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Abstract

Pedestrian detection is used in many vision based ap-

plications ranging from video surveillance to autonomous

driving. Despite achieving high performance, it is still

largely unknown how well existing detectors generalize to

unseen data. This is important because a practical detec-

tor should be ready to use in various scenarios in appli-

cations. To this end, we conduct a comprehensive study

in this paper, using a general principle of direct cross-

dataset evaluation. Through this study, we find that existing

state-of-the-art pedestrian detectors, though perform quite

well when trained and tested on the same dataset, gener-

alize poorly in cross dataset evaluation. We demonstrate

that there are two reasons for this trend. Firstly, their de-

signs (e.g. anchor settings) may be biased towards pop-

ular benchmarks in the traditional single-dataset training

and test pipeline, but as a result largely limit their gener-

alization capability. Secondly, the training source is gen-

erally not dense in pedestrians and diverse in scenarios.

Under direct cross-dataset evaluation, surprisingly, we find

that a general purpose object detector, without pedestrian-

tailored adaptation in design, generalizes much better com-

pared to existing state-of-the-art pedestrian detectors. Fur-

thermore, we illustrate that diverse and dense datasets, col-

lected by crawling the web, serve to be an efficient source of

pre-training for pedestrian detection. Accordingly, we pro-

pose a progressive training pipeline and find that it works

well for autonomous-driving oriented pedestrian detection.

Consequently, the study conducted in this paper suggests

that more emphasis should be put on cross-dataset evalu-

ation for the future design of generalizable pedestrian de-

tectors. Code and models can be accessed at https:

//github.com/hasanirtiza/Pedestron.

1. Introduction

Pedestrian detection is one of the longest standing prob-

†Corresponding author.

lems in computer vision. Numerous real-world applica-

tions, such as, autonomous driving [9, 17], video surveil-

lance [16], action recognition [48] and tracking [21] rely

on accurate pedestrian/person detection. Recently, con-

volutional neural network (CNNs) based approaches have

shown considerable progress in the field of pedestrian de-

tection, where on certain benchmarks, the progress is within

striking distance of a human baseline as shown in Fig. 1 left.

However, some current pedestrian detection methods

show signs of over-fitting to source datasets, especially in

the case of autonomous driving. As shown in Fig. 1 right,

current pedestrian detectors, do not generalize well to other

(target) pedestrian detection datasets, even when trained on

a relatively large scale dataset which is reasonably closer to

the target domain. This problem prevents pedestrian detec-

tion from scaling up to real-world applications.

Despite being a key problem, generalizable pedestrian

detection has not received much attention in the past. More

importantly, reasons behind poor performances of pedes-

trian detectors in cross-dataset evaluation has not been prop-

erly investigated or discussed. In this paper, we argue that

this is mainly due to the fact that the current state-of-the-art

pedestrian detectors are tailored for target datasets and their

overall design is biased towards target datasets, thus reduc-

ing their generalization. Secondly, the training source is

generally not dense in pedestrians and diverse in scenarios.

Since current state-of-the-art methods are based on deep

learning, their performance depend heavily on the quantity

and quality of data and there is some evidence that the per-

formance on some computer vision tasks (e.g. image classi-

fication) keeps improving at least up-to billions of samples

[29].

At present, all autonomous driving related datasets have

at least three main limitations, 1) limited number of unique

pedestrians, 2) low pedestrian density, i.e. the challenging

occlusion samples are relatively rare, and 3) limited diver-

sity as the datasets are captured by a small team primarily

for dataset creation instead of curating them from more di-

verse sources (e.g. youtube, facebook, etc.).

In last couple of years, few large and diverse datasets,

CrowdHuman [35], WiderPerson [51] and Wider Pedestrian
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Figure 1: Left: Pedestrian detection performance over the years for Caltech, CityPersons and EuroCityPersons on the rea-

sonable subset. EuroCityPersons was released in 2018 but we include results of few older models on it as well. Dotted line

marks the human performance on Caltech. Right: We show comparison between traditional single-dataset train and test eval-

uation on Caltech [12] vs. cross-dataset evaluation for three pedestrian detectors and one general object detector (Cascade

R-CNN). Methods enclosed with bounding boxes are trained on CityPersons [50] and evaluated on Caltech [12], while others

are trained on Caltech.

[1], have been collected by crawling the web and through

surveillance cameras. These datasets address the above

mentioned limitations but as they are from a much broader

domain, they do not sufficiently cover autonomous driving

scenarios. Nevertheless, they can still be very valuable for

learning a more general and robust model of pedestrians.

As these datasets contain more person per image, they are

likely to contain more human poses, appearances and occlu-

sion scenarios, which is beneficial for autonomous driving

scenarios, provided current pedestrian detectors have the in-

nate ability to digest large-scale data.

In this paper, we demonstrate that the existing pedes-

trian detection methods fare poorly compared to general

object detectors when provided with larger and more di-

verse datasets, and that the state-of-the-art general detec-

tors when carefully trained can significantly out-perform

pedestrian-specific detection methods on pedestrian detec-

tion task, without any pedestrian-specific adaptation on the

target data (see Fig. 1 right). We also propose a progressive

training pipeline for better utilization of general pedestrian

datasets for improving the pedestrian detection performance

in case of autonomous driving. We show that by progres-

sively fine-tuning the models from the largest (but farthest

away from the target domain) to smallest (but closest to the

target domain) dataset, we can achieve large gains in perfor-

mance in terms of MR
−2 on reasonable subset of Caltech

(3.7%) and CityPerson (1.5%) without fine-tuning on target

domain. These improvement hold true for models from all

pedestrian detection families that we tested such as Cascade

R-CNN [8], Faster RCNN [34] and embedded vision based

backbones such as MobileNet [20]

The rest of the paper is organized as follows. Section 2

reviews the relevant literature. We introduce datasets and

evaluation protocol in Sec. 3. We benchmark our baseline

in Sec. 4. We test the generalization capabilities of the

pedestrian specific and general object detectors in Sec. 5.

Finally, conclude the paper in Section 6.

2. Related Work

Pedestrian detection. Before the emergence of CNNs, a

common way to address this problem was to exhaustively

operate in a sliding window manner over all possible loca-

tions and scales, inspired from Viola and Jones [39]. Dalal

and Triggs in their landmark pedestrian detection work [10]

proposed Histogram of Oriented Gradients (HOG) feature

descriptor for representing pedestrians. Dollar et al [11],

proposed ACF, where the key idea was to use features across

multiple channels. Similarly, [50, 32], used filtered chan-

nel features and low-level visual features along with spatial

pooling respectively for pedestrian detection. However, the

use of engineered features meant very limited generaliza-

tion ability and limited performance.

In recent years, Convolutional Neural Networks (CNNs)

have become the dominant paradigm in generic object de-

tection [34, 18, 38, 24]. The same trend is also true for
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the pedestrian detection [2, 19, 7]. Some of the pioneer

works for CNN based pedestrian detection [19, 49] used

R-CNN framework [15], which is still the most popular

framework. RPN+BF [47] was the first work to use Re-

gion Proposal Network (RPN); it used boosted forest for im-

proving pedestrian detection performance. This work also

pointed out some problems in the underlying classification

branch of Faster RCNN [34], namely that the resolution of

the feature maps and class-imbalance. However, RPN+BF

despite achieving good performances had a shortcoming of

not being optimized end-to-end. After the initial works,

Faster RCNN [34] became most popular framework with

wide range of literature deploying it for pedestrian detec-

tion [52, 50, 6, 5, 30, 45].

Some of the recent state-of-the-art pedestrian detectors

include ALF [26], CSP [27] and MGAN [33]. ALF [26]

is based on Single Shot MultiBox Detector (SSD) [24],

it stacks together multiple predictors to learn a better de-

tection from default anchor boxes. MGAN [33] uses the

segmentation mask of the visible region of a pedestrian

to guide the network attention and improve performance

on occluded pedestrians. Similarly, other methods such as

[44, 28], used temporal information and bird-eye view map

respectively to address occluded pedestrian detection. CSP

is an anchor-less fully convolutional detector, which utilizes

concatenated feature maps for predicting pedestrians.

Pedestrian detection benchmarks. Over the years, several

datasets for pedestrian detection have been created such as

Town Center [3], USC [43], Daimler-DB [31], INRIA [10],

ETH [13], and TUDBrussels [42]. All of the aforemen-

tioned datasets were typically collected for surveillance ap-

plication. None of these datasets were created with the aim

of providing large-scale images for the autonomous driving

systems. However, in the last decade several datasets have

been proposed from the context of autonomous driving such

as KITTI [14], Caltech [12], CityPersons [50] and ECP [4].

Typically these datasets are captured by a vehicle-mounted

camera navigating through crowded scenarios. These dat-

sets have been used by several methods with Caltech [12]

and CityPersons [50] being the most established bench-

marks in this domain. However, Caltech [12] and CityPer-

sons [50] datasets are monotonous in nature and they lack

diverse scenarios (contain only street view images). Re-

cently, ECP [4] dataset which is an order of magnitude

larger than CityPersons [50] has been porposed. ECP [4]

is much bigger and diverse as it contains images from all

seasons, under both day and night times, in several different

countries. However, despite its large scale, ECP [4] pro-

vides a limited diversity (in terms of scene and background)

and density (number of people per frame is less than 10).

Therefore, in this paper we argue that despite some recent

large scale datasets, the ability of pedestrian detectors to

generalize has been constrained by lack of diversity and

density. Moreover, benchmarks such as WiderPerson [51]

Wider Pedestrian [1] and CrowdHuman [35], which con-

tain web crawled images provide a much larger diversity

and density. This enables detectors to learn a more robust

representation of pedestrians with increased generalization

ability.

Cross-dataset evaluation. Previously, other works [4, 35,

50] have investigated the role of diverse and dense datasets

in the performance of pedestrian detectors. Broadly, these

works focused on the aspect that how much pre-training on

a large-scale dataset helps in the performance of a pedes-

trian detector and used cross-dataset evaluation for this task.

However, in this work we adopt cross-dataset evaluation

to test the generalization abilities of several state-of-the-

art pedestrian detectors. Under this principal, we illustrate

that current state-of-the-art detectors lack in generalization,

whereas, a general object detector generalizes better to un-

seen domains and through a progressive training pipeline,

significantly surpasses current pedestrian detectors. More-

over, we include more recent pedestrian detection bench-

marks in our evaluation setup.

3. Experiments

3.1. Experimental Settings

Datasets. We thoroughly evaluate and compare against

state-of-the-art on three large-scale pedestrian detection

benchmarks. These benchmarks are recorded from the con-

text of autonomous driving, we refer to them as autonomous

driving datasets. The Caltech [12] dataset has around 13K

persons extracted from 10 hours of video recorded by a

vehicle in Los Angeles, USA. All experiments on Cal-

tech [12] are conducted using new annotations provided by

[49]. CityPersons [50] is a more diverse dataset compared

to Caltech as it is recorded in 27 different cities of Germany

and neighboring countries. CityPersons dataset has roughly

31k annotated bounding boxes and its training, valida-

tion and testing sets contain 2,975, 500, 1,575 images,

respectively. Finally, EuroCity Persons (ECP) [4] is a

new pedestrian detection dataset, which surpasses Caltech

and CityPersons in terms of diversity and difficulty. It

is recorded in 31 different cities across 12 countries in

Europe. It has images for both day and night-time (thus

referred to as ECP day-time and ECP night-time). Total

annotated bounding-boxes are over 200K. As mentioned in

ECP [4], for the sake of comparison with other approaches,

all experiment and comparisons are done on the day-time

ECP. We report results on the validation set of ECP [4]

unless stated otherwise. Evaluation server is available

for the test set and frequency submissions are limited.

Finally, in our experiments we also include two non-traffic

related recent datasets namely, CrowdHuman [35] and
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Table 1: Datasets statistics. ‡ Fixed aspect-ratio for bounding boxes.

Caltech ‡ CityPersons ‡ ECP CrowdHuman Wider Pedestrian

images 42,782 2,975 21,795 15,000 90,000

persons 13,674 19,238 201,323 339,565 287,131

persons/image 0.32 6.47 9.2 22.64 3.2

unique persons 1,273 19,238 201,323 339,565 287,131

Table 2: Experimental settings.

Setting Height Visibility

Reasonable [50, inf] [0.65, inf]

Small [50, 75] [0.65, inf]

Heavy [50, inf] [0.2, 0.65]

Heavy* [50, inf] [0.0, 0.65]

All [20, inf] [0.2, inf]

Wider Pedestrian1 [1]. Collectively we refer to Caltech,

CityPersons and ECP as autonomous driving datasets and

CrowdHuman, Wider Pedestrian as web-crawled datasets.

Details of the datasets are presented in Table 1.

Evaluation protocol. Following the widely accepted

protocol of Caltech [12], CityPersons [50] and ECP [4], the

detection performance is evaluated using log average miss

rate over False Positive Per Image (FPPI) over range [10−2,

100] denoted by (MR
−2). We evaluate and compare

all methods using similar evaluation settings. We report

numbers for different occlusion levels namely, Reasonable,

Small, Heavy, Heavy* and All, unless stated otherwise,

definition of each split is given in Table 2.

Cross-dataset evaluation. In cross-dataset evaluation,

when written A→B, we train a model only on the training

set of A and test it on the testing/validation set of B,

this training and testing routine is consistent across all

experiments.

Baseline. Since most of the top ranked methods on

Caltech, CityPersons and ECP are direct extension of

Faster/Mask R-CNN [34, 18] family, we also select recent

Cascade R-CNN [8] (an extension of R-CNN family) as

our baseline. In text, we interchangeably use baseline and

Cascade RCNN, they both refer to exactly the same method

Cascade R-CNN [8]. Cascade R-CNN contains multiple

detection heads in a sequence, which progressively try

to filter out harder and harder false positives. We tested

several backbones with our baseline detector as shown

in Table 3. HRNet [40] and ResNeXt [46] are two top

performing backbones. We choose HRNet [40] as our

backbone network. Better performance of HRNet [40]

1Wider Pedestrian has images from surveillance and autonomous driv-

ing scenarios. In our experiments, we used the data provided in 2019

challenge. Data can be accessed at : https://competitions.

codalab.org/competitions/20132

can be attributed to the fact that it retains feature maps

at higher resolution, reducing the likelihood of important

information being lost in repeated down-sampling and

up-sampling, which is especially beneficial for pedestrian

detection where the most difficult samples are very small.

4. Benchmarking
First, we present the benchmarking of our Cascade R-

CNN [8] on three autonomous driving datasets. Table 4

presents benchmarking on Caltech [12] dataset, CityPer-

sons [50] and on ECP [4] respectively. In the case of Cal-

tech and CityPersons, our baseline (Cascade R-CNN [8])

without “bells and whistles” performs comparable to the

existing state-of-the-art, which are tailored for pedestrian

detection tasks. Its performance has a greater improvement

compared to other methods with increasing dataset size. Its

relative performance is the worst on the smallest dataset

(Caltech) and the best on the largest dataset (EuroCityPer-

sons).

5. Generalization Capabilities

As discussed in the previous sections, traditionally,

pedestrian detectors have been evaluated using the classical

within-dataset evaluation, i.e., they are trained and tested on

the same dataset. We find that existing methods may over-fit

on a single dataset, and so we suggest to put more emphasis

on cross-dataset evaluation for a new way of benchmarking.

Cross-dataset evaluation is an effective way of testing how

well a given method adapts to unseen domain. Therefore,

in this section we evaluated the robustness of each method

using cross-dataset evaluation. 2

5.1. Cross Dataset Evaluation of Existing State­of­
the­Art

In this section we demonstrate that existing state-of-the

art pedestrian detectors generalize worse than general object

detector. We show that this is mainly due to the biases in

the design of methods for the target set, even when other

factors, such as backbone, are kept consistent.

To see how well state-of-the-art pedestrian detectors gen-

eralize to different datasets, we performed cross dataset

2Please see supplementary material for more qualitative and quantita-

tive results.
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Table 3: Evaluating generalization abilities of different backbones using our baseline detector.

Backbone Training Testing Reasonable

HRNet WiderPedestrian + CrowdHuman CityPersons 12.8

ResNeXt WiderPedestrian + CrowdHuman CityPersons 12.9

Resnet-101 WiderPedestrian + CrowdHuman CityPersons 15.8

ResNet-50 WiderPedestrian + CrowdHuman CityPersons 16.0

Table 4: Benchmarking on autonomous driving datasets.

Method Testing Reasonable Small Heavy

ALFNet [26] Caltech 6.1 7.9 51.0

Rep Loss [41] Caltech 5.0 5.2 47.9

CSP [27] Caltech 5.0 6.8 46.6

Cascade R-CNN [8] Caltech 6.2 7.4 55.3

RepLoss [41] CityPersons 13.2 - -

ALFNet [26] CityPersons 12.0 19.0 48.1

CSP [27] CityPersons 11.0 16.0 39.4

Cascade R-CNN [8] CityPersons 11.2 14.0 37.1

Faster R-CNN [4] ECP 7.3 16.6 52.0

YOLOv3 [4] ECP 8.5 17.8 37.0

SSD [4] ECP 10.5 20.5 42.0

Cascade R-CNN [8] ECP 6.6 13.6 33.3

evaluation of five state-of-the-art pedestrian detectors and

our baseline (Cascade RCNN) on CityPersons [50] and Cal-

tech [12] datasets. We evaluated recently proposed BGC-

Net [22], CSP [27], PRNet [37], ALFNet [26] and FR-

CNN [50](tailored for pedestrian detection). Furthermore,

we added along with baseline, Faster R-CNN [34], with-

out “bells and whistles”, but with a more recent backbone

ResNext-101 [46] with FPN [23]. Moreover, we imple-

mented a vanilla FRCNN [50] with VGG-16 [36] as a back-

bone and with no pedestrian specific adaptations proposed

in [50] (namely quantized anchors, input scaling, finer fea-

ture stride, adam solver, ignore region handling, etc).

We present results for Caltech and CityPersons in Table

5, respectively. We also report results when training is done

on target dataset for readability purpose. For our results pre-

sented in Table 5 (Fourth column, CityPersons→Caltech),

we trained each detector on CityPersons and tested on Cal-

tech. Similarly, in the last column of the Table 5, all detec-

tors were trained on the Caltech and evaluated on CityPer-

sons benchmark. As expected, all methods suffer a perfor-

mance drop when trained on CityPersons and tested on Cal-

tech. Particularly, BCGNet [22], CSP [27], ALFNet [26]

and FRCNN [50] degraded by more than 100 % (in compar-

ison with fifth column, Caltech→Caltech). Whereas in the

case of Cascade R-CNN [8], performance remained com-

parable to the model trained and tested on target set. Since,

CityPersons is a relatively diverse and dense dataset in com-

parison with Caltech, this performance deterioration cannot

be linked to dataset scale and crowd density. This illustrates

better generalization ability of general object detectors over

state-of-the-art pedestrian detectors. Moreover, it is note-

worthy that BGCNet [22] like the Cascade R-CNN [8], also

uses HRNet [40] as a backbone, making it directly compa-

rably to the Cascade R-CNN [8].

Importantly, pedestrian specific FRCNN [50] performs

worse in cross dataset (fourth column only), compared with

its direct variant vanilla FRCNN. The only difference be-

tween between the two being pedestrian specific adaptations

for the target set, highlighting the bias in the design of tai-

lored pedestrian detectors.

Similarly, standard Faster R-CNN [34], though performs

worse than FRCNN [50] when trained and tested on the tar-

get dataset, it performs better than FRCNN [50] when it is

evaluated on Caltech without any training on Caltech.

It is noteworthy that Faster R-CNN [34] outperforms

state-of-the-art pedestrian detectors (except for BGCNet

[22]) as well in cross dataset evaluation, presented in Ta-

ble 5. We again attribute this to the bias present in the de-

sign of current state-of-the-art pedestrian detectors, which

are tailored for specific datasets and therefore limit their

generalization ability. Moreover, a significant performance

drop for all methods (though ranking is preserved except

for vanilla FRCNN), including Cascade R-CNN [8], can be

seen in Table 5, last column. However, this performance

drop is attributed to lack of diversity and density of the

Caltech dataset. Caltech dataset has less annotations than

CityPersons and number of people per frame is less than

1 as reported in Table 1. However, still it is important to

highlight, even when trained on a limited dataset, usually

general object detectors are better at generalization than

state-of-the-art pedestrian detectors. Interestingly, Faster R-

CNN’s [34] error is nearly twice as high as that of BGCNet

[22] in within-dataset evaluation, whereas it outperforms in

BGCNet [22] in cross-dataset evaluation.

As discussed previously, most pedestrian detection

methods are extensions of general object detectors (FR-

CNN, SSD, etc.). However, they adapt to the task of pedes-

trian detection. These adaptations are often too specific

to the dataset or detector/backbones (e.g. anchor settings

[50, 26], finer stride [50], additional annotations [52, 33],

constraining aspect-ratios and fixed body-line annotation

[27, 22] etc.). These adaptations usually limit the gener-

alization as shown in Table 5, and also discussed in [25],

that task specific configurations of anchors limits general-
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Table 5: Cross dataset evaluation on Caltech and CityPersons. A→B refers to training on A and testing on B.

Method Bakcbone CityPersons→CityPersons CityPersons→Caltech Caltech→Caltech Caltech→CityPersons

FRCNN [50] VGG-16 15.4 21.1 8.7 46.9

Vanilla FRCNN [50] VGG-16 24.1 17.6 12.2 52.4

ALFNET [26] ResNet-50 12.0 17.8 6.1 47.3

CSP [27] ResNet-50 11.0 12.1 5.0 43.7

PRNet [37] ResNet-50 10.8 10.7 - -

BGCNet [22] HRNet 8.8 10.2 4.1 41.4

Faster R-CNN [34] ResNext-101 16.4 11.8 9.7 40.8

Cascade R-CNN [8] HRNet 11.2 8.8 6.2 36.5

ization.

5.2. Autonomous Driving Datasets for Generaliza­
tion

We illustrate that even when training dataset is as large

as ECP and testing set is as small as Caltech, general ob-

ject detection methods are better at learning a generic rep-

resentation for pedestrians compared to existing pedestrian

detectors (such as CSP[27]). Moreover, large scale dense

autonomous driving datasets provide better generalization

abilities.

As illustrated in Section 5.1, cross dataset evaluation

provides insights on the generalization abilities of different

methods. However, another vital factor in generalization

is dataset itself. A diverse dataset should capture the true

essence of real world without bias [4], detector trained on

such dataset should be able to learn a generic representation

that should handle subtle shifts in domain robustly. Deviat-

ing from previous studies [4, 35, 51] on the role of dataset

in generalization, we perform a line by line comparison be-

tween state-of-the-art pedestrian detector and a general ob-

ject detector when trained and tested on different datasets.

In order to provide level playing field, we replace ResNet-

50 in CSP [27] with a more powerful and recent backbone

HRNet [40]. HRNet’s effectiveness can be observed in Ta-

ble 6, second row, where an improvement of 1.6% (11.0 vs.

9.4 ) in MR
−2an be seen.

We begin by using the largest dataset in terms of diver-

sity (more countries and cities included) and pedestrian den-

sity from the context of autonomous driving, ECP, for train-

ing and evaluate both Cascade RCNN and CSP on CityPer-

sons (Table 6 third and fourth row respectively). It can

be seen that Cascade RCNN adapts better on CityPersons,

compared to CSP (Reasonable setting), provided the same

backbone. ECP is large scale dataset and intuitively one

would expect CSP to outperform Cascade RCNN, since in

within-dataset evaluation, CSP is better by significant mar-

gin (nearly 2% MR
−2 points).

Furthermore, we swapped our training and testing set,

and evaluated on ECP [4]. Cascade RCNN adapted bet-

ter than CSP, even when the training source is not diverse.

Besides Reasonable setting, the difference between the per-

formances are at least 5 %MR
−2 points (across small scale

pedestrians, its 10.5 % MR
−2). Lastly, we fixed the small-

est dataset Caltech as our testing set and used both ECP and

CityPersons as our training source. Last four rows of Ta-

ble 6, illustrates the robustness of a Cascade RCNN across

all settings. Importantly, when trained on a dense and di-

verse dataset ECP Cascade RCNN has more ability to learn

a better representation than CSP across all settings.

5.3. Diverse General Person Detection Datasets for
Generalization

We investigated how well diverse and dense datasets im-

prove generalization. We conclude, in the case of small au-

tonomous driving datasets, such as Caltech [12], training

on diverse and dense sources, which may be further away

from the target domain can also benefit. However, in the

case of large scale target sets, training on sources close to

target domains are more effective. General object detection

methods, such as cascade RCNN tend to benefit more from

diverse and dense datasets than a pedestrian detector such

as CSP.

Table 7, presents results of pre-training of Cascade

R-CNN [8] and CSP [27] (HRNet [40] as a backbone)

on CrowdHuman [35] and Wider Pedestrian [1] datasets.

These two datasets are different from autonomous driving

datasets, as CrowdHuman [35] contain web-crawled images

of persons in different scenarios and Wider Pedestrian [1]

contains images from surveillance cameras and street view

images (not just street view images, making them both di-

verse and dense). Since the autonomous driving datasets,

lack in density and diversity [1], CrowdHuman [35] and

Wider Pedestrian [1] are a suitable choice for pre-training,

since average person per frame and crowd density is much

larger in CrowdHuman [35] and Wider Pedestrian [1] com-

bines street view images and surveillance cameras based

images, adding a different form of diversity. In Table 7,

it can be observed that training on CrowdHuman [35] and

Wider Pedestrian [1] can reduce nearly half of the error on

Caltech dataset for Cascade RCNN, outperforming previous

state-of-the-art, that are trained only on Caltech. Perfor-

mance improvement is also consistent in CSP [27], though

the margin of improvement is less than that of a general
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Table 6: Cross dataset evaluation of (Casc. R-CNN and CSP) on Autonomous driving benchmarks. Both detectors are trained

with HRNet as a backbone.

Method Training Testing Reasonable Small Heavy

Casc. RCNN CityPersons CityPersons 11.2 14.0 37.0

CSP CityPersons CityPersons 9.4 11.4 36.7

Casc. RCNN ECP CityPersons 10.9 11.4 40.9

CSP ECP CityPersons 11.5 16.6 38.2

Casc. RCNN ECP ECP 6.9 12.6 33.1

CSP ECP ECP 19.4 50.4 57.3

Casc. RCNN CityPersons ECP 17.4 40.5 49.3

CSP CityPersons ECP 19.6 51.0 56.4

Casc. RCNN CityPersons Caltech 8.8 9.8 28.8

CSP CityPersons Caltech 10.1 13.3 34.4

Casc. RCNN ECP Caltech 8.1 9.6 29.9

CSP ECP Caltech 10.4 13.7 31.3

Table 7: Benchmarking with CrowdHuman and Wider Pedestrian dataset.

Method Training Testing Reasonable Small Heavy

Casc. RCNN CrowdHuman Caltech 3.4 11.2 32.3

CSP CrowdHuman Caltech 4.8 5.7 31.9

Casc. RCNN CrowdHuman CityPersons 15.1 21.4 49.8

CSP CrowdHuman CityPersons 11.8 18.3 44.8

Casc. RCNN CrowdHuman ECP 17.9 36.5 56.9

CSP CrowdHuman ECP 19.8 48.9 60.1

Casc. RCNN Wider Pedestrian Caltech 3.2 10.8 31.7

CSP Wider Pedestrian Caltech 3.4 3.0 29.5

Casc. RCNN Wider Pedestrian CityPersons 16.0 21.6 57.4

CSP Wider Pedestrian CityPersons 17.0 22.4 58.2

Casc. RCNN Wider Pedestrian ECP 16.1 32.8 58.0

CSP Wider Pedestrian ECP 24.1 62.6 76.7

object detector. On CityPersons [50], training on CrowdHu-

man [35] does not improve the performance for CSP [27] or

Cascade RCNN, since, CityPersons [50] is a relatively chal-

lenging dataset compared to Caltech [12] (in terms of den-

sity and diversity), and requires training on sources closer

to the domain. This trend can also be seen in the case

of ECP [4], where for Cascade RCNN and CSP [27], the

performance is lower when trained on CrowdHuman [35],

compared to training on CityPersons [50] as in Table 6. In-

terestingly, in the case of Wider Pedestrian [1] (bottom half

Table 7), besides CityPersons [50], the relative improve-

ments in the case of Wider Pedestrian [1] is relatively larger

for general object detector. The potential reason is that com-

pared with CrowdHuman [35], Wider Pedestrian [1] is large

scale and closer to the target domain. Since it contains

images essentially for two views (street view and surveil-

lance), where as CrowdHuman [35] contains web-crawled

person images appearing in different poses and scenes.

5.4. Progressive Training Pipeline

We conducted experiments to show that performance can

be significantly improved through progressive fine-tuning,

where starting from a general diverse dataset (farther from

target domain), and subsequently fine-tuning on dataset

closer to the target domain.

We conduct additional experiments on the importance of

progressive training. To be consistent, we do not fine-tune

on the target set and for training we only use the train-

ing subset of each respective dataset. A → B refers to

pre-training on dataset A and fine-tuning on B. Whereas,

A + B refers to simply merging the two datasets together

and training the model on merged larger set. For our re-

sults presented in Table 8, we used CityPersons [50] and

Caltech [12] as our testing sets. It can be seen, in Table

8, first two rows, that progressive training pipeline signifi-

cantly improves the performance of Cascade RCNN. Partic-

ularly, pre-training on Wider Pedestrian [1] and fine-tuning
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Table 8: Investigating the effect on performance when CrowdHuman, Wider Pedestrian and ECP are merged and Cascade

R-CNN [8] is trained only on the merged dataset.

Method Training Testing Reasonable Small Heavy

Casc. RCNN CrowdHuman → ECP CP 10.3 12.6 40.7

Casc. RCNN Wider Pedestrian → ECP CP 9.7 11.8 37.7

Casc. RCNN Wider Pedestrian + CrowdHuman + ECP CP 10.9 12.7 43.1

Casc. RCNN Wider Pedestrian + CrowdHuman → ECP CP 9.7 12.1 39.8

Casc. RCNN CrowdHuman → ECP Caltech 2.9 11.4 30.8

Casc. RCNN Wider Pedestrian → ECP Caltech 2.5 9.9 31.0

on ECP [4] brings Cascade RCNN on par with other state-

of-the-art approaches on CityPersons [50], without train-

ing on the CityPersons [50]. Similarly, in the case of Cal-

tech [12] as well, progressive training, outperformed pre-

viously established state-of-the-art on Caltech [12] dataset.

Noteworthy is the fact that performance on Caltech [12] is

within a close vicinity of a human-baseline (0.88).

Finally, concatenating all datasets (Table 8, third and

fourth row), leads to improvement in performance, but it

is still slightly worse than the progressive training that we

have used, where we fine-tune on the autonomous driving

benchmark. The results illustrate that this strategy enables

us to significantly improve the performances of state-of-

the-art without fine-tuning on the actual target set. This

illustrates the generalization capability of the proposed ap-

proaches can be enhanced by progressive training strategy,

without exposure to the target set, Cascade R-CNN [8] is on

par with top performer on CityPersons and best performing

on Caltech [12].

5.5. Application Oriented Models

In many pedestrian detection applications, such as au-

tonomous driving and cameras mounted on drones to local-

ize persons, the size and computational cost of models is

constrained. We experiment with a small and light-weight

model MobileNet [20] v2, which is designed for mobile and

embedded vision applications, to investigate if with pro-

gressive training pipeline, even with a light backbone, the

performance improvements hold true.

Table 9 show results on CityPersons [50] using Mo-

bileNet [20] as a backbone network architecture into Cas-

cade R-CNN [8]. First row of Table 9, is for reference when,

MobileNet [20] trained and evaluated on CityPersons [50].

Intuitively, MobileNet [20] performs worse than the HRNet

[40]. However, in the case of MobileNet [20] as well, we

see pre-training on CrowdHuman [35] and fine-tuning on

ECP [4] improves the performance of the MobileNet [20].

Furthermore, we replaced CrowdHuman [35] with Wider

Pedestrian [1] as the initial source of pre-training. Im-

provement over the Cascade R-CNN [8] (1st row) can be

observed (3rd row), where with Wider Pedestrian [1] pre-

Table 9: Investigating the performance of embedded vision

model, when pre-trained on diverse and dense datasets.

Training Testing Reasonable Small Heavy

CP CP 12.0 15.3 47.8

ECP CP 19.1 19.3 51.3

CrowdHuman→ECP CP 11.9 15.7 48.9

Wider Pedestrian→ECP CP 11.4 14.6 43.4

training and fine-tuning on ECP [4], a performance gain of

0.6% MR
−2an be seen. This is consistent with our previ-

ous finding reported in Table 7, Wider Pedestrian [1] is a

better source of pre-training than CrowdHuman [35], since

it has images of autonomous driving scenes as well, making

it more closer to the target domain than CrowdHuman [35].

Interestingly, in the case of CrowdHuman [35] and Wider

Pedestrian [1], even with a light-weight architecture, Cas-

cade R-CNN [8] with MobileNet [20], is comparable state-

of-the-art pedestrian detector CSP [27] (ResNet-50).

6. Conclusions

Encouraged by the recent progress of pedestrian de-

tectors on existing benchmarks from the context of au-

tonomous driving, we assessed real-world performance of

several state-of-the-art pedestrian detectors using standard

cross-dataset evaluation. We conclude that current state-of-

the-art pedestrian detectors, despite achieving impressive

performances on several benchmarks, poorly handle even

small domain shifts. This is due to the fact that the current

state-of-the-art pedestrian detectors are tailored for target

datasets and their overall design contains biasness towards

target datasets, thus reducing their generalization. In con-

trast, general object detectors are more robust and general-

ize better to new datasets. We thoroughly investigated and

verified that general object detectors due to generic design

can benefit more from large-scale datasets diverse in scenes

and dense in pedestrians. Besides, a progressive training

pipeline is proposed which works well for autonomous-

driving oriented pedestrian detection. In summary, our find-

ings in this paper can serve as a stepping stone in developing

new generalizable pedestrian detectors.
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