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Abstract

Recently, object detection in aerial images has gained

much attention in computer vision. Different from objects

in natural images, aerial objects are often distributed with

arbitrary orientation. Therefore, the detector requires more

parameters to encode the orientation information, which

are often highly redundant and inefficient. Moreover, as or-

dinary CNNs do not explicitly model the orientation varia-

tion, large amounts of rotation augmented data is needed

to train an accurate object detector. In this paper, we

propose a Rotation-equivariant Detector (ReDet) to ad-

dress these issues, which explicitly encodes rotation equiv-

ariance and rotation invariance. More precisely, we in-

corporate rotation-equivariant networks into the detector

to extract rotation-equivariant features, which can accu-

rately predict the orientation and lead to a huge reduc-

tion of model size. Based on the rotation-equivariant fea-

tures, we also present Rotation-invariant RoI Align (RiRoI

Align), which adaptively extracts rotation-invariant features

from equivariant features according to the orientation of

RoI. Extensive experiments on several challenging aerial

image datasets DOTA-v1.0, DOTA-v1.5 and HRSC2016,

show that our method can achieve state-of-the-art perfor-

mance on the task of aerial object detection. Compared

with previous best results, our ReDet gains 1.2, 3.5 and

2.6 mAP on DOTA-v1.0, DOTA-v1.5 and HRSC2016 re-

spectively while reducing the number of parameters by 60%

(313 Mb vs. 121 Mb). The code is available at: https:

//github.com/csuhan/ReDet.

1. Introduction

This paper studies the problem of object detection in

aerial images, a recently-emerged challenging problem in
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Figure 1. Illustration of our method (top) and comparisons of

RRoI warping (bottom). CNN features are not equivariant to

the rotation Tr , i.e., feeding a rotated image to CNNs is not the

same as rotating feature maps of the original image. Therefore,

the corresponding RoI features are not invariant to rotation. In

contrast, our method adopts rotation-equivariant CNNs (ReCNN)

to extract rotation-equivariant features. Let I and Φ be the input

and ReCNN respectively, the equivariance of our method can be

expressed as: Φ(TrI) = TrΦ(I), i.e., applying a rotation Tr to

the image I is the same as the rotation of features. Since we have

obtained rotation-equivariant features, rotation-invariant features

can be extracted by RRoI warping. While RRoI Align can only

achieve rotation invariance in the spatial dimension, we present

a novel Rotation-invariant RoI (RiRoI) Align to extract rotation-

invariant features in both spatial and orientation dimensions.

computer vision [35]. Different from objects in nature im-

ages, objects in aerial images are often distributed with ar-

bitrary orientation. To cope with these challenges, aerial

object detection are usually formulated as an oriented ob-

ject detection task by relying on Oriented Bounding Boxes

(OBBs) representation instead of using Horizontal Bound-

ing Boxes (HBBs) [7, 35, 38, 40].

Recently, many well-designed oriented object detectors

have been proposed and reported promising results on chal-

lenging aerial image datasets [21, 35]. In order to achieve

accurate object detection in unconstrained aerial images,

most of them are devoted to extract rotation-invariant fea-

tures [7, 10, 22, 37]. In practice, Rotated RoI (RRoI) warp-
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ing (e.g., RRoI Pooling [22] and RRoI Align [7]) is the most

commonly used method to extract rotation-invariant fea-

tures, which can warp region features precisely according

to the bounding boxes of RRoI in the 2D planar. However,

RRoI warping with regular CNN features can not produce

exactly rotation-invariant features. The rotation invariance

is approximated by employing larger capacity networks and

more training samples to model the rotation variation. As

shown in Fig. 1, the regular CNNs are not equivariant to

the rotation, i.e., feeding a rotated image to CNNs is not

the same as rotating feature maps of the original image.

Therefore, region features warped from regular CNN fea-

ture maps are usually unstable and delicate as the orienta-

tion changes.

Some recently proposed methods [5, 13, 33] extend

CNNs to larger groups and achieve rotation equivariance1

with group convolutions [5]. Feature maps of these meth-

ods have additional orientation channels recording features

from different orientations. However, directly applying the

ordinary RRoI warping to rotation-equivariant features is

unable to produce rotation-invariant features, as it can only

warp region features in the 2D planar, i.e., the spatial dimen-

sion, while the orientation channels are still misaligned. To

extract completely rotation-invariant features, we also need

to adjust the orientation dimension of feature maps accord-

ing to the orientation of RRoI.

In this paper, we propose a Rotation-equivariant Detec-

tor (ReDet) to extract completely rotation-invariant features

from rotation-equivariant features. As shown in Fig. 1, our

method consists of two parts: rotation-equivariant feature

extraction and rotation-invariant feature extraction. Firstly,

we incorporate rotation-equivariant networks into the back-

bone to produce rotation-equivariant features, which can ac-

curately predict the orientation and reduce the complexity

of modeling orientation variations. Since directly apply the

RRoI warping still cannot extract rotation-invariant features

from the rotation-equivariant features, we propose a novel

Rotation-invariant RoI Align (RiRoI Align). It can warp re-

gion features according to the bounding boxes of RRoI in

the spatial dimension and align features in the orientation

dimension by circularly switching orientation channels and

feature interpolation. Finally, the combination of rotation-

equivariant backbone and RiRoI Align forms our ReDet to

extract completely rotation-invariant features for accurate

aerial object detection.

Extensive experiments performed on the challenging

aerial image datasets DOTA [35] and HRSC2016 [21]

demonstrate the effectiveness of our method. We summary

our contributions as: (1) We propose a Rotation-equivariant

Detector for high-quality aerial object detection, which en-

codes both rotation equivariance and rotation invariance. To

1Equivariance is a property that applying transformations to the input

produces transformations of the feature in a predictable way.
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Figure 2. Model size vs. accuracy (mAP) on DOTA-v1.5. We

evaluate RetinaNet OBB [18], Faster R-CNN OBB (FR) [27],

Mask R-CNN (Mask) [11] and Hybrid Task Cascade (HTC) [2]

with ResNet18 (R18) and ResNet50 (R50) backbones. Note all al-

gorithms are our re-implemented version for DOTA, which is con-

sistent with Tab. 7. Our ReDet is tested with ReResNet18 (ReR18)

and ReResNet50 (ReR50) backbones. Compared with other meth-

ods with R18/R50 backbones, our ReDet with a ReR18 back-

bone achieves competitive performance. Using a deeper backbone

(ReR50), our ReDet outperforms all methods by a large margin

and achieves better model size vs. accuracy trade-off.

our best knowledge, it is the first time that rotation equiv-

ariance has been systematically introduced into oriented

object detection. (2) We design a novel RiRoI Align to

extract rotation-invariant features from rotation-equivariant

features. Different from other RRoI warping methods,

RiRoI Align produces completely rotation-invariant fea-

tures in both spatial and orientation dimensions. (3) Our

method achieves the state-of-the-art 80.10, 76.80 and 90.46

mAP on DOTA-v1.0, DOTA-v1.5 and HRSC2016, respec-

tively. Compared with previous best results, our method

gains 1.2, 3.5 and 2.6 mAP improvements. Compared with

the baseline, our method shows consistent and substantial

improvements and reduces the number of parameters by

60% (313 Mb vs. 121 Mb). Moreover, our method achieves

better model size vs. accuracy trade-off (shown in Fig. 2).

2. Related Works

2.1. Oriented Object Detection

Unlike most general object detectors [8, 9, 18, 20, 26,

27, 44] that use HBBs, oriented object detectors locate and

classify objects with OBBs, which provide more accurate

orientation information of objects. This is essential for de-

tecting aerial objects with large aspect ratio, arbitrary ori-

entation and dense distribution. With the development of

general object detection, many well-designed methods have

been proposed for oriented object detection [1, 7, 24, 35,

38, 40, 42], showing promising performance on challenging

datasets [21, 35]. To detect objects with arbitrary orienta-

tion, some methods [1, 22, 43] adopt numerous rotated an-
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chors with different angles, scales and aspect ratios for bet-

ter regression while increasing the computation complex-

ity. Ding et al. proposed RoI Transformer [7] to trans-

form Horizontal RoIs (HRoIs) into RRoIs, which avoids

a large number of anchors. Gliding vertex [36] and Cen-

terMap [30] use quadrilateral and mask to accurately de-

scribe oriented objects, respectively. R3Det and S2A-Net

align the feature between horizontal receptive fields and ro-

tated anchors. DRN [24] detects oriented objects with dy-

namic feature selection and refinement. CSL [38] regards

angular prediction as a classification task to avoid discontin-

uous boundaries problem. Recently, some CenterNet [44]-

based methods [24, 31, 41] show their advantages in de-

tecting small objects. The above methods are devoted to

improving object representations or feature representations.

While our method is dedicated to improving the feature

representation throughout the network: from the backbone

to the detection head. Specifically, our method produces

rotation-equivariant features in the backbone, significantly

reducing the complexity in modeling orientation variations.

In the detection head, the RiRoI Align extracts completely

rotation-invariant features for robust object localization.

2.2. Rotationequivariant Networks

Cohen et al. first proposed group convolutions [5] to

incorporate 4-fold rotation equivariance into CNNs. Hex-

aConv [13] extends group convolutions to 6-fold rotation

equivariance over hexagonal lattices. To achieve rotation

equivariance on more orientations, some methods [23, 45]

resampling filters by interpolation, while other methods [32,

33, 34] use harmonics as filters to produce equivariant

features in the continuous domain. The above methods

gradually extend rotation equivariance to larger groups and

achieve promising results on the classification task, while

our method incorporates rotation-equivariant networks into

the object detector, showing significant improvements on

the detection task. To our best knowledge, this is the first

time that rotation equivariance has been systematically ap-

plied to oriented object detection.

2.3. Rotationinvariant Object Detection

The rotation-invariant feature is important for detecting

arbitrary oriented objects. However, CNNs show poor per-

formance in modeling rotation variations, which means that

more parameters are needed to encode the orientation infor-

mation. STN [14] and DCN [6] explicitly model the rotation

within the network and have been widely applied to oriented

object detection [7, 28, 29]. Cheng et al. [4] proposed a

rotation-invariant layer that imposes an explicit regulariza-

tion constraint to the objective. Though the above methods

can achieve approximated rotation invariance in the image-

level, large amounts of training samples and parameters are

needed. Besides, object detection requires instance-level

rotation-invariant features. Therefore, some methods [7, 22]

extend RoI warping [8] to RRoI warping, e.g., RoI Trans-

former [7] learns to transform HRoIs to RRoIs and warps

region features with a rotated position sensitive RoI Align.

However, the regular CNNs are not rotation-equivariant.

Therefore, even through the RRoI Align, we still cannot

extract rotation-invariant features, as shown in Fig. 1. Dif-

ferent from the aforementioned methods, our method pro-

poses Rotation-invariant RoI Align (RiRoI Align) to ex-

tract rotation-invariant features from rotation-equivariant

features. Specifically, we incorporate rotation-equivariant

networks into the backbone to produce rotation-equivariant

features, then the RiRoI Align extracts completely rotation-

invariant features from rotation-equivariant features in both

spatial and orientation dimensions.

3. Preliminaries

Equivariance is a property that applying transformations

to the input produces transformations of the feature in a pre-

dictable way. Formally, give a transformation group G and

a function Φ : X → Y , equivariance can be expressed as:

Φ[TX
g (x)] = TY

g [Φ(x)] ∀(x, g) ∈ (X,G), (1)

where Tg indicates a group action in the corresponding

space. Especially when TY
g is identical for all TX

g , equiv-

ariance becomes invariance.

In common, CNNs are known to be translation equiv-

ariant. Let Tt denotes an action of the translation group

(R2,+), and apply it to K-dimension feature maps f :
Z
2 → R

K , translation equivariance can be expressed as:

[[Ttf ] ∗ ψ] (x) = [Tt [f ∗ ψ]] (x), (2)

where ψ : Z2 → R
K indicates the convolution filter and

∗ is the convolution operation. Recently proposed meth-

ods [5, 13, 33] extend CNNs to large groups, achieving both

translation and rotation equivariance. Let H denotes a ro-

tation group, e.g., the cyclic group CN containing discrete

rotations by angles multiple of 2π
N

. We can define the group

G as the semidirect product of the translation group (R2,+)
and the rotation group H , i.e., G ∼= (R2,+) ⋊ H . By re-

placing x ∈ (R2,+) with g ∈ G in Eq. 2, the rotation-

equivariant convolution can be defined as:

[[Tgf ] ∗ ψ] (g) = [Tg [f ∗ ψ]] (g). (3)

Rotation-equivariant Networks. The regular CNNs

consists of a series of convolution layers and enjoy the

translation weight sharing. Similarly, rotation-equivariant

networks are a stack of rotation-equivariant layers with a

higher degree of weight sharing, i.e., both translation and

rotation. Formally, let Φ = {Li|i ∈ {1, 2, · · · ,M}} de-

notes a network with M rotation-equivariant layers under
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Figure 3. Overview of our proposed method. (a) Overall architecture of the proposed Rotation-equivariant Detector. We first adopt

the rotation-equivariant backbone to extract rotation-equivariant features, followed by an RPN and RoI Transformer (RT) [7] to generate

RRoIs. Then we use a novel Rotation-invariant RoI Align (RiRoI Align) to produce rotation-invariant features for RoI-wise classification

and bounding box (bbox) regression. (b) Rotation-equivariant feature maps. Under the cyclic group CN , the rotation-equivariant feature

maps with the size (K,N,H,W ) have N orientation channels, and each orientation channel is corresponding to an element in CN . (c)

RiRoI Align. The proposed RiRoI Align consists of two parts: spatial alignment and orientation alignment. For an RRoI (x, y, w, h, θ),
spatial alignment warps the RRoI from the spatial dimension, while orientation alignment circularly switches orientation channels and

interpolates features to produce completely rotation-invariant features.

groupG. For a layer Li ∈ Φ, the rotation transformation Tr
can be preserved by the layer:

Li[Tr(g)] = Tr[Li(g)] g ∈ G. (4)

If we apply Tr to the input I and feed it to the network

Φ, the transformation Tr
2 will be preserved by the whole

network:

[
M∏

i=1

Li](TrI) = Tr[
M∏

i=1

Li](I). (5)

Rotation-invariant Features. For any rotation trans-

formations Tr applied to the input, if its output remains

unchanged, we say the output feature is rotation-invariant.

Rotation-invariant features can be divided into three lev-

els: image-level, instance-level, and pixel-level. Here we

mainly focus on the instance-level rotation-invariant fea-

ture, which is more suitable for the object detection task.

Let IR ∈ I and fR ∈ f denotes an RoI of the image I and

feature maps f (f = Φ(I)), respectively. Assume IR is a

HRoI (x, y, w, h) invariant to the orientation, where (x, y),
w and h denote the center point, width and height of the

HRoI, respectively. While TrIR is an RRoI (x, y, w, h, θ)
related to the orientation θ. Similar to Eq. 5, for RoI IR, the

rotation equivariance can be expressed as:

Φ(TrIR) = TrΦ(IR). (6)

2The transformation Tr may have different formulations in different

spaces, e.g., the input (image) space and the feature space. Here we do not

distinguish it for simplicity. For a deeper discussion of rotation-equivariant

networks, we refer the readers to [5] and [33].

If we regard HRoI IR as the rotation-invariant representa-

tion of RRoI TrIR in the image I , Φ(IR) can be regarded as

the rotation-invariant representation of Φ(TrIR) in the cor-

responding feature space. To get Φ(IR), we need to know

the rotation transformation Tr. Fortunately, Tr is usually

a function of the orientation θ: Tr = T (θ). In practice,

we can simply adopt a RRPN [22] or R-CNN to learn the

orientation θ of an RRoI, as well as the transformation Tr.

Finally, the rotation-invariant feature Φ(IR) can be obtained

by applying an inverse transformation T
′

r to Eq. 6:

Φ(IR) = T
′

rΦ(TrIR). (7)

4. Rotation-equivariant Detector

This section presents details of the proposed Rotation-

equivariant Detector (ReDet) to encode both rotation equiv-

ariance and rotation invariance. First, we adopt rotation-

equivariant networks as the backbone to extract rotation-

equivariant features. As discussed before, directly applying

the RRoI Align to rotation-equivariant feature maps cannot

obtain the rotation-invariant features. Therefore, we design

a novel Rotation-invariant RoI Align (RiRoI Align), which

produces RoI-wise rotation-invariant features from rotation-

equivariant feature maps. The overall architecture of Re-

Det is shown in Fig. 3. For an input image, we feed it to

the rotation-equivariant backbone. Then we adopt RPN to

generate HRoIs, followed by an RoI Transformer (RT) [7]

that transforms HRoIs to RRoIs. Finally, the RiRoI Align

is adopted to extract rotation-invariant features for RoI-wise

classification and bounding box regression.
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4.1. Rotationequivariant Backbone

Modern object detectors usually adopt deep CNNs

as the backbone to automatically extract deep features

with enriched semantic information, e.g., the widely used

ResNet [12] with Feature Pyramid Network (FPN) [17].

We also adopt ResNet with FPN as the baseline and im-

plement a rotation-equivariant backbone, named Rotation-

equivariant ResNet (ReResNet) with ReFPN.

Specifically, we re-implement all layers of the backbone

with rotation-equivariant networks based on e2cnn [32],

including convolution, pooling, normalization, non linear-

ities, etc. Considering the computational budget, ReRes-

Net and ReFPN are only equivariant to the discrete group

(R2,+) ⋊ CN , i.e., all translations and N discrete ro-

tations. As is shown in Fig. 3 (b), we can feed an

image to the rotation-equivariant backbone to produce

rotation-equivariant feature maps. Unlike ordinary feature

maps, the rotation-equivariant feature maps f with the size

(K,N,H,W ) have N orientation channels: f = {f (i)|i ∈
{1, 2, · · · , N}}, and feature maps of each orientation chan-

nel f (i) is corresponding to an element in CN .

Compared with ordinary backbones, the rotation-

equivariant backbone has the following advantages: (a)

Higher degree of weight sharing. As we have introduced

that rotation-equivariant feature maps have an additional

orientation dimension. Features from different orientations

usually share the same filters with different rotation trans-

formations, i.e., the rotation weight sharing. (b) Enriched

orientation information. For an input image with a fixed

orientation, the rotation-equivariant backbone can produce

features from multiple orientations. This is important for

oriented object detection, which requires accurate orienta-

tion information. (c) Smaller model size. Compared with

the baseline, we have two choices when designing the back-

bone: similar computation or similar parameters. Typically,

we keep similar computation with the baseline, i.e., preserv-

ing the same output channels. Due to the rotation weight

sharing, our rotation-equivariant backbone shows a huge re-

duction of model size, about 1/N of parameters.

4.2. Rotationinvariant RoI Align

As introduced in Sec. 3, for an RRoI (x, y, w, h, θ), we

can extract rotation-invariant RoI features from rotation-

equivariant feature maps with RRoI warping. However,

the ordinary RRoI warping can only align features in the

spatial dimension, while the orientation dimension leaves

misaligned. Therefore, we propose RiRoI Align to ex-

tract completely rotation-invariant features. As is shown

in Fig. 3 (c), RiRoI Align includes two parts: (a) Spatial

alignment. For an RRoI (x, y, w, h, θ), spatial alignment

warps it from feature maps f to produce rotation-invariant

region features fR in the spatial dimension, which is con-

sistent with RRoI Align [7]. (b) Orientation alignment.

To ensure RRoIs with different orientations produce com-

pletely rotation-invariant features, we perform orientation

alignment in the orientation dimension. Specifically, for the

output region features f̂R, we formulate orientation align-

ment as:

f̂R = Int(SC(fR, r), θ), r = ⌊θN/2π⌋, (8)

where SC and Int denote the switching channels and fea-

ture interpolation operations, respectively. For the region

features fR, we first calculate an index r, and circularly

switch the orientation channels to make sure C
(r)
N is the

first orientation channel. However, since the rotation equiv-

ariance is only achieved in the discrete group CN , we also

need to interpolate the feature if θ /∈ CN . More precisely,

we interpolate the orientation feature with its nearest l ori-

entation channels. For example, the output feature of i-th
orientation channel with l = 2 can be expressed as:

f̂
(i)
R = (1− α)f

(i)
R + αf

(i+1)
R , (9)

where α = θN/2π− r indicates the distance factor for 1D-

interpolation. Note that we use the mod function to ensure

i ∈ [1, N ] (as well as i+ 1).

Comparison with RRoI Align+MaxPool. Different

from RiRoI Align, warping RoI features with RRoI Align

and then maxpooling over the orientation dimension (i.e.,

orientation pooling) is another approach to extract rotation-

invariant features. The orientation pooling operation is usu-

ally adopted in classification tasks [5, 33, 45]. For each

location in the feature map, it only preserves the orienta-

tion with the strongest response, while features from other

orientations are abandoned. However, we argue that the re-

sponse from all orientations, no matter strong or weak, is

indispensable for object recognition. In our RiRoI Align,

features from all orientations are preserved and aligned with

the orientation alignment operation. We will conduct exper-

iments to show the advantage of our RiRoI Align in Sec. 5.

5. Experiments and Analysis

5.1. Datasets

DOTA [35] is the largest dataset for oriented object de-

tection in aerial images with two released versions: DOTA-

v1.0 and DOTA-v1.5. DOTA-v1.0 contains 2806 large

aerial images with the size ranges from 800 × 800 to

4000×4000 and 188, 282 instances among 15 common cat-

egories: Plane (PL), Baseball diamond (BD), Bridge (BR),

Ground track field (GTF), Small vehicle (SV), Large ve-

hicle (LV), Ship (SH), Tennis court (TC), Basketball court

(BC), Storage tank (ST), Soccer-ball field (SBF), Round-

about (RA), Harbor (HA), Swimming pool (SP), and Heli-

copter (HC). DOTA-v1.5 is released for DOAI Challenge

20193 with a new category, Container Crane (CC) and more

3https://captain-whu.github.io/DOAI2019
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extremely small instances (less than 10 pixels). DOTA-v1.5

contains 402, 089 instances. Compared with DOTA-v1.0,

DOTA-v1.5 is more challenging but stable during training.

Following the settings in previous methods [7, 10], we

use both training and validation sets for training and the test

set for testing. We crop the original images into 1024×1024
patches with a stride of 824. Random horizontal flipping is

adopted to avoid over-fitting during training, and no other

tricks are utilized. For fair comparisons with other methods,

we prepare multi-scale data at three scales {0.5, 1.0, 1.5},

and random rotation for training and testing.

HRSC2016 [21] is a challenging ship detection dataset

with OBB annotations, which contains 1061 aerial images

with the size ranges from 300 × 300 to 1500 × 900. It in-

cludes 436, 181 and 444 images in the training, validation

and test set, respectively. We use both training and valida-

tion sets for training and the test set for testing. All images

are resized to (800, 512) without changing the aspect ratio.

Random horizontal flipping is applied during training.

5.2. Implementation Details

ImageNet pretrain. For the original ResNet [12], we

directly use the ImageNet pretrained models from Py-

torch [25]. For ReResNet, we implement it based on

the mmclassification4. We train ReResNet on the

ImageNet-1K with an initial learning rate of 0.1. All models

are trained for 100 epochs and the learning rate is divided

by 10 at {30, 60, 90} epochs. The batch size is set to 256.

Fine-tuning on detection. We adopt ResNet [12] with

FPN [17] as the backbone of the baseline method. ReRes-

Net with ReFPN is adopted as the backbone of our proposed

ReDet. For RPN, we set 15 anchors per location of each

pyramid level. For R-CNN, we sample 512 RoIs with a 1:3

positive to negative ratio for training. For testing, we adopt

10000 RoIs (2000 for each pyramid level) before NMS and

2000 RoIs after NMS. We adopt the same training schedules

as mmdetection [3]. SGD optimizer is adopted with an

initial learning rate of 0.01, and the learning rate is divided

by 10 at each decay step. The momentum and weight decay

are 0.9 and 0.0001, respectively. We train all models in 12

epochs for DOTA and 36 epochs for HRSC2016. We use 4

V100 GPUs with a total batch size of 8 for training and a

single V100 GPU for inference.

5.3. Ablation Studies

In this section, we conduct a series of ablation experi-

ments on DOTA-v1.5 test set to evaluate the effectiveness

of our proposed method. Note that we use the original

ResNet+FPN and RRoI Align as the backbone and RoI

warping method for the baseline method, respectively.

Rotation-equivariant backbone. We evaluate the ef-

fectiveness of rotation-equivariant backbone with ReRes-

4https://github.com/open-mmlab/mmclassification

backbone group cls. (%) det. (%) size (Mb)

R50-FPN - 76.55 65.03 103

ReR50-ReFPN C4 72.81 65.43 24

ReR50-ReFPN C8 71.20 66.86 12

ReR50-ReFPN C16 61.60 64.36 6

Table 1. Performance comparisons of the rotation-equivariant

backbone on classification (cls.) and detection (det.). group

indicates the rotation group that the backbone is equivariant to.

We report the top-1 accuracy on ILSVRC 2012 without FPN and

the detection performance on DOTA-v1.5 test set in terms of mAP.

The model size only includes the size of the backbone.

method backbone mAP (%) size (Mb)

FR-O
R50-FPN 62.00 158

ReR50-ReFPN 62.36 68

RetinaNet-O
R50-FPN 58.74 140

ReR50-ReFPN 59.64 34

Table 2. The performance of rotation-equivariant backbone on

other detectors. Faster R-CNN OBB (FR-O) and RetinaNet OBB

(RetinaNet-O) are our re-implemented version for OBBs.

method #interpolate mAP (%)

RRoI Align - 65.99

RRoI Align+MP. - 64.60 (-1.39)

RiRoI Align 1 66.44 (+0.45)

RiRoI Align 2 66.86 (+0.87)

RiRoI Align 4 66.32 (+0.33)

Table 3. Comparisons of our RiRoI Align with RRoI Align.

#interpolate indicates the number of orientation channels used for

interpolation (same as l in Sec. 4.2). For an RRoI with the ori-

entation θ, we use its nearest {1, 2, 4} orientation channels to

interpolate its features. MP. is short for MaxPool. ReR50+ReFPN

is adopted as the backbone.

method rot. schd. mAP (%) training (h)

ReDet × 1x 62.62 8

baseline X 1x 64.07 11

ReDet∗ × 1x 66.66 13

baseline X 2x 67.34 22

Table 4. Comparison with rotation augmentation. We compare

the performance of the baseline method with rotation (rot.) aug-

mentation and ReDet without rotation augmentation. ReDet∗ pre-

serves a similar amount of parameters with the baseline. We report

the mAP with R18 (for baseline) and ReR18 (for ReDet) backbone

under the cyclic group C8. For fair comparison, we randomly se-

lect rotation angles from {0, 45, 90, · · · , 315}.

method
DOTA-v1.0 HRSC2016

AP50 AP75 mAP AP50 AP75 mAP

baseline 75.62 48.37 46.13 90.18 80.48 68.17

ReDet 76.25 50.86 47.11(+0.98) 90.46 89.46 70.41(+2.24)

Table 5. Performance of the proposed ReDet on other datasets.

We report the performance on DOTA-v1.0 and HRSC2016 in

COCO style. We use ReR50+ReFPN (resp. R50+FPN) as the

backbone of ReDet (resp. baseline).

Net50+ReFPN under different settings. As shown in Tab. 1,

compared to ResNet50, ReResNet50 achieves lower clas-
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method backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

single-scale:

FR-O [35] R101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13

ICN [1] R101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

CADNet [42] R101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

DRN [24] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

CenterMap [30] R50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74

SCRDet [40] R101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

R3Det [37] R152-FPN 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [10] R50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

ReDet (Ours) ReR50-ReFPN 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

multi-scale:

RoI Trans.∗ [7] R101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

O2-DNet∗ [31] H104 89.30 83.30 50.10 72.10 71.10 75.60 78.70 90.90 79.90 82.90 60.20 60.00 64.60 68.90 65.70 72.80

DRN∗ [24] H104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

Gliding Vertex∗ [36] R101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

BBAVectors∗ [41] R101 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36

CenterMap∗ [30] R101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL∗ [38] R152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

SCRDet++∗ [39] R152-FPN 88.68 85.22 54.70 73.71 71.92 84.14 79.39 90.82 87.04 86.02 67.90 60.86 74.52 70.76 72.66 76.56

S2A-Net∗ [10] R50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42

ReDet∗ (Ours) ReR50-ReFPN 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

Table 6. Comparisons with state-of-the-art methods on DOTA-v1.0 OBB Task. H-104 means Hourglass 104. ∗ indicates multi-scale

training and testing. The results with red and blue colors indicate the best and second-best results of each column, respectively.

method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

OBB results:

RetinaNet-O [18] 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16

FR-O [27] 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00

Mask R-CNN [11] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67

HTC [2] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40

OWSR∗ [15] - - - - - - - - - - - - - - - - 74.90

ReDet (Ours) 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86

ReDet∗ (Ours) 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80

HBB results:

RetinaNet-O [18] 71.66 77.22 48.71 65.16 49.48 69.64 79.21 90.84 77.21 61.03 47.30 68.69 67.22 74.48 46.16 5.78 62.49

FR-O [27] 71.91 71.60 50.58 61.95 51.99 71.05 80.16 90.78 77.16 67.66 47.93 69.35 69.51 74.40 60.33 5.17 63.85

HTC [2] 78.41 74.41 53.41 63.17 52.45 63.56 79.89 90.34 75.17 67.64 48.44 69.94 72.13 74.02 56.42 12.14 64.47

Mask R-CNN [11] 78.36 77.41 53.36 56.94 52.17 63.60 79.74 90.31 74.28 66.41 45.49 71.32 70.77 73.87 61.49 17.11 64.54

OWSR∗ [15] - - - - - - - - - - - - - - - - 77.90

ReDet (Ours) 79.51 82.63 53.81 69.82 52.76 75.64 87.82 90.83 75.81 68.78 49.11 71.65 75.57 75.17 58.29 15.36 67.66

ReDet∗ (Ours) 88.68 86.57 61.93 81.20 73.71 83.59 90.06 90.86 84.30 75.56 71.55 71.86 83.93 80.38 75.62 49.55 78.08

Table 7. Performance comparisons on DOTA-v1.5 test set. Note the results of Faster R-CNN OBB (FR-O) [27], RetinaNet OBB

(RetinaNet-O) [18], Mask R-CNN [11] and Hybrid Task Cascade (HTC) [2] are our re-implemented version for DOTA. OWSR [15] is a

method from DOAI 2019, and we report its single model performance for fair comparisons. The HBB results of our method are converted

from OBB results by calculating the axis-aligned bounding boxes. ∗ means multi-scale training and testing.

sification accuracy due to the reduction of parameters, but

it obtains higher detection mAP. We find the backbone un-

der the cyclic group C8 achieves better accuracy-parameter

trade-off. ReResNet50+ReFPN under C8 gains 1.83 detec-

tion mAP improvements with only 1/8 parameters (103 Mb

vs. 12 Mb). Besides, we also extend ReResNet+ReFPN

to other methods in Tab. 2. Both Faster R-CNN OBB and

RetinaNet OBB with ReResNet50+ReFPN outperform its

counterpart which further demonstrates the effectiveness of

rotation-equivariant backbones.

Effectiveness of RiRoI Align. As shown in Tab. 3,

compared with RRoI Align, RiRoI Align shows significant

improvements due to its orientation alignment mechanism.

While RRoI Align+MaxPool leads to a significant drop in

mAP, indicating that the orientation pooling is undesirable

in oriented object detection. RiRoI Align with a l = 2 in-

terpolation achieves the highest 66.86 mAP and 0.87 mAP

improvements than RRoI Align. Besides, we find RiRoI

Align with a l = 4 interpolation only gains 0.33 mAP. The

reason may be that too many interpolations hurt the equiv-

ariant property and inner relation between orientations.

Comparison with rotation augmentation. From an-

other perspective, our method can be viewed as a special

in-network rotation augmentation, which learns from one

orientation and can be applied to multiple orientations. In

contrast, rotation augmentation enhances the network by

generating samples with more orientations and usually re-

quires more time to converge. As shown in Tab. 4, although

our method does not exceed the rotation augmented base-

line under 1x schedule, our ReDet∗, which preserves the

similar amount of parameters, shows 2.59 mAP improve-

ments with only 18% extra training time. Moreover, the 2x

baseline with rotation augmentation is 0.68 higher than our

ReDet∗, but it takes twice the training time.

Performance on other datasets. To prove the general-

ization of our proposed method, we also evaluate the per-
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method RC2 [19] RRPN [22] R2PN [43] RRD [16] RoI Trans. [7] Gliding Vertex [36]

mAP 75.7 79.08 79.6 84.3 86.2 88.2

method R3Det [37] DRN [24] CenterMap [30] CSL [38] S2A-Net [10] ReDet (Ours)

mAP 89.26 92.7∗ 92.8∗ 89.62 90.17 / 95.01∗ 90.46 / 97.63∗

Table 8. Comparisons of state-of-the-art methods on HRSC2016. ∗ indicates that the result is evaluated under VOC2012 metrics, while

other methods are all evaluated under VOC2007 metrics. We report both results for fair comparisons.

PL BD BR GTF SV LV SH TC BC ST HCSPHARASBF CC
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Figure 4. Qualitative comparisons between the proposed ReDet and the baseline method on DOTA-v1.5.

formance of ReDet on DOTA-v1.0 and HRSC2016. As

is shown in Tab. 5, compared with the baseline, ReDet

achieves better performance on both datasets. Moreover,

ReDet has significant improvements in AP75 and mAP,

which demonstrates its accurate localization capabilities.

5.4. Comparisons with the StateoftheArt

Results on DOTA-v1.0. As shown in Tab. 6, we

compare our ReDet with other state-of-the-art methods on

DOTA-v1.0 OBB Task. Without bells and whistles, our

single-scale model achieves 76.25 mAP, outperforming all

single-scale models and most multi-scale models. With lim-

ited data augmentation (i.e., multi-scale data and random

rotation), our method achieves state-of-the-art 80.10 mAP

in the whole dataset, and obtains the best or second-best

results among 12/15 categories.

Results on DOTA-v1.5. Compared with DOTA-v1.0,

DOTA-v1.5 contains many extremely small instances,

which increases the difficulty of object detection. We re-

port both OBB and HBB results on DOTA-v1.5 test set in

Tab. 7. With single-scale data, our method achieves 66.86

OBB mAP and 67.66 HBB mAP, outperforming RetinaNet

OBB, Faster R-CNN OBB, Mask R-CNN [11] and HTC [2]

by a large margin. Especially for the categories with small

instances (e.g., HA, SP, CC) and large scale variations (e.g.,

PL, BD), our method performs better. Besides, as shown

in Fig. 2, our ReDet achieves better parameter vs. accuracy

trade-off, which further demonstrates its efficiency. Com-

pared to previous best results by OWSR [15], our multi-

scale model achieves state-of-the-art performance, about

76.80 OBB mAP and 78.08 HBB mAP. Qualitative com-

parisons between our ReDet and the baseline method are

visualized in Fig. 4.

Results on HRSC2016. The HRSC2016 contains a lot

of thin and long ship instances with arbitrary orientation.

We compare our ReDet with other state-of-the-art meth-

ods in Tab. 8. Our method achieves the state-of-the-art

performance, i.e., with mAP of 90.46 and 97.63 under the

VOC2007 and VOC2012 metrics, respectively.

6. Conclusions

This paper presents a Rotation-equivariant Detector for

aerial object detection, which consists of two parts: the

rotation-equivariant backbone and the RiRoI Align. The

former produces rotation-equivariant features, while the

latter extracts rotation-invariant features from rotation-

equivariant features. Extensive experiments on DOTA and

HRSC2016 demonstrate the effectiveness of our method.

2793



References

[1] Seyed Majid Azimi, Eleonora Vig, Reza Bahmanyar, Marco

Körner, and Peter Reinartz. Towards multi-class object de-

tection in unconstrained remote sensing imagery. In ACCV,

pages 150–165, 2018. 2, 7
[2] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,

Wanli Ouyang, et al. Hybrid task cascade for instance seg-

mentation. In CVPR, pages 4974–4983, 2019. 2, 7, 8
[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-

box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

6
[4] G. Cheng, P. Zhou, and J. Han. Learning rotation-invariant

convolutional neural networks for object detection in vhr op-

tical remote sensing images. IEEE Transactions on Geo-

science and Remote Sensing, 2016. 3
[5] Taco Cohen and Max Welling. Group equivariant convolu-

tional networks. In ICML, pages 2990–2999, 2016. 2, 3, 4,

5
[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In ICCV, pages 764–773, 2017. 3
[7] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai

Lu. Learning roi transformer for oriented object detection in

aerial images. In CVPR, pages 2849–2858, 2019. 1, 2, 3, 4,

5, 6, 7, 8
[8] Ross Girshick. Fast R-CNN. In ICCV, pages 1440–1448,

2015. 2, 3
[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, pages 580–587, 2014.

2
[10] J. Han, J. Ding, J. Li, and G. S. Xia. Align deep features for

oriented object detection. IEEE Transactions on Geoscience

and Remote Sensing, pages 1–11, 2021. 1, 6, 7, 8
[11] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In ICCV, pages 2980–2988, 2017. 2, 7,

8
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 5, 6
[13] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max

Welling. Hexaconv. In ICLR, 2018. 2, 3
[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In NeurIPS, pages 2017–2025,

2015. 3
[15] Chengzheng Li, Chunyan Xu, Zhen Cui, Dan Wang, Ze-

qun Jie, Tong Zhang, and Jian Yang. Learning object-wise

semantic representation for detection in remote sensing im-

agery. In CVPR workshops, pages 20–27, 2019. 7, 8
[16] Minghui Liao, Zhen Zhu, Baoguang Shi, Guisong Xia, and

Xiang Bai. Rotation-sensitive regression for oriented scene

text detection. In CVPR, pages 5909–5918, 2018. 8
[17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, pages 2117–2125,

2017. 5, 6

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

pages 2980–2988, 2017. 2, 7
[19] Lei Liu, Zongxu Pan, and Bin Lei. Learning a rotation in-

variant detector with rotatable bounding box. arXiv preprint

arXiv:1711.09405, 2017. 8
[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In ECCV, pages

21–37, 2016. 2
[21] Zikun Liu, Liu Yuan, Lubin Weng, and Yiping Yang. A high

resolution optical satellite image dataset for ship recognition

and some new baselines. In ICPRAM, pages 324–331, 2017.

1, 2, 6
[22] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang,

Yingbin Zheng, and Xiangyang Xue. Arbitrary-oriented

scene text detection via rotation proposals. IEEE Trans. on

Multimedia, 2018. 1, 2, 3, 4, 8
[23] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis

Tuia. Rotation equivariant vector field networks. In ICCV,

pages 5048–5057, 2017. 3
[24] Xingjia Pan, Yuqiang Ren, Kekai Sheng, Weiming Dong,

Haolei Yuan, Xiaowei Guo, Chongyang Ma, and Chang-

sheng Xu. Dynamic refinement network for oriented and

densely packed object detection. In CVPR, June 2020. 2, 3,

7, 8
[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, pages 8026–8037, 2019. 6
[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, pages 779–788, 2016. 2
[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. IEEE Trans. on PAMI, pages 1137–

1149, 2017. 2, 7
[28] Yun Ren, Changren Zhu, and Shunping Xiao. Deformable

faster r-cnn with aggregating multi-layer features for par-

tially occluded object detection in optical remote sensing im-

ages. Remote Sensing, 10(9):1470, 2018. 3
[29] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao,

and Xiang Bai. Robust scene text recognition with automatic

rectification. In CVPR, pages 4168–4176, 2016. 3
[30] Jinwang Wang, Wen Yang, Heng-Chao Li, Haijian Zhang,

and Gui-Song Xia. Learning center probability map for de-

tecting objects in aerial images. IEEE Transactions on Geo-

science and Remote Sensing, 2020. 3, 7, 8
[31] Haoran Wei, Yue Zhang, Zhonghan Chang, Hao Li, Hongqi

Wang, and Xian Sun. Oriented objects as pairs of middle

lines. ISPRS Journal of Photogrammetry and Remote Sens-

ing, 169:268–279, 2020. 3, 7
[32] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant

steerable cnns. In NeurIPS, pages 14334–14345, 2019. 3, 5
[33] Maurice Weiler, Fred A Hamprecht, and Martin Storath.

Learning steerable filters for rotation equivariant cnns. In

CVPR, pages 849–858, 2018. 2, 3, 4, 5
[34] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-

2794



betov, and Gabriel J Brostow. Harmonic networks: Deep

translation and rotation equivariance. In CVPR, pages 5028–

5037, 2017. 3
[35] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-

longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-

pei Zhang. DOTA: A large-scale dataset for object detection

in aerial images. In CVPR, pages 3974–3983, 2018. 1, 2, 5,

7
[36] Yongchao Xu, Mingtao Fu, Qimeng Wang, Yukang Wang,

Kai Chen, Guisong Xia, and Xiang Bai. Gliding vertex on the

horizontal bounding box for multi-oriented object detection.

IEEE Trans. on PAMI, 2020. 3, 7, 8
[37] Xue Yang, Qingqing Liu, Junchi Yan, Ang Li, Zhiqiang

Zhang, and Gang Yu. R3det: Refined single-stage detector

with feature refinement for rotating object. arXiv preprint

arXiv:1908.05612, 2019. 1, 7, 8
[38] Xue Yang and Junchi Yan. Arbitrary-oriented object detec-

tion with circular smooth label. In ECCV, 2020. 1, 2, 3, 7,

8
[39] Xue Yang, Junchi Yan, Xiaokang Yang, Jin Tang, Wenlong

Liao, and Tao He. Scrdet++: Detecting small, cluttered and

rotated objects via instance-level feature denoising and rota-

tion loss smoothing. arXiv preprint arXiv:2004.13316, 2020.

7
[40] Xue Yang, Jirui Yang, Junchi Yan, Yue Zhang, Tengfei

Zhang, Zhi Guo, Xian Sun, and Kun Fu. Scrdet: Towards

more robust detection for small, cluttered and rotated objects.

In ICCV, pages 8231–8240, 2019. 1, 2, 7
[41] Jingru Yi, Pengxiang Wu, Bo Liu, Qiaoying Huang, Hui Qu,

and Dimitris Metaxas. Oriented object detection in aerial

images with box boundary-aware vectors. arXiv preprint

arXiv:2008.07043, 2020. 3, 7
[42] Gongjie Zhang, Shijian Lu, and Wei Zhang. Cad-net: A

context-aware detection network for objects in remote sens-

ing imagery. IEEE Transactions on Geoscience and Remote

Sensing, PP:1–10, 2019. 2, 7
[43] Zenghui Zhang, Weiwei Guo, Shengnan Zhu, and Wenxian

Yu. Toward arbitrary-oriented ship detection with rotated

region proposal and discrimination networks. IEEE Geo-

science and Remote Sensing Letters, (99):1–5, 2018. 2, 8
[44] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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