvolution

A convolution (Eq. 2) is defined as the left multiplica-

tion of the adjacency matrix Aδ (with the inverse of the

degree matrix) and the right multiplication of the learnable

kernel Wδ . We define a convolution for groups by simply

replacing the adjacency matrix of the pixels Aδ with the

adjacency matrix of the groups Âδ . Âδ
ij should encode the

amount of connections from the ith group to the jth group

along direction δ, in other words, how many pixel-level

connections there are along δ from a pixel in the ith group

to a pixel in the jth group. This can be calculated easily by

the group assignment matrix S: Âδ = STAδS [37]. The

convolution for the groups is then given as the left multipli-

cation of (D̂δ)−1Âδ and the right-multiplication of Wδ .

We find that the clusters from differentiable SLIC tend

to have complicated shapes and include many small disjoint

regions, where Fig. 4 (a) illustrates the situation. Due to the

disjoint cluster (depicted in blue), the green cluster is con-

nected to the blue cluster in every direction, which results

in a “noisy” group adjacency matrix (Fig. 4 (b)).

To this end, a “noise-canceling operation” is performed

on the group adjacency matrix, which cancels out the con-

nection weight by the weight of the opposite direction

(Fig. 4 (c)). Let δ̄ be the opposite direction of δ, the “noise-

canceling” is performed as follows.

Âδ ← max(0, Âδ − Âδ̄) (7)

By abuse of notation, Âδ is replaced with the refined

matrices. In practice, the matrices are further simplified

by only keeping the direction with the maximum connec-

tion (e.g., only the left-wise connection remains in case of

Fig. 4 (c)). We empirically find that taking the strongest

direction slightly improve the performance.

4.4. HG convolutional modules and networks

A standard convolutional architecture design is to repeat

convolutional, batch normalization, and ReLU layers. This
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design is immediately applicable to HG convolutions:

Z0 = STX, (8)

Zl = FBN-ReLU

(

∑

δ∈∆

(

D̂δ
)−1

ÂδZl−1Wδ

)

, (9)

Z = SZL. (10)

This HG-Conv module repeats HG-convolutions, batch nor-

malization, and ReLU L times from X to Z. FBN-ReLU

is a batch normalization layer followed by ReLU activa-

tion. HG convolution is capable of incorporating other pop-

ular modules in the CNN literature such as residual blocks.

Next, we will design a few representative heterogeneous

convolutional neural networks (HG-CNNs) by using HG-

convolution and other techniques, where the full specifica-

tions are referred to the supplementary.

HG-ResNet: A ResNet [14] is extended by replacing the

4th stage of the network with the HG-Conv module: The

pooling (Eq. 8) is inserted at the beginning of stage 4; The

subsequent regular convolutions are replaced by the HG-

Conv; and The unpooling (Eq. 10) is inserted at the end of

the stage. Finally, the module output is concatenated to the

stage 3 output and further refined by a 1 × 1 convolution.

Note that the parameter size is equal to the original ResNet

except the final 1× 1 convolution.

HG-HRNetV2: HRNetV2 [33] is a variant of HRNet that

have recently shown outstanding performance on semantic

segmentation. Similar to HG-ResNet, the HG-Conv module

is applied to the last part of HRNetV2, in particular, all the

4 branches at the last block of stage 4.

HG-ResUNet: ResUNet is a variant of UNet [31], popular

in the field of medical image analysis and remote sensing.

We applied the HG-Conv module to the last and the first

block of the encoder and decoder, respectively. In the same

way as HG-ResNet, the output of each module is concate-

nated with the input, and refined by 1× 1 convolution.

5. Experiments

We evaluate the proposed HG-CNNs on four image un-

derstanding tasks, semantic segmentation, object localiza-

tion, road extraction, and salient object detection. On

semantic segmentation, the HG-Conv outperforms strong

baselines while representing an image with much fewer spa-

tial nodes (less than 2%) (Sect. 5.1). However, HG-Conv

does not perform effectively on object localization, which

needs further exploration (Sect. 5.2). On the other two

tasks, we demonstrate that the HG-Conv is able to control

node allocations based on task-specific attention maps, an

extension called “active focus” (Sects. 5.3 and 5.4).

5.1. Semantic Segmentation

Setup: We build three HG-CNNs based on HG-ResNet and

HG-HRNetV2, and compare against their non-HG counter-

parts. First, we use HG-ResNet to build two HG-CNNs

(HG-ResNet-Dilation and HG-ResNet-DCN) by using di-

lated convolutions and deformable convolutions at the 3rd

residual stage. The non-HG counterparts (ResNet-Dilation

and ResNet-DCN) are constructed by simply replacing the

HG-Conv by dilated convolution and deformable convolu-

tion. The third HG-CNN is HG-HRNetV2, where the non-

HG counterpart is HRNetV2, which is the start-of-the-art

segmentation network. To further boost performance, we

add auxiliary segmentation heads to the input of the HG-

Conv modules for all HG-CNNs.

Unless otherwise noted, we determined the number of

groups of HG-Conv as 1/64 of the number of input pixels

(i.e., the downsampling rate is set as 1/64). As the HG-

Conv adaptively constructs graph representations, the num-

ber of floating-point operations varies per image. Although

the fluctuation is negligible, we evaluate the FLOPs of the

HG-Conv by the average over the validation images. We

basically used multi-scale prediction.

Main results: Fig. 6 compares the performance and the

computational complexity of the ResNet models and the

HG-ResNet models with various depths (18/34/50/101).

The HG-ResNet models outperform the corresponding

baselines with much less floating-point operations. Es-

pecially on PASCAL-context, HG-ResNet34-DCN outper-

forms ResNet101-DCN (+0.7%) with only 10% floating-

point operations. Furthermore, Table 1 shows that

HG-HRNetV2 outperforms baseline HRNetV2 with less

floating-point operations.

Comparison with other state-of-the-art non-grid convo-

lutions Table 2 shows the comparison against other state-

of-the-art non-grid convolutions, DCN [8] and DGMN [46].

In the table, HG-Conv outperforms DCN with less FLOPs.

The combination of DCN and HG-conv (DCN at stage 3 and

HG-Conv at stage 4) outperforms DGMN with less FLOPs.

As for realistic runtime, HG-CNN is not faster than the con-
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Figure 5. (Top left) Visualization of adjacency matrices before and after noise-canceling. Diagonal directions are excluded to avoid clutter.

(Top right) Visualization of active focus for salient object detection. Object-aware attention map and resulting clustering are shown on the

left two images, and uncertainty-aware attention map and resulting clustering is shown on the right two images. (Center right) Importance

map and sampled cluster centers for each sampling method. (Bottom) Visualization of clustering for outdoor scenes, indoor scenes, and

satellite imagery. For the satellite imagery, spatial nodes are focused on road lines (active focus).

ventional CNNs in practice. For instance, “DCN” in Table 2

can process 713×713 inputs in 14.9 FPS, while “DCN+HG-

conv” processes the same inputs in 6.5 FPS. This is because

today’s processors (GPUs) are optimized for regular grid

computations, not for graph processing. We believe that the

runtime should be improved by more optimized implemen-

tation or specialized hardware.

In Table 3, we also compared against other irregular

convolutions studied in the field of geometric deep learn-

ing (e.g., GMMConv [26] and SplineConv [10]). Specif-

ically, we replace the graph-convolution step of the HG-

Conv module with the competing modules (See Table 3).

The HG-Conv outperforms the other methods in most cases.

Due to engineering challenges, fine-tuning from ImageNet

pre-trained models was not possible for some methods. For

a fair comparison, we also trained our model from scratch.

Ablation study: To validate the design choices of the HG-

Conv, we conducted several ablation studies.

(Sampling methods) We compare three sampling methods

for the cluster center sampling step of the HG-Conv: ran-

dom sampling, importance sampling, and a combination

of top-k and random sampling [18]. Fig. 5 visualizes the

sampled cluster centers, and Table 4 reports the model per-

formances for each sampling method. With random sam-

pling, a large portion of the sampled locations lie on the

homogeneous road region, and many objects at the far end

are missed. In contrast, the other sampling methods prop-

erly place the cluster centers based on the importance map,

which results in better segmentation performance.

(Downsampling ratio) Table 5 evaluates HG-ResNet with

varying downsampling ratio. HG-ResNet outperforms the

baseline ResNet with extremely small downsampling ratio.

(Noise-canceling) Table 7 demonstrates the effectiveness of

noise-canceling operation on the adjacency matrices, which

shows clear improvements on two of the three datasets.

Max-direction heuristic achieves the well-balanced perfor-

mance across all of the datasets. The effect of noise-

canceling is qualitatively clear in Fig. 5.

(HG-Conv for 3rd stage) In Table 8, we further convert the

3rd stage of ResNet101 into the HG-Conv. Whereas the

performance degrades from 79.9% to 78.1%, the computa-

tional cost reduction increases significantly (i.e., from 15.1

% to 54.7 %). However, as the result of HG-ResNet34

shows, reducing the depth of HG-ResNet is more effective

than applying the HG-Conv at a shallow stage.

5.2. Object Localization

We also evaluated the proposed method on object local-

ization tasks such as object detection and instance segmen-

tation. For base models, we use Faster R-CNN and Mask R-

CNN with FPN. Specifically, we compared two backbones,

ResNet-DCN and HG-ResNet-DCN, on COCO dataset.

Table 9 shows the results of the comparison. While our

method achieves 30% reduction in FLOPs, the accuracy of

the model is degraded by HG-conv. We leave further explo-
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Figure 6. Evaluation results of ResNet and HG-ResNet on (a) Cityscapes, (b) ADE20K, and (c) PASCAL-context. The number of floating-

point operations are calculated for processing image size of 1, 024× 2, 048, 473× 473, and 520× 520 respectively.

Table 1. Semantic segmentation results of HG-HRNetV2 on

Cityscapes, ADE20K, and Pascal-context datasets (mIoU).
GFLOPs Cityscapes ADE20K PASCAL-context

HRNetV2 [33] 696 81.7 43.4 54.0

HG-HRNetV2 632 82.4 44.2 54.9

Table 2. Comparison with other non-grid convolution methods on

Cityscapes. The models are evaluated at single scale.

mIoU #params FLOPs

ResNet101-Dilation 75.3 52.07M 512.8 G

+ DCN [8] 78.1 +1.20M +11.3G

+ DGMN [46] 79.2 +2.61M +24.6G

+ HG-conv 78.8 +6.29M -78.1G

+ DCN +HG-conv 79.5 +7.25M -69.1G

Table 3. Comparison with other convolution methods for non-

uniform inputs on semantic segmentation tasks (mIoU). The meth-

ods are evaluated using HG-ResNet101-dilation.
Cityscapes ADE20K PASCAL-context

w/o transfer

Kipf and Welling [17] 75.8 37.3 41.7

DynamicEdgeConv [34] 77.2 39.7 45.9

HG-Conv 77.7 40.6 44.7

w/ transfer

GMMConv [26] 77.2 40.3 45.9

SplineConv [10] 78.4 41.2 45.5

HG-Conv 78.8 42.0 47.5

ration of HG-Conv on object localization for future work.

5.3. Road Extraction

Road extraction is a task for extracting road graphs from

overhead images. On this task, we demonstrate the “ac-

tive focus” capability that focuses cluster center allocation

around predicted road lines. Active focus is particularly ef-

fective for road extraction where targets have thin structure.

Finally, we apply the HG-Conv into the previous method,

and achieve the state-of-the-art performance.

Setup: We make two HG-CNNs and their non-HG coun-

terparts in this evaluation. The first pair is HG-ResUNet

Table 4. Ablation study on sampling methods for the cluster center

sampling step of HG-Conv.
Cityscapes ADE20K PASCAL-context

Random sampling 79.1 41.0 45.8
Importance sampling 79.4 40.5 46.0

Top-k + random [18] 79.0 41.3 46.0

Table 5. HG-Conv with different downsampling rates. Results are

reported for Cityscapes. The models use deformable convolution.
ResNet101 HG-ResNet101

Downsampling 1/1 1/16 1/32 1/64 1/128

mIoU 78.1 78.1 80.3 79.5 79.9

GFLOPs 1826 1574 1558 1550 1546

(reduction) - (13.8%) (14.7%) (15.1%) (15.3%)

and ResUNet, and the second pair is HG-Orientation and

Orientation [2] (a current state-of-the-art network for the

task). We modified the above models slightly to keep high-

resolution information; the stride of the first 7× 7 convolu-

tion is decreased to 1, and the max-pooling layer is removed

(+). Furthermore, we make two modifications to employ ac-

tive focus (-Attn): 1) A coarse segmentation head is added

on the input feature of the HG-Conv module; and 2) The

active focus is employed using the coarse prediction map as

attention to focus the cluster center allocation on the road

lines.

Results: Table 10 shows that our method (HG-

Orientation+-Attn) achieves the state-of-the-art result on

both IoU and APLS metrics. The effectiveness of HG-

ResUNet18+ is also clear (+0.6% and +0.9% for IoU and

APLS, compared to ResUNet18+). The active focus is par-

ticularly effective on the task: By focusing spatial nodes

on the road lines, the network can utilize high resolution

information around road, while propagating contextual in-

formation from other regions (see Fig. 5 for visualization).

5.4. Salient Object Detection

Salient object detection is a task for identifying the ob-

ject regions that are most attractive for human eyes. On the

task, we compare two different types of active focus.
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Table 6. Evaluation of HG-ResUNet and active focus for salient object detection.
ECSSD PASCAL-S DUT-OMRON HKU-IS SOD DUT-TE

MaxF↑ MAE↓ MaxF↑ MAE↓ MaxF↑ MAE↓ MaxF↑ MAE↓ MaxF↑ MAE↓ MaxF↑ MAE↓

ResUNet50 0.938 0.0413 0.860 0.0686 0.781 0.0625 0.928 0.0363 0.862 0.1002 0.872 0.0430

HG-ResUNet50 0.942 0.0393 0.868 0.0662 0.799 0.0563 0.936 0.0332 0.865 0.1036 0.881 0.0403

HG-ResUNet50-Attn (object) 0.943 0.0396 0.871 0.0654 0.801 0.0560 0.935 0.0325 0.862 0.1099 0.884 0.0387

HG-ResUNet50-Attn (uncertainty) 0.943 0.0395 0.867 0.0661 0.794 0.0561 0.934 0.0331 0.866 0.1098 0.884 0.0382

Table 7. Ablation study on noise-canceling of adjacency matrix.
Noise

Canceling
Max

Direction
Cityscapes ADE20K PASCAL-context

78.4 40.4 45.0
X 78.5 41.6 45.9
X X 79.0 41.3 46.0

Table 8. Application of HG-Conv on shallower stages. The values

in parentheses indicate the reduction efficiency of FLOPs com-

pared to ResNet101-DCN.
HG-Conv GFLOPs mIoU

ResNet101-DCN none 1,826 78.8

HG-ResNet101-DCN stage4 1,550 (15.1%) 79.9

stage3,4 827 (54.7%) 78.1

HG-ResNet34-DCN stage4 122 (93.3%) 78.4

Table 9. Results for object localization on COCO val-set. Compu-

tational complexity of backbone part is shown on “GFLOPs”.
Backbone GFLOPs APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Faster R-CNN ResNet50 27.6 38.7 59.4 42.2 — — —

HG-ResNet50 19.1 37.0 58.3 40.4 — — —

Mask R-CNN ResNet50 27.6 40.0 60.4 43.9 36.1 57.3 38.6

HG-ResNet50 19.1 39.1 60.3 42.9 35.2 57.0 37.5

Table 10. HG-Conv and active focus on road extraction task.
IoU APLS

DeepRoadMapper [25] 62.6 65.6

Topology Loss [27] 64.9 66.0

LinkNet34 [48] 62.8 65.3

Orientation [2] 67.2 73.1

ResUNet18 65.2 69.4

ResUNet18+ 67.5 71.0

HG-ResUNet18+ 68.1 71.9

HG-ResUNet18+-Attn 68.3 72.3

Orientation+ 67.8 76.0

HG-Orientation+-Attn 68.3 76.4

Setup: ResUNet50 and HG-ResUNet50 are used for the

evaluations. For active focus, the coarse segmentation head

is attached on the HG-ResUNet50. We experiment two

types of attention: “object-aware” and “uncertainty-aware”.

In object-aware attention, the predicted object mask is used

as an attention, which places cluster centers on the object.

In uncertainty-aware attention, entropy of the coarse pre-

diction is used as an attention, which places cluster centers

where the prediction is uncertain. For detailed training set-

tings, please refer to the supplementary materials.

Results: Table 6 compares the HG-ResUNet models with

baseline ResUNet50. For most datasets, HG-ResUNet50

outperforms the baseline. The object-aware active focus is

Figure 7. Evaluation results of ResUNet and HG-ResUNet on

salient object detection.

particularly effective for the task. Whereas the uncertainty-

aware active focus also performs well, the performance is

worse compared to plain HG-ResUNet50 on three out of

six datasets (See Fig. 5).

Comparison to the state-of-the-art methods: Fig 7 com-

pares the baseline and the proposed methods against the

previous state-of-the-art. Our method does not achieve the

state-of-the-art over all, but performs comparably well for

some datasets without using complicated architectures such

as iterative refinement modules [30] or edge-aware loss

functions [35].

6. Conclusions

This paper presents a novel heterogeneous grid convo-

lution (HG-Conv) that builds an adaptive, efficient and con-

trollable representation by exploiting heterogeneity inherent

in natural scenes. Our experimental results demonstrate that

HG-CNN is capable of reducing computational expenses

significantly without much sacrifice to performance, even

achieving state-of-the-art for some tasks. HG-CNN is fur-

ther capable of controlling the focus of computations based

on an application-specific attention maps. Our future work

is to further explore the potentials of HG-CNN on more ap-

plications as well as the use of FPGA hardware, which is

flexible and known to be effective for sparse computation.
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