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Abstract

Generalized zero-shot learning (GZSL) aims to recog-

nize objects from both seen and unseen classes, when only

the labeled examples from seen classes are provided. Re-

cent feature generation methods learn a generative model

that can synthesize the missing visual features of unseen

classes to mitigate the data-imbalance problem in GZSL.

However, the original visual feature space is suboptimal for

GZSL classification since it lacks discriminative informa-

tion. To tackle this issue, we propose to integrate the gen-

eration model with the embedding model, yielding a hybrid

GZSL framework. The hybrid GZSL approach maps both

the real and the synthetic samples produced by the genera-

tion model into an embedding space, where we perform the

final GZSL classification. Specifically, we propose a con-

trastive embedding (CE) for our hybrid GZSL framework.

The proposed contrastive embedding can leverage not only

the class-wise supervision but also the instance-wise su-

pervision, where the latter is usually neglected by existing

GZSL researches. We evaluate our proposed hybrid GZSL

framework with contrastive embedding, named CE-GZSL,

on five benchmark datasets. The results show that our CE-

GZSL method can outperform the state-of-the-arts by a sig-

nificant margin on three datasets. Our codes are available

on https://github.com/Hanzy1996/CE-GZSL.

1. Introduction

Object recognition is a core problem in computer vision.

This problem on a fixed set of categories with plenty of

training samples has progressed tremendously due to the ad-
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Figure 1: Existing semantic embedding methods merely uti-

lize the class-wise supervision, which may be unsuitable for

some examples as they do not match exactly with the class-

level semantic descriptor. The proposed contrastive embed-

ding can utilize not only the class-wise supervision but also

the instance-wise supervision.

vent of deep convolutional neural networks [37]. However,

realistic object categories often follow a long-tail distribu-

tion, where some categories have abundant training samples

and the others have few or even no training samples avail-

able. Recognizing the long-tail distributed object categories

is challenging, mainly because of the imbalanced training

sets of these categories. Zero-Shot Learning (ZSL) [39, 54]

holds the promise of tackling the extreme data imbalance

between categories, thus showing the potential of address-

ing the long-tail object recognition problem. Zero-shot

learning aims to classify objects from previously unseen

categories without requiring the access to data from those

categories. In ZSL, a recognition model is first learned on

the seen categories, of which the training samples are pro-

vided. Relying on the category-level semantic descriptors,

such as visual attributes [16, 39] or word vectors [47, 48],

ZSL can transfer the recognition model from seen to unseen

object categories in a data-free manner.

In zero-shot learning, we have the available data from

seen classes for training. Conventional zero-shot learn-
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ing [1, 62] assumes that the test set contains the samples

from unseen classes only, while in the recent proposed Gen-

eralized Zero-Shot Learning (GZSL) [10, 71], the test set

is composed of the test samples from both seen and un-

seen classes. A large body of conventional ZSL methods

learns a semantic embedding function to map the visual fea-

tures into the semantic descriptor space [18, 2, 58, 75, 22].

In the semantic space, we can conduct the ZSL classifica-

tion by directly comparing the embedded data points with

the given class-level semantic descriptors. Semantic em-

bedding methods excel in conventional ZSL, yet their per-

formance degrades substantially in the more challenging

GZSL scenario, owing to their serious bias towards seen

classes in the testing phase [69]. Conventional ZSL is un-

necessary to worry about the bias problem towards seen

classes as they are excluded from the testing phase. But

in GZSL the bias towards seen classes will make the GZSL

model misclassify the testing images from unseen classes.

To mitigate the bias problem in GZSL, feature genera-

tion based GZSL methods have been proposed [7, 50, 38,

70, 72, 61] to synthesize the training samples for unseen

classes. The feature generation method can compensate for

the lack of training samples of unseen classes. Merging the

real seen training features and the synthetic unseen features

yields a fully-observed training set for both seen and un-

seen classes. Then we can train a supervised model, such as

a softmax classifier, to implement the GZSL classification.

However, the feature generation methods produce the syn-

thesized visual features in the original feature space. We

conjecture that the original feature space, far from the se-

mantic information and thus lack of discriminative ability,

is suboptimal for GZSL classification.

To get the best of both worlds, in this paper, we propose

a hybrid GZSL framework, grafting an embedding model

on top of a feature generation model. In our framework,

we map both the real seen features and the synthetic unseen

features produced by the feature generation model to a new

embedding space. We perform the GZSL classification in

the new embedding space, but not in the original feature

space.

Instead of adopting the commonly-used semantic em-

bedding model [18, 2], we propose a contrastive embed-

ding in our hybrid GZSL framework. The traditional se-

mantic embedding in ZSL relies on a ranking loss, which

requires the correct (positive) semantic descriptor to be

ranked higher than any of wrong (negative) descriptors with

respect to the embedding of a training sample. The seman-

tic embedding methods only utilize the class-wise supervi-

sion. In contrastive embedding, we wish to exploit not only

the class-wise supervision but also the instance-wise super-

vision for GZSL, as depicted in Figure 1. Our proposed

contrastive embedding learns to discriminate between one

positive sample (or semantic descriptor) and a large number

of negative samples (or semantic descriptors) from differ-

ent classes by leveraging the contrastive loss [24, 53, 67].

We evaluate our method on five benchmark datasets, and

to the best of our knowledge, our method can outperform

the state-of-the-arts on three datasets by a large margin and

achieve competitive results on the other two datasets.

Our contributions are three-fold: (1) we propose a hybrid

GZSL framework combining the embedding based model

and the feature generation based model; (2) we propose

a contrastive embedding, which can utilize both the class-

wise supervision and the instance-wise supervision, in our

hybrid GZSL framework; and (3) we evaluate our GZSL

model on five benchmarks and our method can achieve the

state-of-the-arts or competitive results on these datasets.

2. Related Work

Zero-shot learning [39, 54] aims to transfer the ob-

ject recognition model from seen to unseen classes via

the shared semantic space, in which both seen and unseen

classes have their semantic descriptors. Early ZSL works

focus on the conventional ZSL problem. These works typ-

ically learn to embed visual samples and the semantic de-

scriptors to an embedding space [18, 1, 19, 2, 21, 35, 20,

58, 6, 36, 8] (e.g. the visual space or the semantic descriptor

space). In the embedding space, the visual samples from the

same class are supposed to center around the corresponding

class-level semantic descriptor. They implement conven-

tional ZSL recognition by searching the nearest semantic

descriptor in the embedding space. In the more challenging

GZSL scenario, however, embedding-based methods suffer

from the seen classes overfitting problem due to the data-

imbalance nature of ZSL [71]. To relieve the overfitting

problem, some methods [10, 44, 3, 29, 73, 74, 49] have

designed new loss functions to balance the predictions be-

tween seen and unseen classes. Some other works [46, 31,

13] have regarded GZSL as an out-of-distribution detection

problem. Moreover, some researches [40, 66, 43] have in-

troduced the knowledge graph in GZSL to propagate the

learned knowledge from seen to unseen classes through the

knowledge graph.

To further mitigate the data imbalance problem, feature

generation methods learn to complement the visual sam-

ples for unseen classes [7, 50, 38, 70, 72, 56, 59, 64].

The feature generation methods first learn a conditional

generative model based on such as Variational Autoen-

coder (VAE) [34] and Generative Adversarial Networks

(GAN) [23, 4], conditioned on the semantic descriptors.

With the learned generative model, they can synthesize

the missing visual examples for unseen classes using the

corresponding semantic descriptors. With the real ex-

amples from seen classes and the synthesized examples

from unseen classes, they can transform the GZSL prob-

lem into a standard supervised classification problem and
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learn a supervised classifier to implement GZSL recogni-

tion. Recently, Shen et al. [61] have introduced Genera-

tive Flows [14, 15, 33] into zero-shot learning and achieved

good performance for GZSL and conventional ZSL.

Though existing methods have achieved great success on

GZSL, as discussed before, the original visual feature space

lacks the discriminative ability and is suboptimal for GZSL

classification. Therefore, we propose a hybrid GZSL frame-

work, integrating a feature generation model with an em-

bedding based model. Inspired by the emerging contrastive

representation learning [24, 53, 67, 26, 32], we propose a

contrastive embedding model for our hybrid GZSL frame-

work, in which we consider both the instance-wise supervi-

sion and the class-wise supervision. In contrast, the tradi-

tional semantic embedding for ZSL only utilizes the class-

wise supervision. Our hybrid GZSL framework maps the

real seen samples and the synthetic unseen samples into a

new embedding space, where we learn a supervised classi-

fier, e.g. softmax, as the final GZSL classifier.

3. Contrastive Embedding for GZSL

In this section, we first define the Generalized Zero-Shot

Learning (GZSL) problem, before introducing the proposed

hybrid GZSL framework and the contrastive embedding in

it.

3.1. Problem definition

In ZSL, we have two disjoint sets of classes: S seen

classes in Ys and U unseen classes in Yu, where we

have Ys ∩ Yu = ∅. Suppose that N labeled instances

from seen classes Ys are provided for training: Dtr =
{(x1, y2), . . . , (xN , yN )}, where xi ∈ X denotes the in-

stance and yi ∈ Ys is the corresponding seen class la-

bel. The test set Dte = {xN+1, . . . , xN+M} contains M
unlabeled instances. In conventional ZSL, the instances

in Dte come from unseen classes only. Under the more

challenging Generalized Zero-Shot Learning (GZSL) set-

ting, the instances in Dte come from both seen and un-

seen classes. At the same time, the class-level semantic de-

scriptors of both seen and unseen classes are also provided

A = {a1, . . . , aS , aS+1, . . . , aS+U}, where the first S se-

mantic descriptors correspond to seen classes in Ys and the

last U semantic descriptors correspond to unseen classes in

Yu. We can infer the semantic descriptor a for a labeled

instance x from its class label y.

3.2. A Hybrid GZSL Framework

Semantic embedding (SE) in conventional ZSL aims to
learn an embedding function E that maps a visual feature x
into the semantic descriptor space denoted as E(x). The
commonly-used semantic embedding methods rely on a
structured loss function proposed in [2, 18]. The structured
loss requires the embedding of x being closer to the seman-

tic descriptor a of its ground-truth class than the descriptors
of other classes, according to the dot-product similarity in
the semantic descriptor space. Concretely, the structured
loss is formulated as below:

Lreal
se (E) = Ep(x,a)[max(0,∆− a⊤E(x) + (a′)⊤E(x))], (1)

where p(x, a) is the empirical distribution of the real train-

ing samples of seen classes, a′ 6= a is a randomly-selected

semantic descriptor of other classes, and ∆ > 0 is a margin

parameter to make E more robust.
Semantic embedding methods are less effective in GZSL

due to the severe bias towards seen classes. Recently,
many feature generation methods [70, 38, 50, 28, 5] have
been proposed to synthesize the missing training samples
for unseen classes. Feature generation methods learn a
conditional generator network G to produce the samples
x̃ = G(a, ǫ) conditioned on a Gaussian noise ǫ ∼ N (0, I)
and a semantic descriptor a. In the meanwhile, a discrimi-
nator network D is learned together with G to discriminate
a real pair (x, a) from a synthetic pair (x̃, a). The feature
generator G tries to fool the discriminator D by produc-
ing indistinguishable synthetic features. The feature gener-
ation methods hope to match the synthetic feature distribu-
tion with the real feature distribution in the original feature
space. The feature generator network G and the discrimina-
tor network D can be learned by optimizing the following
adversarial objective:

V (G,D) =Ep(x,a)[logD(x, a)]

+ EpG(x̃,a)[log(1−D(x̃, a))],
(2)

where pG(x̃, a) = pG(x̃|a)p(a) is the joint distribution of a

synthetic feature and its corresponding semantic descriptor.
The feature generation methods learn to synthesize the

visual features in the original feature space. However, in
the original feature space, the visual features are usually not
well-structured and thus are suboptimal for GZSL classifi-
cation. In this paper, we propose a hybrid GZSL framework,
integrating the embedding model and the feature generation
model. In our hybrid GZSL framework, we map both the
real features and the synthetic features into an embedding
space, where we perform the final GZSL classification. In
its simplest form, we just choose the semantic descriptor
space as the embedding space and combine the learning
objective of semantic embedding defined in Eq. 1 and the
objective of feature generation defined in Eq. 2. To map
the synthesized features into the embedding space as well,
we introduce the following embedding loss for the synthetic
features:

Lsync
se (G,E) = Ea[max(0,∆− a⊤E(G(a, ǫ))

+ (a′)⊤E(G(a, ǫ)))].
(3)

Notably, we formulate Lsync
se (G,E) only using the seman-

tic descriptors of seen classes. Therefore, the total loss of

our basic hybrid GZSL approach takes the form of

max
D

min
G,E

V (G,D) + Lreal
se (E) + Lsync

se (G,E). (4)
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Figure 2: Illustration of our proposed hybrid GZSL framework with contrastive embedding (CE-GZSL). We learn an em-

bedding function E that maps the visual samples xi into the embedding space as hi = E(xi). We further learn a non-linear

projection H to better constrain the embedding space: zi = H(hi). We introduce a comparator network F that measures the

relevance score between hi and the semantic descriptors. We learn the embedding function with both the instance-level and

the class-level supervisions. We integrate the contrastive embedding model with the feature generation model. In the feature

generation model, the feature generator G learns to produce visual features based on a semantic descriptor a and a Gaussian

noise ǫ; and the discriminator D aims to distinguish the fake visual features from real ones.

3.3. Contrastive Embedding

Our basic hybrid GZSL framework is based on the tra-

ditional semantic embedding model, where only the class-

wise supervision is exploited. In this section, we present

a new contrastive embedding (CE) model for our hybrid

GZSL framework. The contrastive embedding consists

of the instance-level contrastive embedding based on the

instance-wise supervision and the class-level contrastive

embedding based on the class-wise supervision.

Instance-level contrastive embedding In the embedding
space, the embedding of a visual sample x is denoted as h =
E(x). For each data point hi embedded from either a real or
synthetic seen feature, we set up a (K + 1)-way classifica-
tion subproblem to distinguish the unique one positive ex-
ample h+ from total K negative examples {h−

1 , . . . , h
−

K}.
The positive example h+ being randomly selected has the
same class label with hi, while the class labels of the nega-
tive examples are different from hi’s class label. Here, we
follow the strategy in [12] to add a non-linear projection
head H in the embedding space: zi = H(hi) = H(E(xi)).
And we perform the (K + 1)-way classification on zi to
learn the embedding hi. Concretely, the cross-entropy loss
of this (K + 1)-way classification problem is calculated as
follows:

ℓins
ce (zi, z

+) = − log
exp

(

z⊤i z+/τe
)

exp
(

z⊤i z+/τe
)

+
∑K

k=1 exp
(

z⊤i z−k /τe
) ,

(5)

where τe > 0 is the temperature parameter for the instance-

level contrastive embedding and K is the number of nega-

tive examples. Intuitively, a large K will make the problem

in Eq. 5 more difficult. The large number of negative exam-

ples encourages the embedding function E to capture the

strong discriminative information and structures shared by

the samples, real and synthetic, from the same class in the

embedding space.

To learn the embedding function E, the non-linear pro-

jection H and the feature generator network G, we calcu-

late the loss function for the instance-level contrastive em-

bedding as the expected loss computed over the randomly

selected pairs zi and z+ for both the real and synthetic ex-

amples, where zi 6= z+ but they belong to the same seen

class.

Lins
ce (G,E,H) = Ezi,z+

[

ℓinsce (zi, z
+)

]

. (6)

Class-level contrastive embedding Analogously, we can
formulate a class-level contrastive embedding. Since we do
not limit our embedding space to be the semantic descrip-
tor space, we cannot compute the dot-product similarity be-
tween an embedded data point and a semantic descriptor
directly. Thus, we learn a comparator network F (h, a) that
measures the relevance score between an embedding h and
a semantic descriptor a. With the help of the comparator
network F , we formulate the class-level contrastive embed-
ding loss for a randomly selected point hi in the embedding
space as an S-way classification subproblem. The goal of
this subproblem is to select the only one correct semantic
descriptor from total S semantic descriptors of seen classes.
In this problem, the only positive semantic descriptor is the
one corresponding to hi’s class, while the remaining S − 1
semantic descriptors from the other classes are treated as the
negative semantic descriptors. Similarly, we can calculate
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the cross-entropy loss of this S-way classification problem
as below:

ℓclsce (hi, a
+) = − log

exp
(

F (hi, a
+)/τs

)

∑S

s=1 exp (F (hi, as)/τs)
, (7)

where τs > 0 is the temperature parameter for the class-

level contrastive embedding and S is the number of seen

classes. The class-level contrastive embedding relies on the

class-wise supervision to strengthen the discriminative abil-

ity of the samples in the new embedding space.

We define the following loss function for the class-level

contrastive embedding:

Lcls
ce (G,E, F ) = Ehi,a+

[

ℓclsce (hi, a
+)

]

, (8)

which is the expected loss over the samples, either real or

synthetic, in the new embedding space, and their corre-

sponding semantic descriptor, i.e. the positive descriptor.

Total loss In our final hybrid GZSL framework, we re-

place the semantic embedding (SE) model in the basic hy-

brid framework in Eq. 4 with the proposed contrastive em-

bedding (CE) model. As described above, the contrastive

embedding model consists of an instance-level loss function

Lins
ce and a class-level loss function Lcls

ce . Thus, the total

loss of our final hybrid GZSL framework with contrastive

embedding (CE-GZSL) is formulated as:

max
D

min
G,E,H,F

V (G,D) + Lins
ce (G,E,H) + Lcls

ce (G,E, F ).

(9)

Figure 2 illustrates the whole structure of our method. In

our method, we learn a feature generator G (together with

a discriminator D) to synthesize the missing unseen class

features; we learn an embedding function E to embed the

samples, both real and synthetic, to a new embedding space,

where we conduct the final GZSL classification; to learn a

more effective embedding space, we introduce a non-linear

projection H in the embedding space which is used to de-

fine the instance-level contrastive embedding loss; and to

enforce the class-wise supervision, we learn a comparator

network F to compare an embedding and a semantic de-

scriptor.

GZSL classification We first generate the features for

each unseen class in the embedding space by composing

the feature generator network G and the embedding func-

tion E: h̃j = E(G(au, ǫ)), where u ≥ S + 1 and au is the

semantic descriptor of an unseen class. We map the given

training features of seen classes in Dtr into the same em-

bedding space as well: hi = E(xi). In the end, we utilize

the real seen samples and the synthetic unseen samples in

the embedding space to train a softmax model as the final

GZSL classifier.

4. Experiments

Datasets We evaluate our method on five bench-

mark datasets for ZSL: Animals with Attributes 1&2

(AWA1 [39] & AWA2 [69]), Caltech-UCSD Birds-200-

2011 (CUB) [65], Oxford Flowers (FLO) [52], and SUN

Attribute (SUN) [55]. AWA1 and AWA2 share the same

50 categories and each category is annotated with 85 at-

tributes, which we use as the class-level semantic descrip-

tors. AWA1 contains 30,475 images and AWA2 contains

37,322 images; CUB contains 11,788 images from 200 bird

species; FLO contains 8,189 images of 102 fine-grained

flower classes; SUN contains 14,340 images from 717 dif-

ferent scenes and each class is annotated with 102 attributes.

For the semantic descriptors of CUB and FLO, we adopt the

1024-dimensional class embeddings generated from textual

descriptions [57]. We extract the 2,048-dimensional CNN

features for all datasets with ResNet-101 [27] pre-trained on

ImageNet-1K [37] without finetuning. Moreover, we adopt

the Proposed Split (PS) [69] to divide all classes on each

dataset into seen and unseen classes.

Evaluation Protocols We follow the evaluation strategy

proposed in [69]. Under the conventional ZSL scenario,

we only evaluate the per-class Top-1 accuracy on unseen

classes. Under the GZSL scenario, we evaluate the Top-

1 accuracy on seen classes and unseen classes, respectively,

denoted as S and U . The performance of GZSL is measured

by their harmonic mean: H = 2× S × U/(S + U).

Implementation Details We implement our method with

PyTorch. On all datasets, we set the dimension of the em-

bedding h to 2,048, and set the dimension of the non-linear

projection’s output z to 512. The comparator network F is

a multi-layer perceptron (MLP) containing a hidden layer

with LeakyReLU activation. The comparator network F
takes as input the concatenation of an embedding h and a

semantic descriptor a, and outputs the relevance estimation

between them. Our generator G and discriminator D both

contain a 4096-unit hidden layer with LeakyReLU activa-

tion. We use a random mini-batch size of 4,096 for AWA1

and AWA2, 2,048 for CUB, 3,072 for FLO, and 1,024 for

SUN in our method. In the mini-batch, the instances from

the same class are positive instances to each other, while

the instances from different classes are negative instances

to each other. The large batch size ensures a large number

of negative instances in our method.

4.1. Comparison with SOTA

In Table 1, we compare our CE-GZSL method with the

state-of-the-art GZSL methods. Our method achieves the

best U on four datasets and achieves the best H on AWA2,

CUB, and FLO. Notably, on CUB, our CE-GZSL is the
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Table 1: Comparisons with the state-of-the-art GZSL methods. U and S are the Top-1 accuracies tested on unseen classes

and seen classes, respectively, in GZSL. H is the harmonic mean of U and S. The best results are marked in bold.

Method
AWA1 AWA2 CUB FLO SUN

U S H U S H U S H U S H U S H

DAZLE [29] - - - 60.3 75.7 67.1 56.7 59.6 58.1 - - - 52.3 24.3 33.2

TCN [30] 49.4 76.5 60.0 61.2 65.8 63.4 52.6 52.0 52.3 - - - 31.2 37.3 34.0

Li et al. [42] 62.7 77.0 69.1 56.4 81.4 66.7 47.4 47.6 47.5 - - - 36.3 42.8 39.3

Zhu et al. [76] 57.3 67.1 61.8 55.3 72.6 62.6 47.0 54.8 50.6 - - - 45.3 36.8 40.6

SE-GZSL [38] 56.3 67.8 61.5 58.3 68.1 62.8 41.5 53.3 46.7 - - - 30.5 40.9 34.9

f-CLSWGAN [70] 57.9 61.4 59.6 - - - 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4

cycle-CLSWGAN [17] 56.9 64.0 60.2 - - - 45.7 61.0 52.3 59.2 72.5 65.1 49.4 33.6 40.0

CADA-VAE [60] 57.3 72.8 64.1 55.8 75.0 63.9 51.6 53.5 52.4 - - - 47.2 35.7 40.6

f-VAEGAN-D2 [72] - - - 57.6 70.6 63.5 48.4 60.1 53.6 56.8 74.9 64.6 45.1 38.0 41.3

LisGAN [41] 52.6 76.3 62.3 - - - 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2

RFF-GZSL [25] 59.8 75.1 66.5 - - - 52.6 56.6 54.6 65.2 78.2 71.1 45.7 38.6 41.9

IZF [61] 61.3 80.5 69.6 60.6 77.5 68.0 52.7 68.0 59.4 - - - 52.7 57.0 54.8

TF-VAEGAN [51] - - - 59.8 75.1 66.6 52.8 64.7 58.1 62.5 84.1 71.7 45.6 40.7 43.0

Our CE-GZSL 65.3 73.4 69.1 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1

Table 2: Results of conventional ZSL. The first six methods

are early conventional ZSL methods and the following ten

methods are recent proposed GZSL methods. The best re-

sults and the second best results are respectively marked in

bold and underlined.

Method AWA1 AWA2 CUB FLO SUN

LATEM [68] 55.1 55.8 49.3 40.4 55.3

DEVISE [18] 54.2 59.7 52.0 45.9 56.5

SJE [2] 65.6 61.9 53.9 53.4 53.7

ALE [1] 59.9 62.5 54.9 48.5 58.1

ESZSL [58] 58.2 58.6 53.9 51.0 54.5

SYNC [9] 54.0 46.6 55.6 - 56.3

DCN [44] 65.2 - 56.2 - 61.8

SP-AEN [11] 58.5 - 55.4 - 59.2

cycle-CLSWGAN [17] 66.3 - 58.4 70.1 60.0

LFGAA [45] - 68.1 67.6 - 61.5

DLFZRL [63] 71.3 70.3 61.8 - 61.3

Zhu et al. [76] 69.3 70.4 58.5 - 61.5

TCN [30] 70.3 71.2 59.5 - 61.5

f-CLSWGAN [70] 68.2 - 57.3 67.2 60.8

f-VAEGAN-D2 [72] - 71.1 61.0 67.7 64.7

TF-VAEGAN [51] - 72.2 64.9 70.8 66.0

Our CE-GZSL 71.0 70.4 77.5 70.6 63.3

first one that obtains the performances > 60.0 on U and H
among the state-of-the-art GZSL methods. Especially, our

hybrid GZSL method integrating with the simplest genera-

tive model still achieves competitive results compared with

IZF [61], which is based on the most advanced generative

model in GZSL. Our CE-GZSL achieves the second best

H on AWA1 and SUN, and is only lower than IZF [61],

and on the other three datasets our CE-GZSL outperforms

IZF [61] by a large margin. In Table 2, we report the results

of our CE-GZSL under the conventional ZSL scenario. We

compare our method with sixteen methods, in which six of

them are traditional methods and ten of them are the recent

methods. Our method is still competitive in conventional

ZSL. Our method performs the best on CUB and the second

best on AWA1 and FLO in the conventional ZSL scenario.

Specifically, on CUB, our method also achieves an excellent

performance, and our CE-GZSL is the only method that can

achieve the performance > 70.0 under conventional ZSL

among the ten recent methods.

4.2. Component Analysis

In Table 3, we illustrate the effectiveness of the hybrid

strategy for GZSL. First, we respectively evaluate the per-

formances of the single feature generation model (Gen) and

the single semantic embedding model (SE). We evaluate

them in their original space: visual space (V) for ‘Gen’ and

semantic space (S) for ‘SE’. ‘Gen+SE (basic)’ denotes that

we simply combine the feature generation model with the

semantic embedding model and learn a softmax classifier

in semantic space, corresponding to the basic hybrid GZSL

approach defined in Eq. 4. Moreover, we introduce a new

embedding space (E) in the hybrid GZSL method, which

leads to the increased performance. The results show that

the hybrid GZSL strategy is effective, and the new embed-

ding space is better than the semantic space.

In Table 4, we investigate the effect of different spaces

and different embedding models in the hybrid GZSL frame-

work. We integrate the feature generation model with two

different embedding models: semantic embedding (SE) (i.e.

the ranking loss method) and our contrastive embedding

(CE). And we evaluate the semantic descriptor space (S)

and the new embedding space (E), in which we conduct

the final GZSL classification. Firstly, we evaluate the same

embedding model on different embedding spaces: the re-

sults of ‘SE’ on the new embedding space performs much

better than ‘SE (basic)’ on the semantic space; and ‘CE

(Our CE-GZSL)’ on the new embedding space also per-

forms better than ‘CE’ on the semantic descriptor space.
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Table 3: The effect of the hybrid GZSL framework. ‘Gen’ denotes the feature generation model, ‘SE’ denotes the semantic

embedding model, and ‘+’ denotes their hybrid combination. We evaluate these methods in three spaces: visual space (‘V’),

semantic space (‘S’), and a new embedding space (‘E’).

Method Space
AWA1 AWA2 CUB FLO SUN

U S H U S H U S H U S H U S H

Gen V 53.0 67.7 59.5 56.9 61.6 59.2 54.1 59.4 56.6 57.5 75.5 65.3 43.0 37.2 39.9

SE S 21.8 55.7 31.3 21.1 59.9 31.2 36.3 44.2 39.9 24.0 62.6 34.7 19.0 27.1 22.4

Gen+SE (basic) S 50.5 62.5 55.9 50.6 64.3 56.6 52.2 59.3 55.5 53.2 78.6 63.4 35.1 23.3 28.0

Gen+SE E 63.1 71.3 66.9 61.7 75.6 67.9 61.1 65.3 63.1 66.1 72.2 69.0 47.9 36.1 41.1

Table 4: The effect of different embedding models (E-M) and different spaces in the hybrid GZSL framework. All the

methods here are combined with the feature generation model. ‘SE’ denotes the semantic embedding model and ‘CE’

denotes our contrastive embedding model. We evaluate the embedding models in two embedding spaces: semantic descriptor

space (S) and the new embedding space (E).

Space E-M
AWA1 AWA2 CUB FLO SUN

U S H U S H U S H U S H U S H

V None 53.0 67.7 59.5 56.9 61.6 59.2 54.1 59.4 56.6 57.5 75.5 65.3 43.0 37.2 39.9

S
SE (basic) 50.5 62.5 55.9 50.6 64.3 56.6 52.2 59.3 55.5 53.2 78.6 63.4 35.1 23.3 28.0

CE 55.0 65.9 59.9 55.8 70.7 62.4 61.5 67.4 64.3 56.1 78.9 65.5 37.6 30.4 33.6

E
SE 63.1 71.3 66.9 61.7 75.6 67.9 61.1 65.3 63.1 66.1 72.2 69.0 47.9 36.1 41.1

CE (Our CE-GZSL) 65.3 73.4 69.1 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1

Table 5: Evaluation of each part of our contrastive embedding (CE) model in the hybrid GZSL framework. ‘Our CE-GZSL’

denotes the whole CE model.

Method
AWA1 AWA2 CUB FLO SUN

U S H U S H U S H U S H U S H

V (G,D) + Lins
ce (G,E,H) 64.7 71.3 67.8 64.4 72.3 68.1 58.8 66.5 62.4 62.9 77.3 69.4 49.0 32.0 38.7

V (G,D) + Lcls
ce (G,E, F ) 63.6 72.0 67.5 61.2 79.3 69.1 62.7 63.3 63.0 66.0 79.7 72.2 49.1 37.4 42.4

Our CE-GZSL 65.3 73.4 69.1 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1

This demonstrates that the new embedding space is much

more effective than the original semantic space in our hy-

brid framework. Afterward, we compare the results on the

same embedding space but using different embedding mod-

els: ‘SE’ corresponds to the ranking loss form in Eq. 3 and

‘CE’ corresponds to contrastive form in Eq. 7. Our pro-

posed ‘CE’ can always outperform ‘SE’, no matter in the

semantic descriptor space or in the new embedding space.

This illustrates that our contrastive embedding (CE) bene-

fits from the instance-wise supervision which is neglected

in the traditional semantic embedding (SE).

Moreover, in Table 5, we respectively evaluate the

instance-level supervision and the class-level supervision

in our contrastive embedding model. Concretely, to eval-

uate the instance-level supervision, we remove the class-

level supervision Lcls
ce (G,E, F ) in Eq. 9 and only optimize

V (G,D) + Lins
ce (G,E,H) to learn our contrastive embed-

ding model. In the same way, we evaluate the class-level

supervision by optimizing V (G,D) + Lcls
ce (G,E, F ). As

shown in Table 5, when using either the instance-level CE or

the class-level CE, our result is still competitive compared

with the state-of-the-art GZSL methods. When consider-

ing both the instance-level supervision and the class-level

supervisions, our method achieves the improvements on U
and S, leading to the better H results. This means that our

method benefits from the combination of the instance-level

supervision and the class-level supervision.

4.3. Hyper­Parameter Analysis

We evaluate the effect of different numbers of syn-

thesized instances per unseen classes as shown in Fig-

ure 3. The performances on five datasets increase along

with the number of synthesized examples, which shows the

data-imbalance problem has been relieved by the genera-

tion model in our hybrid GZSL framework. Our method

achieves the best results on AWA1, AWA2, CUB, FLO, and

SUN when we synthesize 1,800, 2,400, 300, 600, and 100

examples per unseen classes, respectively.

Next, we evaluate the influence of the temperature pa-

rameters, τe and τs, in the contrastive embedding model.

We cross-validate τe and τs in [0.01, 0.1, 1.0, 10.0] and plot

the H values with respect to different τe and τs, as shown

in Figure 4. With the different τe and τs values, the H re-

sults on different datasets change slightly, indicating that
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Figure 3: The GZSL results with respect to different numbers of the synthesized samples for each unseen class.
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Figure 4: The results of harmonic mean H in GZSL with respect to different temperature parameters τe and τs.

Table 6: The effect of different numbers of positive and neg-

ative samples in a mini-batch on AWA1. ‘P ’ and ‘K denote

the numbers of positive examples and negative examples in

the mini-batch, respectively.

P K U S H

1 50 57.5 74.6 64.9

1 100 59.0 73.2 65.3

1 500 63.1 70.6 66.7

1 1,000 61.8 70.9 66.0

1 2,000 60.9 73.5 66.6

1 4,000 61.5 74.7 67.4

30 50 61.8 72.6 66.8

30 100 61.9 73.1 67.0

30 500 64.2 72.3 68.0

30 1,000 63.5 72.8 67.9

30 2,000 63.7 73.4 68.2

30 4,000 62.4 73.0 67.3

random batch (4,096) 65.3 73.4 69.1

our method is robust to the temperature parameters. On

AWA1, CUB and SUN, our method achieves the best re-

sults when τe = 0.1 and τs = 0.1. On AWA2, our method

achieves the best result when τe = 10.0 and τs = 1.0. On

FLO, our method achieves the best result when τe = 0.1
and τs = 1.0.

We further evaluate the effect of the numbers of positive

and negative examples in the mini-batch. In a mini-batch,

we sample P positive examples and K negative examples

for a given example. We report the results on AWA1 in Ta-

ble 6. We can observe that our method benefits from more

positive examples and more negative examples. We find that

using a large random batch (4,096) without a hand-crafted

designed sampling strategy leads to the best results. The

reason is that a large batch will contain enough positive ex-

amples and negative examples.

The experimental results regarding the different dimen-

sions of the embedding space can be found in the supple-

mentary material.

5. Conclusion

In this paper, we have proposed a hybrid GZSL frame-

work, integrating an embedding model and a generation

model. The proposed hybrid GZSL framework maps the

real and synthetic visual samples into an embedding space,

where we can train a supervised recognition model as the

final GZSL classifier. Specifically, we have proposed a con-

trastive embedding model in our hybrid GZSL framework.

Our contrastive embedding model can leverage not only the

class-wise supervision but also the instance-wise supervi-

sion. The latter is usually neglected in existing GZSL re-

searches. The experiments show that our hybrid GZSL

framework with contrastive embedding (CE-GZSL) has

achieved the state-of-the-arts on three benchmark datasets

and achieved the second-best on two datasets.
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