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Figure 1: We propose a self-supervised method to learn video representations by aligning videos in time, despite many

differences between the videos such as appearance, motion, and viewpoint. We optimize the embedding space by using both

the temporal alignment loss between the videos and the temporal regularization applied separately on each video. Our learned

representations can be useful for many video-based temporal understanding tasks such as temporal video alignment.

Abstract

We present a self-supervised approach for learning video

representations using temporal video alignment as a pre-

text task, while exploiting both frame-level and video-level

information. We leverage a novel combination of tempo-

ral alignment loss and temporal regularization terms, which

can be used as supervision signals for training an encoder

network. Specifically, the temporal alignment loss (i.e.,

Soft-DTW) aims for the minimum cost for temporally align-

ing videos in the embedding space. However, optimizing

solely for this term leads to trivial solutions, particularly,

one where all frames get mapped to a small cluster in

the embedding space. To overcome this problem, we pro-

pose a temporal regularization term (i.e., Contrastive-IDM)

which encourages different frames to be mapped to differ-

ent points in the embedding space. Extensive evaluations

on various tasks, including action phase classification, ac-

tion phase progression, and fine-grained frame retrieval, on

three datasets, namely Pouring, Penn Action, and IKEA

ASM, show superior performance of our approach over

state-of-the-art methods for self-supervised representation

learning from videos. In addition, our method provides sig-

nificant performance gain where labeled data is lacking.

1. Introduction

There are just three problems in computer vision:

registration, registration, and registration.

Takeo Kanade

Lukas-Kanade and Iterative Closest Point have been

amongst the most ubiquitous building blocks in artificial

perception literature. Yet spatio-temporal registration has

received little attention in the present deep learning renais-

sance. Correspondingly, we add to a small number of recent

approaches [14, 39] that have revived temporal alignment

as a means of improving video representation learning. In

order to learn perfect alignment of two videos, a learning

algorithm must be able to disentangle phases of the activ-

ity in time while simultaneously associating visually sim-

ilar frames in the two different videos. We demonstrate

that learning in this manner generates representations that

are effective for downstream tasks that rely on fine-grained

∗ indicates joint first author.
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temporal features.

In the context of using temporal alignment for learn-

ing video representations, some recent works [14, 39] use

cycle-consistency losses to perform local alignment be-

tween individual frames. At the same time, some works

have explored global alignment for video classification and

segmentation [8, 5]. We adapt such global alignment ideas

for video representation learning in this work.

A few of approaches have been proposed for super-

vised action recognition [45, 7, 49, 46] and action segmen-

tation [15, 33]. Unfortunately, these approaches require

fine-grained annotations which can be prohibitively expen-

sive [40]. We note the seemingly infinite supply of public

video data, and contrast it with the high cost of fine-grained

annotation. This discrepancy emphasizes the importance

of exploring self-supervised methods. We are further mo-

tivated by datasets and downstream tasks that specifically

benefit from temporal alignment, such as video streams

of semi-repetitive activities from manufacturing assembly

lines to surgery rooms. It is desirable to measure the vari-

ability and anomalies [44, 23] across such datasets, where

representations that optimize for temporal alignment may

be highly performant.

Our approach, Learning by Aligning Videos (LAV), uti-

lizes the task of temporally aligning videos for learning

self-supervised video representations. Specifically, we use

a differentiable version of an alignment metric which has

been widely used in the time series literature, namely Dy-

namic Time Warping (DTW) [4]. DTW is a global align-

ment metric, taking into account entire sequences while

aligning. Unfortunately, in a self-supervised representation

learning context, optimizing solely for DTW may converge

to trivial solutions wherein the learned representations are

not meaningful. To address this issue, we combine the

above alignment metric with a regularization, as shown in

Fig. 1. In particular, we propose a regularization term that

optimizes for temporally disentangled representations, i.e.,

frames that are close in time are mapped to spatially nearby

points in the embedding space and vice versa.

In summary, our contributions include:

• We introduce a novel self-supervised method for

learning video representations by temporally aligning

videos as a whole, leveraging both frame-level and

video-level cues.

• We adopt the classical DTW as our temporal alignment

loss, while proposing a new temporal regularization.

The two components have mutual benefits, i.e., the lat-

ter prevents trivial solutions, whereas the former leads

to better performance.

• Our approach performs on par with or better than

the state-of-the-art on various temporal understand-

ing tasks on Pouring, Penn Action, and IKEA ASM

datasets. The best performance is sometimes achieved

by combining our method with a recent work [14].

Further, our approach offers significant accuracy gain

when lacking labeled data.

• We have made our dense per-frame labels for 2123

videos of Penn Action publicly available at https:

//bit.ly/3f73e2W.

2. Related Work

In this section, we review recent literature in self-

supervised learning with a focus on image and video data.

Image-Based Self-Supervised Representation Learning.

Early self-supervised representation learning methods ex-

plore image content as supervision signals. They propose

pretext tasks based on artificial image cues as labels and

train deep networks for solving those tasks [30, 31, 37, 34,

28, 19, 6, 16]. These pretext tasks include objectives such

as image colorization [30, 31], object counting [37, 34],

solving jigsaw puzzles [28, 6], and predicting image rota-

tions [19, 16]. Even earlier approaches learn representations

simply by reconstructing the input image [25] or recovering

it from noise [47]. In this work, we focus on self-supervised

representation learning from videos, which leverages both

spatial and temporal information in videos.

Video-Based Self-Supervised Representation Learning.

With the advent of deep architectures for video understand-

ing [45, 7, 49, 46], various pretext tasks have been intro-

duced as supervision signals for self-supervised represen-

tation learning from videos. One popular class of methods

learn representations by predicting future frames [42, 48, 1,

12] or forecasting their encoding features [22, 27, 18]. An-

other group of methods leverage temporal information, for

example, temporal order and temporal coherence are used

as labels in [35, 32, 17, 53, 9] and [21, 36, 3, 56, 55, 20]

respectively. Recently, Donglai et al. [50] train a deep

model for classifying temporal direction, while Sermanet et

al. [41] learn representations via consistency across differ-

ent viewpoints and neighboring frames. The above methods

usually optimize over a single video at a time, whereas our

approach jointly optimizes over a pair of videos at once,

potentially extracting more information from both videos.

Temporal Video Alignment. There exists a lot of liter-

ature on time series alignment, yet only a few ideas have

been carried over to aligning videos. Unfortunately, tra-

ditional methods for time series alignment, for example,

DTW [4], are not differentiable and hence can not be di-

rectly used for training neural networks. To address this

weakness, a smooth approximation of DTW, namely Soft-

DTW, is introduced in [11]. More recently, Soft-DTW for-

mulations have been used in a weakly supervised setting

for aligning a video to a transcript [8] or in a few-shot su-

pervised setting for aligning videos [5]. In the present pa-

per, we adapt Soft-DTW for learning self-supervised repre-

sentations from videos, using temporal video alignment as
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the pretext task. The closest work to ours is Temporal Cy-

cle Consistency (TCC) [14], which learns self-supervised

representations by finding frame correspondences across

videos. While TCC aligns each frame separately, our ap-

proach aligns the video as a whole, leveraging both frame-

level and video-level cues.

3. Our Approach

In this section, we discuss our main contribution which is

a self-supervised method to learn video representations via

temporal video alignment. Specifically, we learn an embed-

ding space where two videos with similar contents can be

conveniently aligned in time. We first aim to optimize the

embedding space solely for the global alignment cost be-

tween the two videos, which can lead to trivial solutions. To

overcome this problem, we regularize the embedding space

such that for each input video, temporally close frames are

mapped to nearby points in the embedding space, whereas

temporally distant frames are correspondingly mapped far

away in the embedding space. Fig. 2 shows an overview

of our loss and regularization (right) and our encoder (left).

Below we first define some notations and then provide the

details of our temporal alignment loss, temporal regulariza-

tion, final loss, and encoder network in Secs. 3.1, 3.2, 3.3,

and 3.4 respectively.

Notations. We denote the embedding function as fθ,

namely a neural network with parameters θ. Our method

takes as input two videos X = {x1, x2, . . . , xn} and

Y = {y1, y2, . . . , ym}, where n and m are the numbers

of frames in X and Y respectively. For a frame xi in X

and yj in Y , the embedding frames of xi and yj are writ-

ten as fθ(xi) and fθ(yj) respectively. In addition, we de-

note fθ(X) = {fθ(x1), fθ(x2), . . . , fθ(xn)} and fθ(Y ) =
{fθ(y1), fθ(y2), . . . , fθ(ym)} as the embedding videos of

X and Y respectively.

3.1. Temporal Alignment Loss

We adopt the classical DTW discrepancy [4] as our tem-

poral alignment loss. DTW has been widely used with

non-visual data, such as time series, and has just recently

been applied to video data, but in a weakly supervised setup

for video-to-transcript alignment [8] or in a few-shot su-

pervised setup for video alignment [5]. Unlike [8, 5], we

explore the use of DTW for self-supervised video represen-

tation learning by leveraging temporal video alignment as

the pretext task.

Given two input videos X and Y and their embedding

videos fθ(X) and fθ(Y ), we can compute the distance ma-

trix D 2 R
n×m with each entry written as D(i, j) =

||fθ(xi) � fθ(yj)||
2. DTW calculates the alignment cost

between X and Y by finding the minimum cost path in D:

dtw(X,Y ) = minA∈An,m
hA,Di. (1)

Here, An,m ⇢ {0, 1}n×m is the set of all possible (bi-

nary) alignment matrices, which correspond to paths from

the top-left corner of D to the bottom-right corner of D us-

ing only {#,!,&} moves. A 2 An,m is a typical align-

ment matrix, with A(i, j) = 1 if xi in X is aligned with yj
in Y . DTW can be computed using dynamic programming,

particularly solving the below cumulative distance function:

r(i, j) = D(i, j)+min{r(i�1, j), r(i, j�1), r(i�1, j�1)}.
(2)

Due to the non-differentiable min operator, DTW is not

differentiable and unstable when used in an optimization

framework. We therefore employ a continuous relaxation

version of DTW, namely Soft-DTW, proposed by [11]. In

particular, Soft-DTW replaces the discrete min operator in

DTW by the smoothed minγ one, defined as:

minγ{a1, a2, ..., an} = �γ log

n
X

i=1

e
−ai
γ , (3)

where γ > 0 is a smoothing parameter. Soft-DTW returns

the alignment cost between X and Y by finding the soft-

minimum cost path in D, which can be written as:

dtwγ(X,Y ) = min
γ
A∈An,m

hA,Di. (4)

Note that since the smoothed minγ operator converges to

the discrete min one when γ approaches 0, Soft-DTW pro-

duces similar results as DTW when γ is near 0. In addition,

although using minγ does not make the objective convex,

it does help the optimization by enabling smooth gradients

and providing better optimization landscapes.

3.2. Temporal Regularization

Since (Soft-)DTW measures the (soft-)minimum cost

path in D, optimizing for (Soft-)DTW alone can result in

trivial solutions, wherein all the entries in D are close to

0, as we will show later in Sec. 5.1. In other words, all

the frames in X and Y are mapped to a small cluster in

the embedding space. To avoid that, we opt to add a tem-

poral regularization, which is applied separately on fθ(X)
and fθ(Y ). Below we discuss our regularization for fθ(X)
only, while the same one can be applied for fθ(Y ).

Motivated by [43], we adapt Inverse Difference Moment

(IDM) [10] as our regularization, which can be written as:

I(X) =

n
X

i=1

n
X

j=1

W (i, j)SX(i, j) (5)

W (i, j) =
1

(i� j)2 + 1
,

where SX 2 R
n×n is the self-similarity matrix of fθ(X).

Maximizing Eq. 5 encourages temporally close frames in

X (with large W (i, j)) to be mapped to nearby points in the
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Figure 2: Given input videos X and Y , we feed them to the encoder fθ to obtain the embedding videos fθ(X) and fθ(Y ). We

optimize the encoder parameters θ by applying the Soft-DTW temporal alignment loss dtwγ(X,Y ) and the Contrastive-IDM

temporal regularization I∗(X) and I∗(Y ) on the embedding videos fθ(X) and fθ(Y ).

embedding space (with large SX(i, j)). Unlike [43], which

applies IDM on the transport matrix between two (skele-

ton) sequences, we apply IDM separately on each (video)

sequence. To be used as a loss function, we convert the

above maximization objective to the below minimization:

Ī(X) =
n
X

i=1

n
X

j=1

W̄ (i, j)(�DX(i, j)) (6)

W̄ (i, j) = (i� j)2 + 1,

where DX 2 R
n×n is the self-distance matrix of fθ(X),

and is defined as DX(i, j) = ||fθ(xi)�fθ(xj)||
2. Minimiz-

ing Eq. 6 encourages temporally close frames in X (with

small W̄ (i, j)) to be mapped to nearby points in the embed-

ding space (with small DX(i, j)).
However, we notice one problem with the above IDM

regularization, in particular, it treats temporally close and

far way frames in similar ways. In Eq. 5, it maximizes

similarities between temporally far away frames, though

with smaller weights. Similarly, for Eq. 6, it still maxi-

mizes distances between temporally close frames, though

with smaller weights. To address that, we propose separate

terms for temporally close and far away frames. Specifi-

cally, we introduce a contrastive version of Eq. 6, which we

call Contrastive-IDM, as our regularization:

I∗(X) =

n
X

i=1

n
X

j=1

yijW̄ (i, j)max(0,λ�DX(i, j))

+(1� yij)W (i, j)DX(i, j),

yij =

(

1, |i� j| > σ

0, |i� j|  σ
.

(7)

Here, σ is a window size for separating temporally far

away frames (yij = 1 or negative pairs) and temporally

close frames (yij = 0 or positive pairs) and λ is a mar-

gin parameter. Contrastive-IDM encourages temporally

close frames (positive pairs) to be nearby in the embedding

space, while penalizing temporally far away frames (nega-

tive pairs) when the distance between them is smaller than

margin λ in the embedding space. Note that, if we drop the

weights W̄ (i, j) and W (i, j) in Eq. 7, it becomes equivalent

to Slow Feature Analysis (SFA), also referred to as tempo-

ral coherence [21, 36, 20], which treats all pairs equally.

We would emphasize that, leveraging temporal information

by adding weights to different pairs based on their temporal

gaps leads to performance gain, as we will show in Sec. 5.1.

3.3. Final Loss

Our final loss is a combination of Soft-DTW alignment

loss in Eq. 4 and Contrastive-IDM regularization in Eq. 7:

L(X,Y ) = dtwγ(X,Y ) + α(I∗(X) + I∗(Y )). (8)

Here, α is the weight for the regularization. The final loss

encourages embedding videos to have minimum alignment

costs while encouraging discrepancies among embedding

frames. Both the alignment loss and the regularization are

differentiable and can be optimized using backpropagation.

3.4. Encoder Network

We use ResNet-50 [24] as our backbone network and ex-

tract features from the output of the Conv4c layer. The ex-

tracted features have dimensions of 14⇥14⇥1024. We then

stack k context frame features along the temporal dimen-

sion for each frame. Next, the combined features are passed

through two 3D convolutional layers for aggregating tem-

poral information. It is then followed by a 3D global max

pooling layer, two fully-connected layers, and a linear pro-

jection layer to output embedding frames, with each having

128 dimensions. We resize input video frames to 224⇥224
before feeding to our encoder network.
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Figure 3: We annotate dense frame-wise labels (i.e., key

events and phases) for 2123 videos of Penn Action. In

the above Golf Swing video, key events represent specific

events, e.g., Stick Swung Back Fully, while phases are peri-

ods between key events, e.g., Winding Stick Back.

4. Datasets, Annotations, and Metrics

Datasets and Annotations. We use three datasets, namely

Pouring [41], Penn Action [54], and IKEA ASM [2]. While

Pouring videos capture human hands interacting with ob-

jects, Penn Action and IKEA ASM videos show humans

playing sports and assembling furniture respectively. We

manually annotate dense frame-wise labels (i.e., key events

and phases) for Penn Action using the same protocol of [14],

since the authors of [14] do not release them. See Fig. 3 for

an example. For Pouring and IKEA ASM, we obtain the

labels from the authors of [14] and [2] respectively. Ac-

tions/videos in IKEA ASM (17 phases) are more compli-

cated/longer than those in Pouring (5 phases) and Penn Ac-

tion (2-6 phases). We use the training/validation splits from

the original datasets. For Pouring, we use all videos (70

for training, 14 for validation). Following [14], we use 13

actions of Penn Action (for each action, 40-134 videos for

training, 42-116 videos for validation). For IKEA ASM, we

use all Kallax Drawer Shelf videos (61 for training, 29 for

validation).

Evaluation Metrics. We use four evaluation metrics com-

puted on the validation set. The network is first trained on

the training set and then frozen. Next, an SVM classifier

or linear regressor is trained on top of the frozen network

features (without any fine-tuning of the network). For all

metrics, a high score means a better model. We summarize

the metrics below:

• Phase Classification: is the average per-frame phase

classification accuracy, implemented by training an

SVM classifier on top of the frozen network features

to predict the phase labels.

• Phase Progression [13, 52]: measures the prowess of

representations learnt to predict action progress tem-

porally, implemented by training a linear regressor on

top of the frozen network features to predict the phase

progression values (defined using the key event labels).

• Kendall’s Tau [26, 51]: measures how well videos are

aligned temporally if we use nearest neighbor match-

ing. It does not require any labels for evaluation.

• Average Precision: is the fine-grained frame retrieval

accuracy, computed as the ratio of the retrieved frames

with the same phase labels as the query frame.

We follow [14] to use the first three metrics above, while

we add the last metric for our fine-grained frame retrieval

experiments in Sec. 5.4. Phase Progression and Kendall’s

Tau assume no repetitive frames/labels in a video.

5. Experiments

In this section, we benchmark our approach (namely

LAV, short for Learning by Aligning Videos) against state-

of-the-art methods for video-based self-supervised repre-

sentation learning on various temporal understanding tasks

on Pouring, Penn Action, and IKEA ASM datasets.

Implementation Details. We use the same encoder in

Sec. 3.4 for all methods for Pouring and Penn Action exper-

iments. For IKEA ASM experiments, since the actions are

more complex, we opt to extract features from the output of

the Conv5c layer (instead of Conv4c) for all methods. We

initialize ResNet-50 layers with pre-trained weights for Im-

ageNet classification, while remaining layers are initialized

randomly. We L2-normalize the frame-embeddings before

feeding them to our loss (LAV). We use ADAM optimiza-

tion [29] with a learning rate of 10−4 and a weight decay

of 10−5. We minimize our final loss in Eq. 8 computed

over all video pairs in the training set. We randomly pair

videos of the same action, regardless of their viewpoints.

For datasets with a single action (e.g., Pouring and IKEA

ASM), videos are randomly paired. For datasets with many

actions (e.g., Penn Action), videos of the same action are

randomly paired. For each video pair, we calculate the fi-

nal loss using p sampled frames from each video, i.e., we

divide a video into p uniform chunks and randomly sample

one frame per chunk. We implement our network and loss

in PyTorch [38]. For more details, please refer to supple-

mentary materials.

Competing Methods. Below are the competing methods:

• Self-Supervised Learning: We compare LAV with

recent self-supervised video representation learning

methods, namely SAL [35], TCN [41], and TCC[14].

• Fully-Supervised Learning: We test LAV against

a fully-supervised method with explicit supervision.

Specifically, following [14], we train a network on the

downstream task by attaching a 1-layer classifier to the

encoder in Sec. 3.4.

• Random/ImageNet Features: For completeness, we in-

clude the results obtained by using random features or

pre-trained features for ImageNet classification.

5.1. Ablation Study Results

Here, we perform ablation studies on Pouring dataset to

show the effectiveness of our design choices in Sec. 3.
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Loss Classification Progress τ

In
d

iv
id

u
a
l S-DTW [11] 48.35 0.2770 0.2144

IDM (Eq. 6) 48.16 0.7241 0.5835

SFA [21] 92.20 0.7533 0.8093

C-IDM (Eq. 7) 92.82 0.7477 0.8318

C
o
m

b
in

ed S-DTW + IDM 68.73 0.6551 0.6408

S-DTW + SFA 91.63 0.7146 0.8069

S-DTW + C-IDM 92.84 0.8054 0.8561

Table 1: Ablation studies of individual losses (top) and

combined losses (bottom). S-DTW and C-IDM denote

Soft-DTW and Contrastive-IDM respectively. Best results

are in bold, while second best ones are underlined.

(a) S-DTW (b) S-DTW+C-IDM
0.0

4.0

3.0

2.0

1.0

Figure 4: Distance matrices between embedding frames of

two Pouring videos learned by various losses. S-DTW de-

notes Soft-DTW, while C-IDM means Contrastive-IDM.

Performance of Individual Losses. We first study the

performance of individual components of our approach,

i.e., Soft-DTW and Contrastive-IDM, as separate baselines.

Also, we include other methods such as IDM in Eq. 6 and

an SFA approach proposed in [21]. Tab. 1 (top) presents

the quantitative results. We observe that the model trained

with Soft-DTW alone achieves the lowest accuracy across

all metrics. In fact, it has similar classification accuracy to

that of random features in Tab. 2 (i.e., 48.35% vs. 45.10%),

which shows that training solely with Soft-DTW yields triv-

ial solutions and the network is unable to learn any useful

representations. This is also confirmed by plotting the dis-

tance matrix between the embedding frames learned solely

with Soft-DTW in Fig. 4(a), where all entries are near zero.

In other words, the frames are mapped to a small cluster in

the embedding space. Moreover, it can be seen from Tab. 1

(top) that Contrastive-IDM outperforms IDM by significant

margins on all metrics (e.g., for Kendall’s Tau, 0.8318 vs.

0.5835), showing the advantage of using separate terms for

temporally close and far away frame pairs. Lastly, although

SFA and Contrastive-IDM have competitive performances

on classification and progression, Contrastive-IDM outper-

forms SFA significantly on Kendall’s Tau (i.e., 0.8318 vs.

0.8093), supporting our idea of adding weights to different

frame pairs based on their temporal gaps.

Performance of Combined Losses. We now study the im-

pact of adding IDM, SFA, or Contrastive-IDM as regular-

% of labels ! 0.1 0.5 1.0

P
o

u
ri

n
g

Supervised Learning 72.44 89.57 92.86

Random Features 43.84 44.52 45.10

Imagenet Features 52.40 71.10 78.46

SAL [35] 87.63 87.58 88.81

TCN [41] 89.67 87.32 89.53

TCC [14] 90.65 91.11 91.53

LAV (Ours) 91.61 92.82 92.84

LAV + TCC (Ours) 92.78 92.56 93.07

P
en

n
A

ct
io

n

Supervised Learning 68.92 81.17 84.34

Random Features 47.05 47.19 47.65

Imagenet Features 46.66 56.39 60.65

SAL [35] 79.94 81.11 81.79

TCN [41] 81.99 82.64 82.78

TCC [14] 79.72 81.12 81.35

LAV(Ours) 83.56 83.95 84.25

LAV + TCC (Ours) 83.21 83.79 84.12

IK
E

A
A

S
M

Supervised Learning 21.76 30.26 33.81

Random Features 17.89 17.89 17.89

Imagenet Features 18.05 19.27 19.50

SAL [35] 21.68 21.72 22.14

TCN [41] 25.17 25.70 26.80

TCC [14] 24.74 25.22 26.46

LAV (Ours) 29.78 29.85 30.43

LAV + TCC (Ours) 24.58 30.47 30.51

Table 2: Phase classification results. Best results are in

bold, while second best ones are underlined.

ization to Soft-DTW. Tab. 1 (bottom) presents the quantita-

tive results. From the results, the addition of regularization

boosts the performance of Soft-DTW significantly across

all metrics (e.g., for progression, 0.2770 for Soft-DTW

vs. 0.8054 for Soft-DTW+Contrastive-IDM). More impor-

tantly, utilizing our proposed Contrastive-IDM as regular-

ization leads to the best performance across all metrics, out-

performing using IDM or SFA as regularization by signif-

icant margins, especially on progression and Kendall’s Tau

(e.g., for progression, 0.8054 for Soft-DTW+Contrastive-

IDM vs. 0.6551 and 0.7146 for Soft-DTW+IDM and Soft-

DTW+SFA respectively). This validates our ideas of sepa-

rating temporally close and far away frame pairs, as well as

leveraging temporal gaps to weight the frame pairs accord-

ingly. We also visualize the distance matrix between the

embedding frames learned with Soft-DTW+Contrastive-

IDM in Fig. 4(b), where entries have diverse values. Below,

we use Soft-DTW+Contrastive-IDM as our method (LAV).

5.2. Phase Classification Results

In this section, we evaluate the utility of our represen-

tations for action phase classification. Tab. 2 presents the

quantitative results of all methods on Pouring, Penn Action,
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(a) Bowling (b) Tennis Serve

Figure 5: Few-shot phase classification results.

and IKEA ASM datasets. For Penn Action experiments, we

follow [14] to train 13 different models (i.e., 1 encoder + 1

SVM classifier, for each action) and report the average re-

sults across all actions. It can be seen from Tab. 2 that our

method (LAV) outperforms other self-supervised video rep-

resentation learning methods, namely SAL [35], TCN [41],

and TCC [14], on all datasets. This shows that LAV is more

capable of learning useful features that allow good classi-

fication performance when combined with a relatively sim-

ple classifier. Moreover, the best accuracy on Pouring and

IKEA ASM is achieved by the combined LAV+TCC, which

is similar to the observation in [14], where combining mul-

tiple losses leads to better classification performance. Next,

the relative gaps between LAV and other self-supervised

methods are the largest on IKEA ASM, which has more

complex actions than Pouring and Penn Action. This im-

plies that LAV is more capable of handling complex actions.

Finally, compared to the fully-supervised baseline, self-

supervision with LAV provides a significant performance

boost in the low labeled data regimes. Specifically, with just

10% labeled data, LAV achieves very similar performance

to the fully-supervised baseline trained with 100% labeled

data (e.g., on Penn Action, 83.56% vs. 84.34%).

Few-Shot Phase Classification Results. Following the

above observation, we consider the application of our repre-

sentations in a few-shot learning setting, i.e., there are many

training videos, but only a few of them have frame-wise

labels. We use the same setup as the above experiment,

and compare our approach with other self-supervised meth-

ods and the fully-supervised baseline. For learning self-

supervised features, all training videos are used, whereas

the fully-supervised baseline is trained with a few labeled

videos. Specifically, we study the classification perfor-

mance with increasing the number of labeled videos. The

results for two actions of Penn Action are reported in Fig. 5.

Although all self-supervised methods offer a significant per-

formance boost in the low labeled data settings, LAV pro-

vides the largest gain. Moreover, self-supervision using

LAV with only 1 labeled video performs similarly to the

fully-supervised baseline trained with the whole dataset.

For instance, on Bowling, with just 1 labeled video, LAV

Method Progress τ

P
o

u
ri

n
g

SAL [35] 0.7728 0.7961

TCN [41] 0.8044 0.8521

TCC [14] 0.8373 0.8636

LAV (Ours) 0.8054 0.8561

LAV + TCC (Ours) 0.7716 0.7844

P
en

n
A

ct
io

n

SAL [35] 0.6960 0.7612

TCN [41] 0.7217 0.8120

TCC [14] 0.6638 0.7012

LAV (Ours) 0.6613 0.8047

LAV + TCC (Ours) 0.7038 0.7729

Table 3: Phase progression and Kendall’s Tau results. Best

results are in bold, while second best ones are underlined.

achieves 71%, whereas the fully-supervised baseline trained

with the entire dataset (134 labeled videos) obtains 77%.

5.3. Phase Progression and Kendall’s Tau Results

We now evaluate the performance of our approach on ac-

tion phase progression and Kendall’s Tau. Tab. 3 presents

the quantitative results of different self-supervised methods

on Pouring and Penn Action. We do not evaluate on IKEA

ASM, since its labels are repeated (i.e., the actions of pick-

ing up left side panel and picking up right side panel are

both labeled as Pick Up Side Panel, thus Pick Up Side Panel

is repeated). From the results, we achieve competitive num-

bers for both progression and Kendall’s Tau on both Pouring

and Penn Action. On Pouring, LAV marginally beats TCN

on both metrics (e.g., for progression, 0.8054 vs. 0.8044),

while on Penn Action, LAV significantly outperforms TCC

on Kendall’s Tau (i.e., 0.8047 vs. 0.7012). Moreover, on

Penn Action, the combination of LAV+TCC yields a signif-

icant performance gain over TCC on both metrics (e.g., for

Kendall’s Tau, 0.7729 vs. 0.7012).

5.4. Fine-Grained Frame Retrieval Results

Here, we utilize our representations for the task of fine-

grained frame retrieval. We perform evaluations using the

validation set of Pouring and Penn Action. In particular, we

alternatively consider each video of the validation set as a

query video and all the remaining videos of the validation

set as a support set. For each query frame in the query video,

we retrieve its K most similar frames in the support set by

finding its K nearest neighbors in the embedding space. We

report Average Precision at K, which is the average percent-

age of the K retrieved frames with the same action phase

labels as the query frame. Tab. 4 presents the quantitative

results of various self-supervised methods on Pouring and

Penn Action. It is evident from Tab. 4 that LAV consistently

achieves the best performance across different values of K

on both datasets (e.g., on Pouring, for AP@5, 89.13% for
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Method AP@5 AP@10 AP@15

P
o

u
ri

n
g

SAL [35] 84.05 83.77 83.79

TCN [41] 83.56 83.31 83.01

TCC [14] 87.16 86.68 86.54

LAV (Ours) 89.13 89.13 89.22

LAV + TCC (Ours) 89.00 88.96 88.78

P
en

n
A

ct
io

n SAL [35] 76.04 75.77 75.61

TCN [41] 77.84 77.51 77.28

TCC [14] 76.74 76.27 75.88

LAV (Ours) 79.13 78.98 78.90

LAV + TCC (Ours) 78.98 78.83 78.70

Table 4: Fine-grained frame retrieval results. Best results

are in bold, while second best ones are underlined.

LAV

LAV

TCC

TCC

Query

Query

(a)

(b)

Figure 6: Qualitative fine-grained frame retrieval results

with K = 5. On the left is the query image. On the right are

the blue and red boxes containing the 5 most similar images

to the query image retrieved by LAV and TCC respectively.

LAV vs. 87.16%, 83.56%, and 84.05% for TCC, TCN, and

SAL respectively). This shows that our method is better at

learning fine-grained features, which are important to this

task. Also, the combined LAV+TCC leads to a significant

performance gain over TCC (e.g., 78.7% vs. 75.88%).

Moreover, we present some qualitative results with K =
5 in Fig. 6, showing that LAV is more capable of captur-

ing fine-grained features than TCC. In Fig. 6(a), the person

in the query image has one leg elevated above the ground,

which is also seen in 4 out of 5 images retrieved by LAV,

whereas TCC fails to capture that in all of its retrieved im-

ages (see cyan circles). In Fig. 6(b), the actor in the query

image is at the start of Golf Swing with the ball on the

ground, which is also seen in all of LAV’s retrieved images,

whereas TCC retrieves images with wrong phases (i.e., the

person has finished Golf Swing with the ball not visible on

the ground, see magenta circles).

Method Classification Progress τ

P
en

n
A

ct
io

n SAL [35] 68.15 0.3903 0.4744

TCN [41] 68.09 0.3834 0.5417

TCC [14] 74.39 0.5914 0.6408

LAV (Ours) 78.68 0.6252 0.6835

Table 5: Joint all-action model results. Best results are in

bold, while second best ones are underlined.

5.5. Joint All-Action Model Results

So far, we have followed [14] to train a separate model

for each action of Penn Action and report the average results

across all actions. This is not convenient both in terms of

training time and memory requirement. In this section, we

explore another experimental setup, where we jointly train a

single model for all actions of Penn Action. In particular, we

train 13 SVM classifiers (1 for each action) but share a sin-

gle encoder. It is more challenging, since the network needs

to jointly learn useful features for all actions. Tab. 5 shows

the quantitative results of different self-supervised methods

in the above setup. We observe that the performance of all

methods is reduced as compared to Tabs. 2 and 3. More-

over, we notice LAV achieves the best performance across

all metrics, outperforming TCC, TCN, and SAL in Tab. 5.

This can be attributed to the fact that LAV leverages infor-

mation from across videos in addition to cues from each

individual video.

Additional Results. Note that due to space limits, we

provide several additional experimental results, including

training-from-scratch results and ablation results of hyper-

parameter settings, in supplementary materials.

6. Conclusion

In this work, we propose a novel fusion of temporal

alignment loss and temporal regularization for learning self-

supervised video representations via temporal video align-

ment, utilizing both frame-level and video-level cues. The

two components are complementary to each other, i.e.,

temporal regularization prevents degenerate solutions while

temporal alignment loss leads to higher performance. We

show superior performance over prior methods for video-

based self-supervised representation learning on various

temporal understanding tasks on Pouring, Penn Action, and

IKEA ASM datasets. Also, our method offers significant

accuracy gain when lacking labeled data. Our future work

will explore other temporal alignment losses, e.g., [43, 5], to

allow local temporal permutations and arbitrary video start-

ing/ending points.
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