
Monte Carlo Scene Search for 3D Scene Understanding

∗ Shreyas Hampali(1), ∗ Sinisa Stekovic(1), Sayan Deb Sarkar(1), Chetan S. Kumar(1),

Friedrich Fraundorfer(1), Vincent Lepetit(2,1)

(1)Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
(2)Université Paris-Est, École des Ponts ParisTech, Paris, France

{<firstname>.<lastname>}@icg.tugraz.at, fraundorfer@icg.tugraz.at, vincent.lepetit@enpc.fr

Project page: https://www.tugraz.at/index.php?id=50484

Layout and Object ProposalsNoisy RGB-D Scan Our Retrieved CAD-like Representation

Figure 1: In this paper, we advocate for the use of Monte Carlo Tree Search (MCTS) for 3D scene understanding problems.

Given a noisy 3D point cloud recovered from an RGB-D sequence, our approach recovers accurate 3D models and poses

for the objects, walls, and floor with minimal training data, even in challenging conditions. We first generate proposals for

the layout components and the objects, and rely on Monte Carlo Tree Search (MCTS) adapted to the problem to identify

the proposals that best explain the RGB-D sequence. We retrieve correctly the arrangement of chairs on the left-hand side

of the scene despite them being close to each other and the thin wall on the top. Our adapted MCTS algorithm has few

hyperparameters and can be applied to wide variety of scenes with minimal tuning effort. For visualization purposes only,

we texture the objects and the layout using the colors of the 3D points close-by.

Abstract

We explore how a general AI algorithm can be used

for 3D scene understanding to reduce the need for train-

ing data. More exactly, we propose a modification

of the Monte Carlo Tree Search (MCTS) algorithm to

retrieve objects and room layouts from noisy RGB-D

scans. While MCTS was developed as a game-playing

algorithm, we show it can also be used for complex

perception problems. Our adapted MCTS algorithm

has few easy-to-tune hyperparameters and can optimise

general losses. We use it to optimise the posterior prob-

ability of objects and room layout hypotheses given the

RGB-D data. This results in an analysis-by-synthesis

approach that explores the solution space by rendering

the current solution and comparing it to the RGB-D

observations. To perform this exploration even more

efficiently, we propose simple changes to the standard

MCTS’ tree construction and exploration policy. We

demonstrate our approach on the ScanNet dataset. Our

method often retrieves configurations that are better

than some manual annotations, especially on layouts.

∗The first two authors contributed equally.

13804

1. Introduction

3D scene understanding is a fundamental problem in

Computer Vision [41, 53]. In the case of indoor scenes,

one usually aims at recognizing the objects and their prop-

erties such as their 3D pose and geometry [2, 3, 15], or the

room layouts [57, 31, 62, 59, 30, 36, 50, 60, 62, 54, 55],

or both [4, 18, 35, 45, 51, 56]. With the development of

deep learning approaches, the field has made a remarkable

progress. Unfortunately, all recent methods are trained in

a supervised way on 3D annotated data. Such a supervised

approach has several drawbacks: 3D manual annotations

are particularly cumbersome to create and creating realis-

tic virtual 3D scenes also has a high cost [42]. Moreover,

supervised methods also tend to generalize poorly to other

datasets. Even more importantly, they can only be as good

as the training 3D annotations, and mistakes in manual an-

notations are actually common in existing datasets, as we

will show. If one wants to go further and consider more

scenes without creating real or synthetic training datasets, it

seems important to be able to develop methods that do not

rely too much on 3D scenes for training.

Over the history of 3D scene understanding, many non-

supervised approaches have already been proposed, in-

cluding recently to leverage deep learning object detec-

tion methods. They typically combine generative mod-

els and the optimization of their parameters. Genera-

tive methods for 3D scene understanding indeed often in-

volve optimization problems with high complexity, and

many optimization tools have thus been investigated, in-

cluding Markov Random Fields (MRFs) and Conditional

Random Fields (CRFs) [22, 52, 32], Markov Chains Monte

Carlo (MCMCs) [9, 19, 10, 58], tree search [28], or hill

climbing [61, 21]. However, there does not seem to be a

clear method of choice: MRFs and CRFs impose strong

constraints on the objective function; MCMCs depend on

many hyperparameters that are difficult to tune and can re-

sult in slow convergence; hill climbing can easily get stuck

in a local optimum. The tree search method used by [28]

uses a fixed width search tree that can miss good solutions.

In this paper, we advocate for the use of Monte Carlo

Tree Search (MCTS) [12, 5], which is a general discrete AI

algorithm for learning to play games [46], for optimization

in 3D scene understanding problems. We propose to see

perception as a (single-player) game, where the goal is to

identify the right 3D elements that explain the scene. In

such cases where the search problem can be organized into

a tree structure which is too large for exhaustive evaluation,

MCTS becomes a very attractive option. It also depends on

very few easy-to-tune hyperparameters. Moreover, it can be

interrupted at any time to return the best solution found so

far, which can be useful for robotics applications. A parallel

implementation is also possible for high efficiency [8]. In

short, MCTS is a powerful optimization algorithm, but to

the best of our knowledge, it has never been applied to 3D

perception problems.

To apply MCTS to 3D scene understanding, as shown in

Fig. 1, we generate proposals for possible objects and layout

components using the point cloud generated from the RGB-

D sequence, as previous works do from a single RGB-D

frame [28, 61]. MCTS can be used to optimize general loss

functions, which do not even have to be differentiable. This

allows us to rely on a loss function based on an analysis-by-

synthesis (or “render-and-compare”) approach to select the

proposals that correspond best to the observations. Our loss

function compares (non-realistic) renderings of a set of pro-

posals to the input images and can incorporate constraints

between the proposals. This turns MCTS into an analysis-

by-synthesis method that explores possible sets of proposals

for the observations, possibly back-tracking to better solu-

tions when an exploration does not appear promising.

We adapted the original MCTS algorithm to the 3D

scene understanding problem to guide it towards the cor-

rect solution faster, and call the resulting method “MCSS”,

for Monte Carlo Scene Search. First, it is possible to struc-

ture the search tree so that it does not contain any impossi-

ble solutions, for example, solutions with intersecting pro-

posals. We also enforce the exploration of proposals which

are close spatially to proposals in the same path to the root

node. Second, we introduce a score based on how the pro-

posal improves the solution locally to increase the efficiency

of search.

In practice, we first run MCSS only on the layout pro-

posals to recover the layout. We then run MCSS on the ob-

ject proposals using the recovered layout. The recovery of

the objects thus exploits constraints from the layout, which

we found useful as shown in our experiments. In principle,

it is possible to run a single MCSS on both the object and

layout component proposals, but constraints from the ob-

jects did not appear useful to constrain the recovery of the

layout for the scenes in ScanNet, which we use to evalu-

ate our approach. We therefore used this two-step approach

for simplicity. It is, however, possible that more complex

scenes would benefit from a single MCSS running on all

the proposals.

Running our method takes a few minutes per scene. This

is the same order of magnitude as the time required to ac-

quire an RGB-D sequence covering the scene, but defini-

tively slower than supervised methods. However, our di-

rection could lead to a solution that automatically gener-

ates annotations, which could be used to train supervised

methods for fast inference. We show in the experiments that

our method already retrieves annotations that are sometimes

more accurate than existing manual annotations, and that it

can be applied to new data without tuning any parameters.

Beyond that, MCTS is a very general algorithm, and the

approach we propose could be transposed to other percep-

13805

tion problems and even lead to an integrated architecture

between perception and control, as MCTS has also already

been applied to robot motion planning control [25].

2. Related Work

3D scene understanding is an extremely vast topic of the

computer vision literature. We focus here on indoor layout

and object recovery, as we demonstrate our approach on this

specific problem.

2.1. Layout Estimation

The goal of layout estimation is to recover the walls,

floor(s), and ceiling(s) of a room or several rooms. This

can be very challenging as layout components are often par-

tially or completely occluded by furniture. Hence, many

methods resort to some type of prior or supervised learn-

ing. The cuboid assumption constraints the room layout

to be a box [44, 16, 27]. The Manhattan assumption re-

laxes somewhat this prior, and enforces the components to

be orthogonal or parallel. Many methods working from

panoramic images [50, 60, 62] and point clouds [20, 33, 43]

rely on such priors. Methods which utilize supervised learn-

ing [57, 31, 62, 59, 30, 36, 50, 60, 62, 54, 55] depend on

large-scale datasets, the creation of which is a challenge

on its own. When performing layout estimation from point

clouds as input data [43, 6, 20, 33, 32], one has to deal with

incomplete and noisy scans as can be found in the ScanNet

dataset [14]. Like previous work [33, 49], we first hypothe-

size layout component proposals, but relying on MCTS for

optimization lets us deal with a large number of propos-

als and be robust to noise and missing data, without special

constraints like the Manhattan assumption.

2.2. 3D Object Detection and Model Retrieval

Relevant to our work are techniques to detect objects

in the input data and to predict their 3D pose and the 3D

model. If 3D data is available, as in our case, this is usu-

ally done by first predicting 3D bounding boxes from RGB-

D [29, 47, 48] or point cloud data [38, 17, 39, 37, 48] as

input. One popular way to retrieve the geometry of objects

from indoor point clouds is to predict an embedding and

retrieve a CAD model from a database [2, 3, 13, 15, 24].

However, while 3D object category detection and pose

estimation from images is difficult due to large variations

in appearance, it is also challenging with RGB-D scans due

to incomplete depth data. Moreover, in cluttered scenar-

ios, it is still difficult to get all the objects correctly [23].

To be robust, our approach generates many 3D bounding

box proposals and multiple possible CAD models for each

bounding box. We then rely on MCTS to obtain the optimal

combination of CAD models which fits the scene.

2.3. Complete scene reconstruction

Methods for complete scene reconstruction consider

both layout and objects. Previous methods fall into two

main categories, generative and discriminative methods.

Generative methods often rely on an analysis-by-

synthesis approach. A recent example for this is [21]

in which the room layout (under cuboid assumption) and

alignment of the objects are optimized using a hill-climbing

method. Some methods rely on a parse graph as a prior on

the underlying structure of the scene [9, 19, 10, 58], and

rely on a stochastic Markov Chain Monte Carlo (MCMC)

method to find the optimal structure of the parse graph and

the component parameters. Such a prior can be very useful

to retrieve the correct configuration, unfortunately MCMCs

can be difficult to tune so that they work well on all scenes

with the same parameters.

Like us, other works deal with an unstructured list of

proposals [28, 61], and search for an optimal set which

minimizes a fitting cost defined on the RGB-D data. Find-

ing the optimal configuration of components constitutes a

subset selection problem. In [61], due to its complexity,

it is solved using a greedy hill-climbing search algorithm.

In [28], it is solved using beam search on the generated hy-

pothesis tree with a fixed width for efficiency, which can

miss good solutions in complex cases. Our approach is sim-

ilar to [28, 61] as we also first generate proposals and aim

at selecting the correct ones, but for the exploration of the

search tree, we propose to utilize a variant of Monte Carlo

Tree Search, which is known to work well even for very

large trees thanks to a guided sampling of the tree.

Discriminative methods can exploit large training

datasets to learn to classify scene components from input

data such as RGB and RGB-D images [4, 18, 35, 51, 56].

By introducing clever Deep Learning architectures applied

to point clouds or voxel-based representations, these meth-

ods can achieve very good results. However, supervised

methods have practical drawbacks: They are limited by the

accuracy of the annotations on which they are trained, and

high-quality 3D annotations are difficult to create in prac-

tice; generalizing to new data outside the dataset is also

challenging. In the experiments, we show that without any

manually annotated data, our method can retrieve accurate

3D scene configurations on both ScanNet and our own cap-

tures even for cluttered scenes, and with the same hyperpa-

rameters.

3. Overview of MCTS

For the sake of completeness, we provide here a brief

overview of MCTS. An in-depth survey can be found in [5].

MCTS solves problems of high complexity that can be for-

malized as tree search by sampling paths throughout the tree

and evaluating their scores. Starting from a tree only con-

13806

taining the root node, this tree is gradually expanded in the

most promising directions. To identify the most promis-

ing solutions (i.e. paths from the root node to a leaf node),

a score for each created node is evaluated through “sim-

ulations” of complete games. A traversal starting from a

node can choose to continue with an already visited node

with a high score (exploitation) or to try a new node (explo-

ration). MCTS performs a large number of tree traversals,

each starting from the root node following four consecu-

tive phases we describe below. The pseudo-code for single-

player non-random MCTS, which corresponds to our prob-

lem, is given in the supplementary material.

SELECT. This step selects the next node of the tree

to traverse among the children of the current node Ncurr.

(case 1) If one or several children have not been visited yet,

one of them is selected randomly and MCTS moves to the

EXPAND step. (case 2) If all the children have been visited

at least once, the next node is selected based on some crite-

rion. The most popular criterion to balance exploitation and

exploration is the Upper Confidence Bound (UCB) [1]:

arg max
N∈C(Ncurr)

λ1
Q(N)

n(N)
+ λ2 ·

√

log n(Ncurr)

n(N)
, (1)

where C(Ncurr) is the set of children nodes for the current

node, Q(N) is a sum of scores obtained through simula-

tions, and n(N) is the number of times N is traversed dur-

ing the search. The selected node is assigned to Ncurr, be-

fore iterating the SELECT step. Note that in single-player

games, the maximum score is sometimes used in place of

the average for the first term, as there is less uncertainty. We

tried both options and they perform similarly in our case.

EXPAND. In case 1, this step expands the tree by adding

the randomly selected node to the tree.

SIMULATE. After the EXPAND step, many “simulations”

of the game are run to assign the new node N a score, stored

in Q(N). Each simulation follows a randomly-chosen path

from the new node until the end of the game. The score can

be for example the highest score obtained by a simulation

at the end of the game.

UPDATE. After the SIMULATE step, the score is also added

to the Q values of the ancestors of N . The next MCTS

iteration will then traverse the tree from the root node using

the updated scores.

After a chosen number of iterations, in the case of non-

random single-player games, the solution returned by the

algorithm is the simulation that obtained the best score for

the game.

4. Approach

In this section, we first derive our objective and then ex-

plain how we adapt MCTS to solve it efficiently.

4.1. Formalization

Given a set I = {(Ii, Di)}
NV

i=1 of NV registered RGB

images and depth maps of a 3D scene, we want to find 3D

models and their poses for the objects and walls that con-

stitute the 3D scene. This can be done by looking for a set

of objects and layout elements from a pool of proposals, Ô
that maximizes the posterior given the observations in I:

Ô = argmax
O

P (O | I) = argmax
O

logP (O | I) . (2)

The set of object proposals contains potential 3D model

candidates for each object in the scene, along with its corre-

sponding pose. The same 3D model for an object but under

two different poses constitutes two proposals. The set of

layout proposals models potential layout candidates as pla-

nar 3D polygons. More details about the proposal genera-

tion is provided later in Section 4.3.

Using the images rather than only the point cloud is

important, as shown in [37] for example, as many parts

of a scanned scene can be missing from the point cloud,

when the RGB-D camera did not return depth values for

them (this happens for dark and reflective materials, for

example). Assuming the Ii and Di are independent,

logP (O | I) is proportional to:

∑

i

(

logP (Ii | O) + logP (Di | O)
)

+ logP (O) . (3)

P (Ii | O) and P (Di | O) are the likelihoods of our

observations. To evaluate them, we compare Ii and Di with

(non-realistic) renderings of the objects and layout elements

in O from the same camera poses as the Ii and Di. For

P (Ii | O), we render the objects and layout elements in

O using their class indices in place of colors and compare

the result with a semantic segmentation of image Ii. To

evaluate P (Di | O), we render a depth map for the objects

and layout elements in O and compare it with Di. More

formally, we model logP (Ii | O) + logP (Di | O) by:

si(O) = λI

∑

c

Si(c) · S
R
i (c)− λD|Di −DR

i | , (4)

up to some additive constant that does not change

the optimization problem in Eq. (2). The Si(c)
are segmentation confidence maps for classes c ∈
{wall, floor, chair, table, sofa, bed} obtained by semantic

segmentation of Ii (we use MSEG [26] for this); the SR
i (c)

are rendered segmentation maps (i.e. a pixel in SR
i (c) has

value 1 if lying on an object or layout element of class c,

0 otherwise). DR
i is the rendered depth map of the objects

and layout elements in O.

Given a set O, si(O) can be computed efficiently by pre-

rendering a segmentation map and a depth map for each pro-

posal independently: DR
i can be constructed by taking for

13807

(a) (b)

(c) (d)

Figure 2: Examples for (a) Si, (b) SR
i , (c) Di, (d) DR

i .

each pixel the minimal depth over the pre-rendered depth

maps for the proposals in O. SR
i (c) can be constructed sim-

ilarly using both the pre-rendered segmentation and depth

maps.

Fig. 2 shows an example of Si, S
R
i , Di, and DR

i . Note

that our approach considers all the objects together and

takes naturally into account the occlusions that may occur

between them, which is one of the advantages of analysis-

by-synthesis approaches. More sophisticated ways to evalu-

ate the observations likelihoods could be used, but this sim-

ple method already yields very good results.

P (O) in Eq. (3) is a prior term on the set O. We currently

use it to prevent physically impossible solutions only. In

practice, the proposals are not perfectly localised and we

tolerate some intersections. When the Intersection-Over-

Union between two objects is smaller than a threshold, we

tolerate the intersection but still penalize it. More formally,

in this case, we model logP (O) by

sp(O) = −λP

∑

O,O′∈O,O 6=O′

IoU(O,O′) (5)

up to some additive constant. IoU is the intersection-over-

Union between the 3D models for objects Oj and Ok. In

practice, we compute it using a voxel representation of the

3D models. When the Intersection-over-Union between two

object proposals is above a threshold, we take P (O) = 0,

i.e. the two proposals are incompatible. In practice, we use

a threshold of 0.3. We consider two special cases where this

is not true: chair-table and sofa-table intersections. In these

cases, we first identify the horizontal surface on which the

intersection occurs (e.g. surface of the table, seat of the sofa)

and determine the amount of intersection by calculating the

distance of the intersecting point to nearest edge of the hor-

izontal surface. The amount of intersection is normalized

by the dimension of the horizontal surface and a ratio more

than 0.3 is considered incompatible.

Similarly, when two layout proposals intersect or when

a layout proposal and an object proposal intersect, we take

also P (O) = 0. In contrast to object proposals where small

intersections are still tolerated, we do not tolerate any inter-

sections for the layout proposals as their locations tend to

be predicted more accurately.

As discussed in the introduction, to find a set Ô that max-

imizes Eq. (2), we build a pool Opool of proposals, and se-

lect Ô as the subset of Opool that maximizes the global score

S(O) =
∑

i si(O) + sP (O). We empirically set λI = λD

= 1 and λP = 2.5 in our experiments to balance the three

terms in Eq. (3).

4.2. Monte Carlo Scene Search

We now explain how we adapted MCTS to perform an

efficient optimization of the problem in Eq. (3). We call

this variant “Monte Carlo Scene Search” (MCSS).

4.2.1 Tree Structure

In the case of standard MCTS, the search tree follows di-

rectly from the rules of the game. We define the search

tree explored by MCSS to adapt to the scene understanding

problem and to allow for an efficient exploration as follows.

Proposal fitness. Each proposal P is assigned a fitness

value obtained by evaluating si in Eq. (4) only over the pixel

locations where the proposal reprojects. Note that this fit-

ness is associated with a proposal and not a node. This fit-

ness will guide both the definition and the exploration of the

search tree during the simulations.

Except for the root node, a node N in the scene tree is

associated with a proposal P(N) from the pool Opool. Each

path from the root node to a leaf node thus corresponds to a

set of proposals O that is a potential solution to Eq. (2). We

define the tree so that no path can correspond to an impossi-

ble solution i.e. to set O with P (O) = 0. This simplifies the

search space to the set of possible solutions only. We also

found that considering first proposals that are close spatially

to proposals in a current path significantly speeds up the

search, and we also organize the tree by spatial neighbour-

hood. The child nodes of the root node are made of a node

containing the proposal O with the highest fitness among all

proposals, and a node for each proposal that is incompatible

with O. The child nodes of every other node N contain the

closest proposal O to the proposal in N , and the propos-

als O′ incompatible with O, under the constraint that O and

proposals O′ are compatible with all the proposals in N and

its ancestors.

Two layout proposals are considered incompatible if they

intersect and are not spatial neighbours. They are spatial

neighbors if they share an edge and are not on the same 3D

plane. Therefore, if P(N) is a layout proposal, the children

nodes are always layout components that are connected by

an edge to P(N). By doing so, we enforce that each path

in the tree enforces structured layouts, i.e. the layout com-

ponents are connected. Note that this strategy will miss dis-

connected layout structures such as pillars in the middle of

a room but works well on ScanNet.

In the case of objects, the spatial distance between two

13808

object proposals is computed by taking the Euclidean dis-

tance between the centers of the 3D bounding boxes. The

incompatibility between two object proposals is determined

as explained in Section 4.1. Since all the object proposals

in the children of a node may be all incorrect, we add a spe-

cial node that does not contain a proposal to avoid having

to select an incorrect proposal. The children nodes of the

special node are based on the proximity to its parent node

excluding the proposals in its sibling nodes.

As mentioned in the introduction, we first run MCSS on

the layout component proposals only to select the correct

layout components first. Then, we run MCSS on the object

proposals, with the selected layout components in O. The

selection of the object proposals therefore benefits from the

recovered layout.

4.2.2 Local node scores

Usually with MCTS, Q in the UCB criterion given in Eq. (1)

and stored in each node is taken as the sum of the game

final scores obtained after visiting the node. We noticed

during our experiments that exploration is more efficient if

Q focuses more on views where the proposal in the node is

visible. Thus, in MCSS, after a simulation returns O, the

score s is added to Q of a node containing a proposal O. s

is a local score calculated as follows to focus on O:

s =
1

∑

i wi(O)

∑

i

wi(O)si(O) + λps
P (O,O) , (6)

where wi(O) = 1 if O is visible in view i and 0 otherwise,

and

sp(O,O) = −
∑

O′∈O,O 6=O′

IoU(O,O′) . (7)

4.2.3 Running simulations

While running the simulations, instead of randomly pick-

ing the nodes, we use a “roulette wheel selection” based on

their proposals: the probability for picking a node is directly

proportional to the fitness of the proposal it contains.

4.2.4 MCSS output

Besides the tree definition and the local score given in

Eq. (6) used in the SELECT criterion, MCSS runs as MCTS

to return the best set O of proposals found by the simu-

lations according to the final score S(O) =
∑

i si(O) +
sP (O). In practice, we perform 20,000 iterations of MCSS.

4.3. Generating Proposals

We resort here on off-the-shelf techniques. For the

object proposals, we first create a set of synthetic point

clouds using ShapeNet [7] CAD models and the ScanNet

dataset [14] (we provide more details in the suppl. mat.).

We train VoteNet [38] on this dataset to generate 3D bound-

ing boxes with their predicted classes. Note that we do not

need VoteNet to work very well as we will prune the false

positives anyway, which makes the approach generalizable.

Using simple heuristics, we create additional 3D bounding

boxes by splitting and merging the detections from VoteNet,

which we found useful to deal with cluttered scenes. We

also train MinkowskiNet [11] on the same synthetic dataset

which we use to remove the points inside the bounding

boxes that do not belong to the Votenet predicted class.

We then trained a network based on PointNet++ [40] on

the same synthetic data to predict an embedding for a CAD

model from ShapeNet [7] and a 6D pose+scale from sam-

plings of the remaining points. Different samplings result

in slightly different embeddings and we generate a proposal

with each of the corresponding CAD models. We refine the

pose and scale estimates by performing a small grid search

around the predicted values using the Chamfer distance be-

tween the CAD model and the point cloud.

For the layout component proposals, we use the seman-

tic segmentation by MinkowskiNet to extract the 3D points

on the layout from the point cloud and rely on a sim-

ple RANSAC procedure to fit 3D planes. Like previous

works [33, 34, 61, 49], we compute the intersections be-

tween these planes to obtain 3D polygons, which we use as

layout proposals. We also include the planes of the point

cloud’s 3D bounding box faces to handle incomplete scans:

for example, long corridors are never scanned completely in

ScanNet.

5. Evaluation

We present here the evaluation of our method. We also

provide an ablation study to show the importance of our

modifications to MCTS and of the use of the retrieved lay-

outs when retrieving the objects.

Fig. 4 shows the output of our method on a custom scan,

and more qualitative results are provided in the suppl. mat.

5.1. Layouts

We first evaluate the ability of MCSS to recover general

layouts on validation scenes from the SceneCAD dataset [2]

that provides layout annotations for noisy RGBD scans

from the ScanNet dataset [14]. MCSS outperforms the

SceneCAD method by a quite substantial margin on the cor-

ner recall metric, with 84.8% compared to 71%. However,

as shown in Fig. 3(b), the SceneCAD annotations lack de-

tails, which hurts the performance of our method on other

metrics as it recovers details not in the manual annotations.

Hence, we relabelled the same set of scenes from the

SceneCAD dataset with more details. As proposed in the

SceneCAD paper, a predicted corner is considered to be

13809

(a) (b) (c) (d)

Figure 3: (a) An RGB-D scan from the ScanNet dataset [14]. (b) Output of the VoteNet-based baseline method for the

objects, together with the layout annotations from [4]. Many objects retrieved by the baseline method are incorrect; the

layout annotations lack some details. (c) Objects and layout prediction by our MCSS method. Our predicted layout has much

more details than the manual annotations. (d) Objects annotations from [2] together with our manual layout annotations. The

supp. mat. provides more visualizations.

(a) (b)

Figure 4: Generalization to other datasets. (a) We cap-

tured an RGB-D scan of an apartment with a hallway and

a living space, and many furniture. (b) Objects and layout

found by our MCSS method. More results are provided in

the suppl. mat.

All Scenes Non-Cuboid Scenes

Prec Rec IOU Prec Rec IOU

SceneCAD GT 91.2 80.4 75.0 90.8 73.3 66.1

MCSS (Ours) 85.5 86.1 75.8 83.5 80.4 70.4

Table 1: Comparison between manual SceneCAD layout

annotations and layouts retrieved by our method, on our

more detailed layout annotations.

matching to the ground truth corner if it is within 40cm ra-

dius. We further adjust this criterion: if multiple predicted

corners are within this radius, a single corner that is closest

to the ground truth is taken and a predicted corner can be as-

signed to only one ground truth corner. We also compute the

polygons’ Intersection-Over-Union (IOU) metric from [49]

after projecting the retrieved polygons to their ground truth

polygons. Table 1 compares the layouts retrieved by our

approach to the SceneCAD annotations. These annotations

obtain very high corner precision, as most of the annotated

corners are indeed correct, but low corners recall and poly-

gon IOU because of the missing details. By contrast, our

method recovers most corners which results in high recall

without generating wrong ones, as is visible from the high

precision. Our approach does well to recover general room

structure as shown by the polygon IOU value. We show in

Fig. 3, 4 and suppl. mat. that our method successfully re-

covers a variety of layout configurations. Most errors come

from the fact that components might be completely invisible

in the scene in all of the views as our proposal generation is

not intended for this special case.

5.2. Objects

We evaluate our method on the subset of scenes from

both the test set and validation set of Scan2CAD [2]. We

consider 95 scenes in the test set and 126 unique scenes in

the validation which contains at least one object from the

chair, sofa, table, bed categories. A complete list of the

scenes used in our evaluations is provided in the suppl. mat.

We first consider a baseline which uses Votenet [38] for

object detection and retrieves a CAD model and its pose

for each 3D bounding box using the same network used for

our proposals. The performance of this baseline will show

the impact of not using multiple proposals for both object

detection and model retrieval.

We use the accuracy metric defined in [2] for evalu-

ations on the test set and compare with three methods (

Scan2CAD [2], E2E [3], and SceneCAD [4]) in Table 3.

While our method is trained only on simple synthetic data,

it still outperforms Scan2CAD and E2E on the chair and

sofa categories. The loower performance on the table cat-

egory is due to inconsistent manual annotations: Instance

level annotation of a group of tables from an incomplete

point cloud is challenging and this results in inconsistent

grouping of tables as shown in Fig. 5. Although we achieve

plausible solutions in these scenarios, it is difficult to ob-

tain similar instance-level detection as the manual annota-

tions. Moreover, SceneCAD learns to exploit object-object

and object-layout support relationships, which significantly

improves the performance. Our approach does not exploit

such constraints yet, but they could be integrated in the ob-

jective function’s prior term in future work for benefits.

Table 4 compares the Chamfer distance between the ob-

jects we retrieve and the manually annotated point cloud

of the object on the validation set of ScanNet. This metric

captures the accuracy of the retrieved CAD models. The

models we retrieve for chair and sofa are very similar to the

models chosen for the manual annotations as the Chamfer

distances have the same order of magnitude.

Table 2 reports the precision and recall for the oriented

3D bounding boxes for the pool of object proposals, for the

set of proposals selected by MCSS, and for the baseline.

MCSS improves the precision and recall from the baseline

13810

IOU

Th.

Chair Sofa Table Bed

Prec Rec Prec Rec Prec Rec Prec Rec

All pro-

posals

0.50 0.06 0.92 0.05 0.93 0.05 0.68 0.16 0.93

0.75 0.04 0.59 0.04 0.56 0.03 0.46 0.08 0.48

Baseline
0.50 0.70 0.85 0.77 0.80 0.66 0.56 0.74 0.74

0.75 0.19 0.29 0.31 0.39 0.24 0.30 0.30 0.41

MCSS

(Ours)

0.50 0.75 0.87 0.79 0.93 0.65 0.59 0.86 0.86

0.75 0.27 0.32 0.42 0.42 0.34 0.30 0.41 0.44

Table 2: Evaluation of object model retrieval and align-

ment with bounding box IOU thresholds 0.5 and 0.75. The

recall for our method is similar to the recall with all propos-

als while precision is better than the baseline method. Our

method efficiently rejects all the incorrect proposals.

Method Obj-Obj Support Chair Sofa Table

Baseline No 42.02 27.70 18.52

Scan2CAD [2] No 44.26 30.66 30.11

E2E [3] No 73.04 76.92 48.15

SceneCAD [4] Yes 81.26 82.86 45.60

MCSS (Ours) No 74.32 78.70 24.28

Table 3: Comparison of object alignment on the

Scan2CAD benchmark. The metrics for bed alone are

not provided by the benchmark and hence not shown.

SceneCAD uses inter-object support relations to improve

their results from E2E. We do not have access to these

relationships and hence mostly compare with E2E and

Scan2CAD. The lower accuracy for table seems to be due

to the dataset bias discussed in Fig. 5.

(a) Manual Annotations (b) MCSS (ours)

Figure 5: Manual annotation of incomplete point clouds

is difficult and groups of tables are often annotated incor-

rectly in the Scan2CAD dataset, creating a dataset bias. For

example, in (a), there should be 8 tables instead of 4 in the

annotations. This hurts our performance for the table cate-

gory, though we achieve plausible solutions (b). Note that

we also often retrieve more objects than in the annotations.

in all 4 object categories. The recall remains similar while

the precision improves significantly. This proves that our

method efficiently rejects all incorrect proposals. Our qual-

itative results in Fig. 3 and 5 show the efficacy of MCSS

in rejecting many incorrect proposals compared to the base-

line method while also retaining the correct CAD models

that are similar to ground truth. We even retrieve objects

missing from the annotations.

5.3. Ablation Study

Importance of local score (Eq. 6). In Fig. 6, we plot the

best score S(O) found so far with respect to the MCTS it-

Method Chair Sofa Table Bed

Baseline 2.6 11.0 14.2 26.3

MCSS (Ours) 1.8 7.4 12.8 16.2

Manual annotations [2] 2.0 5.2 5.5 9.4

Table 4: Comparison of one-way Chamfer distance (in

mm) between scan points and retrieved models on the

validation set of Scan2CAD. Our retrieved models are

close to manual annotations for chair and sofa even though

we use only synthetic point clouds for model retrieval.

eration, in the case of a complex scene for layout recovery

and object recovery, when using the simulation score S(O)
or the local score s given in Eq. (6) to update the Q of the

nodes. We use the selection strategy of Eq. (1) in both of

these scenarios. We also plot the best score for a random

tree search. Using the local score speeds up the convergence

to a better solution, achieving on an average 9% and 15%

higher global scores for layouts and objects, respectively.

Compared to random tree search, our method achieves 15%

and 42% higher scores for layout and objects, respectively.

We consider 12 challenging scenes for this experiment.

Search Method Node Score Simulation

With Visible Views Eq. (6) Roulette Wheel

With All Views
∑

i si(O) + sP (O) Roulette Wheel

Random Search 0 Uniform Probability

Figure 6: Best score S(O) =
(
∑

i si(O) + sP (O)
)

found

so far for layout and objects over MCSS iterations. Using

the local score given in Eq. (6) results in much faster and

better convergence.

Importance of layout for retrieving objects. Table 5

shows the effect of using the estimated layout in the terms

of Eq. (4) while running MCSS on objects. We considered

12 challenging scenes mainly containing chairs and tables

for this experiment and use the same precision and recall

metrics as in Table 2. Using the layout clearly helps by pro-

viding a better evaluation of image and depth likelihoods.

Chair Table
Prec Rec Prec Rec

Without layout 0.58 0.61 0.48 0.34

With layout 0.65 0.84 0.66 0.58

Table 5: Impact of using the estimated layout when run-

ning MCSS for object retrieval.

Acknowledgments. This work was supported by the Chris-

tian Doppler Laboratory for Semantic 3D Computer Vision,

funded in part by Qualcomm Inc.

13811

References

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-

time Analysis of the Multiarmed Bandit Problem. Machine

Learning, 47(2):235–256, 2002.

[2] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis

Savva, Angel X. Chang, and Matthias Nießner. Scan2CAD:

Learning CAD Model Alignment in RGB-D Scans. In

CVPR, June 2019.

[3] Armen Avetisyan, Angela Dai, and Matthias Nießner. End-

to-End CAD Model Retrieval and 9DoF Alignment in 3D

Scans. In ICCV, 2019.

[4] Armen Avetisyan, Tatiana Khanova, Christopher Choy, Den-

ver Dash, Angela Dai, and Matthias Nießner. SceneCAD:

Predicting Object Alignments and Layouts in RGB-D Scans.

In ECCV, Aug. 2020.

[5] Cameron Browne, Edward Powley, Daniel Whitehouse, Si-

mon Lucas, Peter Cowling, Philipp Rohlfshagen, Stephen

Tavener, Diego Perez liebana, Spyridon Samothrakis, and Si-

mon Colton. A Survey of Monte Carlo Tree Search Methods.

IEEE Transactions on Computational Intelligence and AI in

Games, 4:1:1–43, 2012.

[6] Ricardo Cabral and Yasutaka Furukawa. Piecewise Planar

and Compact Floorplan Reconstruction from Images. In

CVPR, 2014.

[7] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich

3D Model Repository. CoRR, abs/1512.03012, 2015.

[8] Guillaume M. J-B Chaslot, Mark H. M. Winands, and Jaap

Van den herik. Parallel Monte-Carlo Tree Search. In Inter-

national Conference on Computers and Games, 2008.

[9] Yixin Chen, Siyuan Huang, Tao Yuan, Siyuan Qi, Yixin

Zhu, and Song-Chun Zhu. Holistic++ Scene Understanding:

Single-View 3D Holistic Scene Parsing and Human Pose Es-

timation with Human-Object Interaction and Physical Com-

monsense. In ICCV, 2019.

[10] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio

Savarese. Understanding indoor scenes using 3d geometric

phrases. In CVPR, 2013.

[11] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D

Spatio-Temporal ConvNets: Minkowski Convolutional Neu-

ral Networks. In CVPR, 2019.

[12] Rémi Coulom. Efficient Selectivity and Backup Operators

in Monte-Carlo Tree Search. In International Conference on

Computers and Games, 2006.

[13] Manuel Dahnert, Angela Dai, Leonidas Guibas, and

Matthias Nießner. Joint Embedding of 3D Scan and CAD

Objects. In ICCV, 2019.

[14] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-Annotated 3D Reconstructions of Indoor Scenes. In

CVPR, 2017.

[15] Alexander Grabner, Peter M. Roth, and Vincent Lepetit. 3D

Pose Estimation and 3D Model Retrieval for Objects in the

Wild. In CVPR, 2018.

[16] Varsha Hedau, Derek Hoiem, and David Forsyth. Recover-

ing the Spatial Layout of Cluttered Rooms. In ICCV, 2009.

[17] Ji Hou, Angela Dai, and Matthias Nießner. 3D-SIS: 3D Se-

mantic Instance Segmentation of RGB-D Scans. In CVPR,

2019.

[18] Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu,

Ying Nian Wu, and Song-Chun Zhu. Cooperative Holis-

tic Scene Understanding: Unifying 3D Object, Layout, and

Camera Pose Estimation. In NeurIPS, 2018.

[19] Siyuan Huang, Siyuan Qi, Yixin Zhu, Yinxue Xiao, Yuanlu

Xu, and Song-Chun Zhu. Holistic 3D Scene Parsing and

Reconstruction from a Single RGB Image. In ECCV, 2018.

[20] Satoshi Ikehata, Hang Yang, and Yasutaka Furukawa. Struc-

tured Indoor Modeling. In ICCV, 2015.

[21] Hamid Izadinia, Qi Shan, and Steven M. Seitz. Im2CAD. In

CVPR, 2017.

[22] Hema Swetha Koppula, Abhishek Anand, Thorsten

Joachims, and Ashutosh Saxena. Semantic Labeling of 3D

Point Clouds for Indoor Scenes. In NIPS, 2011.

[23] Nilesh Kulkarni, Ishan Misra, Shubham Tulsiani, and Abhi-

nav Gupta. 3D-RelNet: Joint Object and Relational Network

for 3D Prediction. In ICCV, 2019.

[24] Wei-Cheng Kuo, A. Angelova, Tsung-Yi Lin, and Angela

Dai. Mask2CAD: 3D Shape Prediction by Learning to Seg-

ment and Retrieve. In arXiv, 2020.

[25] Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan

Laptev, Justin Carpentier, Mathieu Aubry, and Josef Sivic.

Monte-Carlo Tree Search for Efficient Visually Guided Re-

arrangement Planning. IEEE Robotics and Automation Let-

ters, 2020.

[26] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and

Vladlen Koltun. MSeg: A Composite Dataset for Multi-

Domain Semantic Segmentation. In CVPR, 2020.

[27] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz,

and Andrew Rabinovich. RoomNet: End-To-End Room

Layout Estimation. In ICCV, 2017.

[28] David C. Lee, Abhinav Gupta, Martial Hebert, and Takeo

Kanade. Estimating Spatial Layout of Rooms Using Volu-

metric Reasoning About Objects and Surfaces. In NeurIPS,

2010.

[29] Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic Scene

Understanding for 3D Object Detection with RGBD Cam-

eras. In ICCV, 2013.

[30] Chen Liu, Jiaye Wu, and Yasutaka Furukawa. FloorNet: A

Unified Framework for Floorplan Reconstruction from 3D

Scans. In ECCV, 2018.

[31] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-

rukawa. Raster-To-Vector: Revisiting Floorplan Transfor-

mation. In ICCV, 2017.

[32] Claudio Mura, Oliver Mattausch, and Renato Pajarola.

Piecewise-planar Reconstruction of Multi-room Interiors

with Arbitrary Wall Arrangements. Computer Graphics Fo-

rum, 2016.

[33] Srivathsan Murali, Pablo Speciale, Martin R. Oswald, and

Marc Pollefeys. Indoor Scan2BIM: Building Information

Models of House Interiors. In IROS, 2017.

13812

[34] Liangliang Nan and Peter Wonka. PolyFit: Polygonal Sur-

face Reconstruction from Point Clouds. In ICCV, 2017.

[35] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian

Chang, and Jian Jun Zhang. Total3DUnderstanding: Joint

Layout, Object Pose and Mesh Reconstruction for Indoor

Scenes from a Single Image. In CVPR, June 2020.

[36] G. Pintore and M. Agus. AtlantaNet: Inferring the 3D In-

door Layout from a Single 360 Image Beyond the Manhattan

World Assumption. In ECCV, 2020.

[37] Charles R. Qi, Xinlei Chen, Or Litany, and Leonidas J.

Guibas. ImVoteNet: Boosting 3D Object Detection in Point

Clouds with Image Votes. In CVPR, 2020.

[38] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.

Guibas. Deep Hough Voting for 3D Object Detection in

Point Clouds. In ICCV, 2019.

[39] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J. Guibas. Frustum PointNets for 3D Object De-

tection from RGB-D Data. In CVPR, 2018.

[40] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-

Net++: Deep Hierarchical Feature Learning on Point Sets in

a Metric Space. In arXiv, 2017.

[41] Lawrence Roberts. Machine Perception of Three-

Dimensional Solids. PhD thesis, MIT, 1965.

[42] Mike Roberts and Nathan Paczan. Hypersim: A Photorealis-

tic Synthetic Dataset for Holistic Indoor Scene Understand-

ing. In arXiv, 2020.

[43] Victor Sanchez and Avideh Zakhor. Planar 3D Modeling of

Building Interiors from Point Cloud Data. In ICIP, 2012.

[44] Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, and

Raquel Urtasun. Efficient Structured Prediction for 3D In-

door Scene Understanding. In CVPR, 2012.

[45] Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo,

Weiwei Xu, Kun Zhou, and Niloy J Mitra. Imagining the Un-

seen: Stability-based Cuboid Arrangements for Scene Un-

derstanding. ACM Transactions on Graphics, 2014.

[46] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis

Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-

rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lill-

icrap, Karen Simonyan, and Demis Hassabis. A General Re-

inforcement Learning Algorithm That Masters Chess, Shogi,

and Go through Self-Play. Science, 362(6419):1140–1144,

2018.

[47] Shuran Song and Jianxiong Xiao. Sliding Shapes for 3D

Object Detection in Depth Images. In ECCV, 2014.

[48] Shuran Song and Jianxiong Xiao. Deep Sliding Shapes for

Amodal 3D Object Detection in RGB-D Images. In CVPR,

2016.

[49] Sinisa Stekovic, Shreyas Hampali, Mahdi Rad, Sayan Deb

Sarkar, Friedrich Fraundorfer, and Vincent Lepetit. Gen-

eral 3D Room Layout from a Single View by Render-and-

Compare. In ECCV, 2020.

[50] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong

Chen. HorizonNet: Learning Room Layout with 1D Rep-

resentation and Pano Stretch Data Augmentation. In CVPR,

2019.

[51] Shubham Tulsiani, Saurabh Gupta, David Fouhey, Alexei A.

Efros, and Jitendra Malik. Factoring Shape, Pose, and Lay-

out from the 2D Image of a 3D Scene. In CVPR, 2018.

[52] Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Holistic

3D Scene Understanding from a Single Geo-tagged Image.

In CVPR, 2015.

[53] Yoram Yakimovsky and Jerome A. Feldman. A Semantics-

Based Decision Theory Region Analyzer. IJCAI, 1973.

[54] Wei Zeng, Sezer Karaoglu, and Theo Gevers. Joint 3D Lay-

out and Depth Prediction from a Single Indoor Panorama Im-

age. In ECCV, 2020.

[55] Weidong Zhang, Wei Zhang, and Yinda Zhang. GeoLayout:

Geometry Driven Room Layout Estimation Based on Depth

Maps of Planes. In ECCV, 2020.

[56] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong Xiao.

PanoContext: A Whole-Room 3D Context Model for

Panoramic Scene Understanding. In ECCV, 2014.

[57] Yinda Zhang, Fisher Yu, Shuran Song, Pingmei Xu, Ari Seff,

and Jianxiong Xiao. Large-Scale Scene Understanding Chal-

lenge: Room Layout Estimation. In CVPR, 2015.

[58] Yibiao Zhao and Song-Chun Zhu. Scene Parsing by Integrat-

ing Function, Geometry and Appearance Models. In CVPR,

2013.

[59] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,

and Zihan Zhou. Structured3D: A Large Photo-Realistic

Dataset for Structured 3D Modeling. In ECCV, 2020.

[60] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.

LayoutNet: Reconstructing the 3D Room Layout from a Sin-

gle RGB Image. In CVPR, 2018.

[61] Chuhang Zou, Ruiqi Guo, Zhizhong Li, and Derek Hoiem.

Complete 3D Scene Parsing from an RGBD Image. IJCV,

2019.

[62] Chuhang Zou, Jheng-Wei Su, Chi-Han Peng, Alex Colburn,

Qi Shan, Peter Wonka, Hung-Kuo Chu, and Derek Hoiem.

3D Manhattan Room Layout Reconstruction from a Single

360 Image. In arXiv, 2019.

13813

