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Abstract

Perhaps surprisingly sewerage infrastructure is one of

the most costly infrastructures in modern society. Sewer

pipes are manually inspected to determine whether the

pipes are defective. However, this process is limited by the

number of qualified inspectors and the time it takes to in-

spect a pipe. Automatization of this process is therefore of

high interest. So far, the success of computer vision ap-

proaches for sewer defect classification has been limited

when compared to the success in other fields mainly due

to the lack of public datasets. To this end, in this work

we present a large novel and publicly available multi-label

classification dataset for image-based sewer defect classifi-

cation called Sewer-ML.

The Sewer-ML dataset consists of 1.3 million images

annotated by professional sewer inspectors from three dif-

ferent utility companies across nine years. Together with

the dataset, we also present a benchmark algorithm and a

novel metric for assessing performance. The benchmark

algorithm is a result of evaluating 12 state-of-the-art al-

gorithms, six from the sewer defect classification domain

and six from the multi-label classification domain, and com-

bining the best performing algorithms. The novel metric

is a class-importance weighted F2 score, F2CIW, reflecting

the economic impact of each class, used together with the

normal pipe F1 score, F1Normal. The benchmark algorithm

achieves an F2CIW score of 55.11% and F1Normal score of

90.94%, leaving ample room for improvement on the Sewer-

ML dataset. The code, models, and dataset are available at

the project page http://vap.aau.dk/sewer-ml

1. Introduction

The sewerage infrastructure is an important but often

unnoticed infrastructure. 240 million US citizens are ser-

viced by 1.28 million kilometers of public sewer pipes and

800,000 kilometers of privately owned pipes [3]. In order to

maintain public health and sanitation, and avoid e.g. unin-

tentional sewer overflows, a 271 billion dollar investment is

needed within the next 10 years in order to service an addi-

(a) DE, PF (b) RO, FS, AF

(c) PH, RB (d) Normal pipe

Figure 1: Sewer-ML data examples. Images showcasing a

subset of the classes and the visual variation in the dataset.

The class codes below each image are described in Table 1.

tional 56 million US citizens [3]. Additionally, all of these

sewer pipes have to be regularly inspected to avoid sudden

pipe collapse or reduced sewer capabilities.

Sewer inspections are currently performed on location

by a professional inspector, who simultaneously maneuvers

a remote controlled vehicle with a movable camera through

the sewer pipe. This is hard and tiresome work, as the in-

spectors must look at a video feed for a prolonged amount

of time. This can lead to flawed inspections, which in the

worst case can result in damage to the sewerage infrastruc-

ture. Furthermore, the variance in visual appearance within

sewer pipes further complicates the task, see Figure 1.

Therefore, the field of automated sewer inspection has

been researched by industry and academia for the last three

decades, through the development of different robot plat-

forms and specialized algorithms [31]. However, there are

at the moment no means to determine which method is the
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best. Haurum and Moeslund [31] found that there are no

open-source benchmark datasets, little to no open-source

code, and no agreed upon metrics or evaluation protocol.

Instead, many researchers utilize their own datasets from

different countries and follow different inspection guides.

This leads to stagnation in the field when compared to other

computer vision fields and a lack of reproducibility in the

automated sewer inspection field.

For these reasons, we present the open-source Sewer-ML

multi-label defect dataset, containing 1.3 million images an-

notated by professional sewer inspectors. The dataset is col-

lected from three different Danish water utility companies

over a period of nine years. Our contributions are fourfold:

• A publicly available multi-label sewer inspection

dataset with 1.3 million annotated images.

• An open-source comparison of state-of-the-art meth-

ods using the new dataset.

• A novel, class-importance weighted F2 metric, F2CIW.

• A benchmark algorithm combining knowledge from

sewer defect and multi-label classification domains.

The paper is structured as follows. In Section 2, we re-

view the related works within the multi-label image classifi-

cation and automated sewer inspection fields. In Section 3,

the proposed dataset is introduced and described in detail.

In Section 4, we introduce our novel metric, test several

state-of-the-art methods on the new dataset, and conduct an

ablation study on the obtained results leading to our bench-

mark algorithm. Finally, in Section 5, we summarize our

findings and conclude the paper.

2. Related Works

Multi-label Image Classification. Through the years,

the field of multi-label classification has experienced sev-

eral different trends. Classically, the naive way to approach

the problem has been to use an ensemble of binary clas-

sifiers and ignore label correlations [88]. This approach

has been replaced by methods consisting of a single model

incorporating the label correlations into the method itself.

These trends have included ranking the label predictions

[25, 37, 49], utilizing object localization techniques and at-

tention mechanisms [22, 23, 27, 48, 53, 76, 77, 81, 87, 89],

or incorporating a recurrent sub-network to encode label de-

pendencies [8, 9, 48, 72, 76, 82].

Current state-of-the-art networks focus on utilizing the

inherent graph nature of the multi-label problem [10, 11,

12, 19, 45, 75, 85], by using the co-occurrence matrix be-

tween labels in combination with graph convolutional net-

works (GCNs) [40]. Chen et al. [12] proposed the ML-GCN

method, which combines the output of a two-layer GCN

with the last feature map of a ResNet-101 [32] network to

achieve a well performing multi-label classifier. Wang et

al. [75] built upon this idea in their KSSNet model. KSS-

Net improves the performance over ML-GCN by fusing fea-

tures from a GCN into the final feature map of each residual

block in a ResNet-101 model, using a novel lateral connec-

tion module. Furthermore, the GCN adjacency matrix is

created by combining the label correlation matrix with a

label knowledge graph. Lastly, it is also possible to sim-

ply take a network which has been proven to work well on

a multi-class classification task and instead train it with a

relevant loss objective, often the binary cross-entropy loss.

This is the case with the recent work of Wu et al. [78] who

utilized the ResNet-101 architecture and Ridnik et al. [66]

who proposed a modified variation of the ResNet architec-

ture, called TResNet. The TResNet network has outper-

formed several models designed for the multi-label task.

The multi-label image classification field has classically

worked on smaller datasets such as PASCAL VOC [20],

NUS-WIDE [14], and COCO [52], each containing be-

tween 5 to 80 thousand training images and 20-80 classes.

Therefore, the applied methods have often relied on pre-

training the backbone network on ImageNet [67]. However,

recently the Tencent-ML [78] and Open Images datasets

[44], each containing between approximately 6 and 12 mil-

lion training images and 11 to 20 thousand classes, have

been proposed. These datasets allow for training methods

directly on the multi-label task and not pretraining on Ima-

geNet. All of these datasets focus on natural scene images

with “common” objects. Furthermore, these datasets are

often severely imbalanced, as e.g. the class “person” occurs

more frequently than the class “sheep”. Therefore, there

have been attempts to counteract the data imbalance through

weighting the loss objective. This has classically been

achieved by utilizing some variant of the inverse class fre-

quency, though custom loss objectives have been proposed

specifically for the imbalanced data problem [5, 15, 51, 79].

Automated Sewer Inspection. For several decades

there has been an increasing industrial and academic inter-

est in automating the sewer inspection process. This line

of research builds heavily upon the general computer vision

field, though the current state-of-the-art does not fully uti-

lize the recent advances within computer vision.

Several different types of sensors [18, 54], such as acous-

tic sensors [35, 38, 39], laser scanners [46, 69], and depth

sensors [1, 2, 29, 33], have all been utilized for sewer pipe

reconstruction and detecting specific defects but have not

seen widespread usage in more generalized tasks. Con-

versely, image and video based approaches have been uti-

lized to detect, segment, and classify a wide variety of sewer

defects. Traditionally, hand-crafted features and small,

model based classifiers or heuristic decision rules have been

utilized [58, 59, 83]. However, in recent years deep learning

based methods have gained traction within the field. This

has led to advances within video processing [21, 56, 57, 74],
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water level estimation [30, 36], defect detection [13, 43, 84],

segmentation [61, 63, 73], and classification in multi-class

and multi-label settings [7, 28, 42, 47, 55, 58, 80]. For a full

review of the field we refer to Haurum and Moeslund [31].

Within sewer defect classification there has been a re-

cent increase in interest, focused on three different system

settings: a single end-to-end classifier, a two-stage approach

consisting of a binary classifier and a multi-class/label clas-

sifier, and an ensemble of binary classifiers. Kumar et al.

[42] utilized an ensemble of binary classifiers to catego-

rize four types of defects using a small, two-layer CNN

trained in a one vs. all manner. Hassan et al. [28] used

AlexNet [41] and Li et al. [47] a modified ResNet-18 net-

work [32], trained in an end-to-end manner. Similarly, Mei-

jer et al. [55] built upon the work of Kumar et al. using

a small, three-layer CNN for multi-label defect classifica-

tion, trained end-to-end. Lastly, Xie et al. [80], Chen et al.

[7], and Myrans et al. [58] all used two-stage approaches.

Xie et al. trained two small, three-layer CNNs, where the

first CNN determines whether a defect is present, while the

second CNN, a fine-tuned version of the first, classifies the

defects. Chen et al., on the other hand, use the lightweight

SqueezeNet [34] network for the initial binary defect clas-

sification and the deeper InceptionV3 [68] network for pre-

dicting the defect class. Myrans et al. differ from the other

recent methods by using the GIST feature descriptor [60]

and two Extra Trees [24] classifiers in sequence.

All prior methods utilize separate private dataset with

different classes and class distributions, due to the inherent

commercial interest involved in the field [31]. The datasets

are typically either balanced such that the number of ob-

servations per class is balanced, the number of normal and

defect observations are balanced, or the dataset is not bal-

anced but inherently skewed. For example, Meijer et al.

[55] utilized a dataset consisting of 2.2 million images, but

only 17,663 of those images contain defects. In order to

counteract this large imbalance, Meijer et al. increased the

number of defective observations by a factor of five through

oversampling. Additionally, there are no common metric

nor evaluation protocol, making fair comparison between

methods impossible [31]. All of these factors severely hin-

der the reproducibility and progress within the field.

3. The Sewer-ML Dataset

In this section, we present how the data was collected

(Section 3.1), how the multi-label ground truth annotations

are obtained (Section 3.2), how the dataset is constructed

(Section 3.3), and how we redact information which is

present in the images (Section 3.4). Further dataset insights

are presented in the supplementary materials.

Table 1: Sewer inspection classes. Overview and short

description of each annotation class [17] and the class-

importance weights (CIW) [16].

Code Description CIW

VA Water Level (in percentages) 0.0310

RB Cracks, breaks, and collapses 1.0000

OB Surface damage 0.5518

PF Production error 0.2896

DE Deformation 0.1622

FS Displaced joint 0.6419

IS Intruding sealing material 0.1847

RO Roots 0.3559

IN Infiltration 0.3131

AF Settled deposits 0.0811

BE Attached deposits 0.2275

FO Obstacle 0.2477

GR Branch pipe 0.0901

PH Chiseled connection 0.4167

PB Drilled connection 0.4167

OS Lateral reinstatement cuts 0.9009

OP Connection with transition profile 0.3829

OK Connection with construction changes 0.4396

3.1. Data Collection

A total of 75,618 annotated sewer inspection videos were

obtained from three different Danish water utility compa-

nies from the period 2011–2019. All videos were annotated

by licensed sewer inspectors following a common Danish

standard [17] containing 18 specific classes listed in Ta-

ble 1. According to the inspection standard, each class is

given a point score representing the economic consequence

of the class, which is determined by professionals involved

in the sewer inspection field [16]. We normalize the point

scores to the interval [0, 1] by dividing all point scores by the

largest one, denoting the new values as the class-importance

weight (CIW). The collected data span a large variety of ma-

terials, shapes, and dimensions from both main and lateral

pipes. This leads to a large variety in the available data, re-

flecting the natural variance observed during actual sewer

inspections.

3.2. Multi­Label Ground Truth

The dataset is constructed by extracting a single frame at

each class annotation in a sewer inspection video. Each an-

notation corresponds to a ground truth annotation of a single

class at a specific second in the video, with an associated

location within the pipe. We obtain the multi-label repre-

sentation by combining annotations close to each other in

the pipe. This is a noisy approach as the camera can rotate

in a hemisphere and does not guarantee that all annotations

will be visible. For each annotation in an inspection video,
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Table 2: Split between defective and normal observa-

tions. Number of images containing normal and defective

observations in the three dataset splits.

Type Training Validation Test Total

Normal 552,820 68,681 69,221 690,722

Defective 487,309 61,365 60,805 609,479

Total 1,040,129 130,046 130,026 1,300,201

we aggregate the annotated class with all other annotated

classes which are up to 0.3 meters earlier in the pipe or 1.0

meters ahead in the pipe. These values have been decided

through manual inspection as the position measurement can

be noisy. This is necessary in order to include nearby and

upcoming, visible classes. Lastly, some entries are noted as

continuous, which means the class occurs frequently within

a specified stretch of the pipe, but are not explicitly an-

notated at each occurrence. We handle this edge case by

adding the continuous class to all other annotated class oc-

currences within the defined pipe stretch.

The 18 classes are not all instances of pipe defects but

can also indicate important information such as a change

in pipe shape or material, occurrence of a branch pipe or

pipe connections. The VA class is a special class, as it is

annotated at the start and end of an inspection video, as well

as when the water level changes within a 10% step interval.

This means all annotations have an associated water level.

Additionally, we obtain observations of cases with no

annotated classes, denoted non-defective (ND), using a set

of heuristic rules. First, we apply a one meter buffer zone

around each annotated class, such that there is at least two

meters between annotated classes before ND images can be

extracted. If there are any active continuous class between

the annotated classes, no ND images are extracted. Further-

more, we enforce that the inspection vehicle may at maxi-

mum move 0.25 m/s, calculated based on the time and dis-

tance difference between the two classes. This restriction

is based on the maximum speed the inspectors are allowed

to move the inspection vehicle during an inspection. Lastly,

ND images are only extracted when the inspection vehicle is

moving forward through the pipe. This condition is checked

using the distance information associated with each annota-

tion. If these conditions are met we can extract ND images.

In order to avoid duplicate images of the same pipe area,

we extract one ND image per meter uniformly sampled be-

tween the two annotated classes. The video timestamps of

the ND images are calculated using a constant velocity as-

sumption. Examples from the dataset are shown in Figure 1

and the supplementary materials.

Moreover, the VA class is special, as it is a continu-

ous entity throughout the video. The VA annotations are

grouped together with the ND class if there are no other co-

occurring labels. This leads to a total of 690,722 images of

Table 3: Sewer dataset comparison. A comparison of

datasets used for sewer defect classification and the pro-

posed Sewer-ML dataset. We report whether the dataset is

publibly available (P), the annotations are multi-label (ML),

the number of images with defects (DI), images with normal

pipes (NI), annotated classes (C), and the Class Imbalance

(CI) for each dataset rounded to the nearest integer.

Dataset P ML DI NI C CI

Ye et al. [83] 1,045 0 7 13

Myrans et al. [58] 2,260 0 13 102

Chen et al. [7] 8,000 10,000 5 5

Li et al. [47] 8,455 9,878 7 19

Kumar et al. [42] 11,000 1,000 3 4

Meijer et al. [55] X 17,663 2,184,919 12 12,732

Xie et al. [80] 22,800 20,000 7 8

Hassan et al. [28] 24,137 0 6 3

Sewer-ML X X 609,479 690,722 17 123

“normal” pipes with no annotated classes and 609,479 im-

ages with one or more annotated classes which we call “de-

fective”, resulting in a total of 1,300,201 images. Lastly, we

pose the multi-label classification problem as predicting the

class labels in Table 1, except for the VA class. This means

a normal pipe with no class annotations is the absence of

any classes. Therefore, it is an implicit class.

3.3. Dataset Construction

We construct the dataset by first splitting the data into

three splits: training, validation and test. We randomly se-

lect videos until 80% of all annotations are in the training

split and the remaining 20% equally split between the vali-

dation and test splits. This leads to 60,356 videos for train-

ing, 7,692 videos for validation, and 7,570 videos for test-

ing. This way it is ensured that no images from the same

pipe are present between splits. These splits lead to a near

even split of normal and defective observations, see Table 2.

Looking at the distribution of the class occurrences, as

shown in Figure 2, the occurrences are evenly represented

in each split, suggesting a similar class distribution in each

of the splits. Moreover, it is evident that the constructed

dataset is skewed towards a few major classes, such as

the “Normal” and “FS” classes. This visually shows the

large imbalance in the dataset, representative of the real life

distribution of the classes. Unlike prior sewer inspection

datasets, we do not manually balance the classes. We quan-

tify the class imbalance (CI) in the dataset by calculating

the ratio between the largest and smallest class and compare

with the previously used sewer datasets, see Table 3. Meijer

et al. have a large CI due to sampling every five centimeters,

resulting in a large number of normal images. Uniquely,

Sewer-ML contains a large number of defect images, which

are needed to train discriminative classifiers.

Similarly, it is interesting to see how often several classes
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are present at the same time. For each split, we plot the

distribution of the number of labels in the observations in

Figure 2. In this plot we count the normal observations as

having zero labels as it is an implicit label. We see that there

is an equal number of observations with one or two classes

and the number of observations reducing as more classes are

present. We quantify this using the label cardinality (LC)

using Equation 1 [70] for each split. For these measures,

we count the normal pipe observations as having one label.

LC =
1

N

N∑

i=1

C+1∑

c=1

y(i)c (1)

where N is the number of observations in the split, C is the

number of annotated classes, and y
(i)
c is the ground truth

value for class c in observation i.

We find that across splits, the LC is 1.49-1.50, indicating

that on average there are 1.5 labels per observation. We

cannot compare this with the LC of the datasets in Table 3,

as the datasets and ground truth data are not public.

3.4. Data Anonymization

The raw data provided by the water utility companies

have all been post-processed by the inspection software to

include metadata and annotation text information on the

video itself. In order to avoid including ground truth infor-

mation in the images and any potential privacy issues, the

text has been redacted as shown in Figure 3. Since the over-

laid information is not static through the inspection video,

due to e.g. class codes appearing on screen or pipe mate-

rial changing, a single redacting mask cannot be used. This

leads to a large annotation task, which would be long and

tiresome to do manually. Instead, inspired by Borisyuk et

al. [6], we train a Faster-RCNN [65] model on examples

from the overlaid text data. 23,044 videos are used, with

one frame extracted per video. The data is split into a train-

ing split of 20,739 images and a validation split of 2,305

images. All text information is manually annotated with

bounding boxes. The Faster-RCNN backbone is a ResNet-

50 FPN [50] pre-trained on ImageNet [67]. We fine-tune

the last three residual blocks. As the text data is distinctly

different from the data present in the COCO dataset, we

use custom anchor boxes. We choose to use three anchor

box ratios and five scales, based on the bounding box ratio

and area information from the training split. Full details are

available in the supplementary materials.

Using the COCO metrics [52], we achieve an

mAP@[0.75] of 96.39% and mAP@[0.5:0.95] of 89.10%.

The Faster-RCNN model is applied on all 1.3 million im-

ages in the dataset, and the detected text is removed by ap-

plying a Gaussian blur kernel with a radius of 51 pixels.

While this is not a perfect metric score, looking at the de-

tections tells another story. We find that the model detects

No
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Figure 2: Dataset label statistics. The frequencies of the

annotated classes and the normal class are shown in the top

plot in descending order. The frequencies of the number of

labeled classes per split are shown in the bottom plot, where

“Normal” pipes have zero labeled classes. Note that the y-

axes are log-scaled.

strings of text, annotated with several bounding boxes, as a

single bounding box. An example of this is the “Ø 200” in

Figure 3. Similarly, text annotated with a single bounding

box, are at times detected with several boxes. This leads to

a lower metric score even though the redactions are correct.

Therefore, we conclude that data leakage is not an issue in

the dataset.

4. Benchmark

In this section, we present an approach that can be used

as benchmarking for future work on the dataset. To this

end, we first select (Section 4.1), train (Section 4.2), and

test current state-of-the-art algorithms from the sewer de-

fect classification and the general multi-label classification

domains in order to see how they perform on the dataset

(Section 4.4), using our novel class-importance weighted F2

metric (Section 4.3). Finally, we conduct an ablation study

leading to our benchmark algorithm (Section 4.5), and dis-

cuss the per-class performance (Section 4.6).
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(a) Before text redaction. (b) After text redaction.

Figure 3: Effect of the data anonymization process. By

applying our text redaction pipeline the system is capable

of detecting and blurring all text information on the images.

4.1. Methods

From the sewer inspection domain we compare the meth-

ods proposed by Kumar et al. [42], Meijer et al. [55], Xie

et al. [80], Chen et al. [7], Hassan et al. [28], and Myrans

et al. [58]. These six methods are chosen to represent the

recent advances within sewer defect classification [31]. For

the ensemble of binary classifiers and the end-to-end meth-

ods, we train using the full dataset. However, for the two-

stage classification approach, the first stage is trained on the

full dataset to predict the presence of any annotated class,

while the second stage is trained to predict the classes from

a subset of the data containing annotated classes.

From the general multi-label classification domain, we

choose four of the current best performing methods on the

COCO and VOC datasets [5]. We choose two state-of-

the-art graph-based methods, ML-GCN by Chen et al. [12]

and KSSNet by Wang et al. [75], each utilizing a ResNet-

101 [32] backbone. Furthermore, we also test the vanilla

ResNet-101 model, as used by Wu et al. [78], and the TRes-

Net architectures from Ridnik et al. [66], where we compare

the medium, large, and extra-large versions of the model.

All models are trained using an end-to-end approach.

While the normal/defect classification task is intrinsi-

cally related to the anomaly detection task, we do not com-

pare with the state-of-the-art anomaly detection methods

[62]. This is due to the sewer pipe owners requiring the

defect classes in order to correctly manage their assets.

4.2. Training Procedure

Hyperparameters. In order to ensure comparability, we

train all networks from scratch using the exact same training

procedures. We base our training procedure on the method-

ology proposed by Goyal et al. [26] for efficiently training

models on ImageNet. We train each network for 90 epochs,

with a batch size of 256 using SGD with momentum. We

utilize a learning rate of 0.1, momentum of 0.9, weight

decay of 0.0001, and multiply the learning rate by 0.1 at

epochs 30, 60, and 80. The ML-GCN and KSSNet net-

works utilize re-weighted correlation matrices in the GCN

subnet, where the hyperparameters stated by the original au-

thors are used. We do not construct a knowledge graph for

KSSNet, as the class labels are abbreviations containing lit-

tle semantic information. We use a one-hot encoding for the

initial input to the GCN. For the Myrans et al. [58] system,

the standard GIST hyperparameters are used and the first

and second stage classifiers use 100 and 250 trees, respec-

tively, a maximum depth of 10, and log2(d) features when

splitting nodes, where d is the dimensionality of the GIST

feature vector. We find the hyperparameters through a small

grid search, described in the supplementary materials.

Data augmentation. The training data are pre-

processed by resizing the images to 224×224, horizontally

flipping with a 50% chance, jittering the brightness, con-

trast, saturation, and hue by ±10% of the original values,

and normalizing the data using the training split channel

mean and standard deviation. During inference the images

are simply resized to 224 × 224 and normalized. For the

InceptionV3 network used by Chen et al., the images are

resized to 299×299 [68]. For the GIST features the images

are converted to grayscale and resized to 128× 128 [58].

Loss objective. We train using the standard binary cross-

entropy loss, see Equation 2, which is commonly used in the

multi-label image classification domain.

L(x,y) =
1

C

C∑

c

−[wcyc log(σ(xc))+(1−yc) log(1−σ(xc))]

(2)

where C is the number of annotated classes in the dataset,

yc denotes whether class c is present in the current image,

xc is the raw output of the model for class c, σ is the sigmoid

function, and wc is the weight for class c if it is present in

the current image.

As the dataset is imbalanced, we weight each positive

class observation by the negative-to-positive class observa-

tion ratio, wc, calculated using Equation 3. This way the

loss of minority classes are weighted higher when present in

the images, while the loss of majority classes are weighted

lower when present. For the InceptionV3 network, a lower

weighted loss from the auxiliary classifier is added.

wc =
N −Nc

Nc

(3)

where N is the number of images in the training split, and

Nc is the number of images in the split containing class c.

4.3. Metrics

Currently, there is no consensus on how sewer defect

classification methods should be evaluated [31]. Com-

monly, the accuracy is used, but this is a poor metric when

working with skewed datasets. Moreover, the metrics do

not include domain knowledge. Therefore, we evaluate the
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model performance using two metrics incorporating domain

knowledge, based on the Fβ metric [71],

Fβ = (1 + β2)
Prc · Rcll

β2Prc + Rcll
(4)

where Prc and Rcll are the precision and recall of the clas-

sifier, respectively, and β is a weighting of recall, such that

the recall β times more important than precision.

When performing sewer inspections, false negatives

have a larger economic impact than false positives. This

is due to false negatives possibly leading to faulty pipes go-

ing unnoticed, whereas a human will verify the predicted

classes before a renovation decision is made. Therefore,

it is more important to have a high recall than high preci-

sion, if both cannot be achieved. To incorporate this do-

main knowledge into the evaluation, we set β = 2 when

evaluating the annotated classes. This is similar to previ-

ous tasks where recall is weighted higher than precision

[4, 64, 86]. The per-class F2-scores are averaged using

a novel, class-importance weighted F2-score, F2CIW. The

classes are weighted by the associated CIW, see Table 1, as

classes with a high CIW will be of larger importance for the

pipe owners. F2CIW is calculated as shown in Equation 5.

F2CIW =

∑C

c=1 F2c · CIWc∑C

c=1 CIWc

(5)

where CIWc and F2c are the CIW and F2-score for class c,

respectively, and C is the number of annotated classes.

However, the normal pipes are not included in the F2CIW

computation, as normal pipes do not have a CIW. In order

to quantify whether the tested methods can handle the ab-

sence of classes, and not simply maximize the F2CIW score

by predicting one or more classes at all times, we use the

F1-score for the normal pipes, F1Normal.

4.4. Model Performances

We report the validation and test split results of each

model in Table 4. Unless otherwise noted, a threshold of

0.5 is used to binarize the predictions. For the two-stage ap-

proaches, the prediction score from the first stage is used for

all classes if the binary classifier detects no classes, and oth-

erwise, the score of the second stage network is used. The

results are obtained using the model weights from the epoch

with the lowest validation loss. In most cases, the lowest

validation loss is obtained after 30-40 epochs, whereafter

the networks start overfitting. This indicates that while we

utilize a dataset nearly the size of ImageNet, it might not

be necessary to train for as long, due to all images being

from the same visual domain. We also see that the small

CNNs from Kumar et al. and Meijer et al. immediately di-

verge during training. This is possibly due to only applying

two or three pooling layers before connecting to dense lay-

ers, leading to a parameter count of 269 and 135 million,

Table 4: Performance metrics for each method. We

present the different metrics for each method. The metrics

are presented as percentages, and the highest score in each

column is denoted in bold. The Kumar [42], Meijer [55] and

ML-GCN [12] methods are not shown as they diverged dur-

ing training. The “Sewer” and “General” identifiers indicate

whether the method is from the sewer defect or multi-label

classification domains, respectively. The classic multi-label

metrics [19] are reported in the supplementary materials.

Model
Validation Test

F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

S
ew

er

Xie [80] 48.57 91.08 48.34 90.62

Chen [7] 42.03 3.96 41.74 3.59

Hassan [28] 13.14 0.00 12.94 0.00

Myrans [58] 4.01 26.03 4.11 27.48

G
en

er
al

ResNet-101 [32] 53.26 79.55 53.21 78.57

KSSNet [75] 54.42 80.60 54.55 79.29

TResNet-M [66] 53.83 81.23 53.79 79.91

TResNet-L [66] 54.63 81.22 54.75 79.88

TResNet-XL [66] 54.42 81.81 54.24 80.42

respectively. Comparatively, the small CNN used by Xie

et al., uses three pooling layers as well as a pixel stride of

two in the last two convolutional layers, leading to a pa-

rameter count of nine million parameters. Similarly, we

observe that the ML-GCN method also diverges immedi-

ately, whereas the KSSNet method manages to train. We

hypothesize that this is due to the lateral connections in the

KSSNet adding stability during training. The loss curves

are reported in the supplementary materials. We observe

that the methods from the multi-label classification domain

are better at classifying the specific classes, with TResNet-L

achieving a F2CIW test score of 54.75%. However, the sim-

ple two-stage approach by Xie et al. achieves the highest

F1Normal score of 90.62%. This indicates that the approach

by Xie et al. excels at distinguishing whether there are any

classes, but not which one. The results are not solely due to

the two-stage approach. Chen et al. also utilize a two-stage

approach, but this produces significantly worse results. It is

observed that the first stage simply predicts a “defect” in all

images, which the later stage cannot properly handle. This

is reflected by a low F1Normal score. Therefore, it appears

there is value in using a small CNN for the first stage.

4.5. Ablation Studies and Benchmark Algorithm

Looking at the results in Table 4, there is merit to both

the end-to-end and two-stage approaches. We investigate

whether the results can be improved further by combining

end-to-end and two-stage methods. In the supplementary

materials we report two additional ablation studies focused

on getting a better understanding of the two-stage results.

Effect of different second stage classifiers. Based on

our results in Table 4, we look into whether combining

the general multi-label methods with two-stage approaches
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Table 5: Two-stage classifier permutations. We evaluate

each of the tested multi-label classifiers in a two-stage setup

together with the first stage used by Xie et al. [80].

Second

Stage

Validation Test

F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

S
ew

er

Chen [7] 48.67 91.06 48.19 90.60

Hassan [28] 18.08 91.08 17.89 90.62

Myrans [58] 27.87 91.08 27.83 90.62

G
en

er
al

ResNet-101 [32] 54.45 91.28 54.01 90.88

KSSNet [75] 55.37 91.30 55.09 90.95

TResNet-M [66] 54.58 91.33 54.32 90.93

TResNet-L [66] 55.36 91.32 55.11 90.94

TResNet-XL [66] 54.97 91.37 54.51 90.95

would lead to state-of-the-art performance. Specifically, we

combine the first stage of Xie et al. with each of the multi-

label classifiers in Table 4. The results are shown in Ta-

ble 5. We observe that by utilizing the first stage of Xie et

al. both the F2CIW and F1Normal scores are improved when

compared to the best results in Table 4. Moreover, the per-

formance is improved for all tested methods. Specifically,

by using the first stage to filter out normal pipes, all general

multi-label methods increase their F2CIW scores by approx-

imately 0.5-1 percentage points, and the F1Normal by up to

10-12 percentage points. For the sewer domain methods

their F2CIW scores are increased by 5-13 percentage points,

and the F1Normal by 65-90 percentage points. From these re-

sults we can conclude that using a two-stage approach with

the binary classifier from Xie et al. [80] and the TResNet-L

model [66] is the Benchmark algorithm on Sewer-ML, with

an F2CIW score of 55.11% and F1Normal score of 90.94%.

4.6. Per­Class Performance

To gain a better understanding of the difficulty of de-

tecting the different defects compared to their economical

impact, we compare the F2 score for each defect with the

corresponding CIW scores, see Figure 4. We find that each

of the classes with a high F2 score exhibit low intra-class

and high inter-class variance, as well as more frequently oc-

curring in the dataset. The displaced joint class FS exhibits

limited intra-class variance due to limitations in where the

defect can occur within the pipe, while being distinct from

the other classes. Similarly, the surface damage class OB

occurs frequently in the dataset and exhibits high inter-class

variance due to the distinct visual appearance of the class.

Contrarily, the lower scoring defect classes exhibit a

larger intra-class variance, lower inter-class variance, and

are less frequently occurring. The obstacle class FO con-

sists of a wide span of objects, e.g. a soda can, a leftover

hammer, or another pipe which goes through the main pipe.

The RB class exhibits large intra-class variance, due to the

class encompassing cracks, breaks, and collapses, and low

inter-class variance, due to the similarity in appearance be-

tween e.g. cracks and the fine roots in the RO class.
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Figure 4: Per-class performance. Per-class F2 scores of

the Benchmark algorithm (TResNet-L + Xie et al.), plotted

against the corresponding CIW values.

We observe that most of the lower scoring defects do not

have a large economic impact. However, the two defects

with the highest economic impact, OS and RB, are among

the lowest scoring classes. Therefore, in order to improve

the performance of the classification system, the detection

rate on these two classes should be the main priority.

5. Conclusion

Sewerage infrastructure is a fundamental part of mod-

ern society and is continuously expanded. However, cur-

rent manual inspections are tedious and slow when com-

pared to the immense number of pipes that have to be in-

spected. Therefore, automated sewer inspection technolo-

gies are crucial to ensuring the quality of our sewerage in-

frastructure. However, current state-of-the-art sewer defect

classification methods have not yet adopted recent advances

within computer vision. In order to facilitate this transition,

we present the first public, multi-label sewer defect classifi-

cation dataset called Sewer-ML.

Sewer-ML consists of 1.3 million images of a large vari-

ety of sewer pipes annotated by professional sewer inspec-

tors. The data is acquired from 75,618 inspection videos

conducted over nine years. 12 methods from the sewer

defect classification and multi-label classification domains

are compared on Sewer-ML. Methods are evaluated using a

novel, class-importance weighted F2 score, F2CIW, which

incorporates the economic impact of each class, and the

F1 score for pipes with no annotated classes, F1Normal. We

present a benchmark algorithm by combining the best two-

stage approach from the sewer domain with the best clas-

sifier from the multi-label domain, achieving a state-of-the-

art performance with an F2CIW of 55.11% and F1Normal of

90.94%. The code, data, and trained models are open-

sourced in order to lower the barrier of entry and encourage

further development within sewer defect classification.
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