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Abstract

Capturing challenging human motions is critical for nu-

merous applications, but it suffers from complex motion pat-

terns and severe self-occlusion under the monocular setting.

In this paper, we propose ChallenCap — a template-based

approach to capture challenging 3D human motions using

a single RGB camera in a novel learning-and-optimization

framework, with the aid of multi-modal references. We

propose a hybrid motion inference stage with a generation

network, which utilizes a temporal encoder-decoder to ex-

tract the motion details from the pair-wise sparse-view ref-

erence, as well as a motion discriminator to utilize the un-

paired marker-based references to extract specific challeng-

ing motion characteristics in a data-driven manner. We fur-

ther adopt a robust motion optimization stage to increase

the tracking accuracy, by jointly utilizing the learned mo-

tion details from the supervised multi-modal references as

well as the reliable motion hints from the input image refer-

ence. Extensive experiments on our new challenging motion

dataset demonstrate the effectiveness and robustness of our

approach to capture challenging human motions.

1. Introduction

The past ten years have witnessed a rapid development

of markerless human motion capture [14, 24, 60, 68], which

benefits various applications such as immersive VR/AR ex-

perience, sports analysis and interactive entertainment.

Multi-view solutions [60, 40, 29, 12, 30, 63] achieve

high-fidelity results but rely on expensive studio setup

which are difficult to be deployed for daily usage. Recent

learning-based techniques enables robust human attribute

prediction from monocular RGB video [31, 35, 2, 80, 55].

The state-of-the-art monocular human motion capture ap-

proaches [22, 75, 74] leverage learnable pose detections [9,

44] and template fitting to achieve space-time coherent re-

sults. However, these approaches fail to capture the specific

challenging motions such as yoga or rolling on the floor,
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Figure 1. Our ChallenCap approach achieves robust 3D capture of

challenging human motions from a single RGB video, with the aid

of multi-modal references.

which suffer from extreme poses, complex motion patterns

and severe self-occlusion under the monocular setting.

Capturing such challenging human motions is essential

for many applications such as training and evaluation for

gymnastics, sports and dancing. Currently, optical marker-

based solutions like Vicon [66] are widely adopted to cap-

ture such challenging professional motions. However, di-

rectly utilizing such marker-based reference into markerless

capture is inapplicable since the actor needs to re-perform

the challenging motion which is temporally unsynchronized

to the maker-based capture. Some data-driven human pose

estimation approaches [32, 35] utilize the unpaired refer-

ence in an adversarial manner, but they only extract general

motion prior from existing motion capture datasets [28, 43],

which fails to recover the characteristics of specific chal-

lenging motion. The recent work [23] inspires to utilize

the markerless multi-view reference in a data-driven man-

ner to provide more robust 3D prior for monocular capture.

However, this method is weakly supervised on the input im-

ages instead of the motion itself, leading to dedicated per-

performer training. Moreover, researchers pay less atten-

tion to combine various references from both marker-based

systems and sparse multi-view systems for monocular chal-

lenging motion capture.
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In this paper, we tackle the above challenges and present

ChallenCap – a template-based monocular 3D capture

approach for challenging human motions from a single

RGB video, which outperforms existing state-of-the-art ap-

proaches significantly (See Fig. 1 for an overview). Our

novel pipeline proves the effectiveness of embracing multi-

modal references from both temporally unsynchronized

marker-based system and light-weight markerless multi-

view system in a data-driven manner, which enables robust

human motion capture under challenging scenarios with ex-

treme poses and complex motion patterns, whilst still main-

taining a monocular setup.

More specifically, we introduce a novel learning-and-

optimization framework, which consists of a hybrid motion

inference stage and a robust motion optimization stage. Our

hybrid motion inference utilizes both the marker-based ref-

erence which encodes the accurate spatial motion charac-

teristics but sacrifices the temporal consistency, as well as

the sparse multi-view image reference which provides pair-

wise 3D motion priors but fails to capture extreme poses.

To this end, we first obtain the initial noisy skeletal motion

map from the input monocular video. Then, a novel gen-

eration network, HybridNet, is proposed to boost the ini-

tial motion map, which utilizes a temporal encoder-decoder

to extract local and global motion details from the sparse-

view reference, as well as a motion discriminator to uti-

lize the unpaired marker-based reference. Besides the data-

driven 3D motion characteristics from the previous stage,

the input RGB video also encodes reliable motion hints for

those non-extreme poses, especially for the non-occluded

regions. Thus, a robust motion optimization is further pro-

posed to refine the skeletal motions and improve the track-

ing accuracy and overlay performance, which jointly uti-

lizes the learned 3D prior from the supervised multi-modal

references as well as the reliable 2D and silhouette infor-

mation from the input image reference. To summarize, our

main contributions include:

• We propose a monocular 3D capture approach for chal-

lenging human motions, which utilizes multi-modal

reference in a novel learning-and-optimization frame-

work, achieving significant superiority to state-of-the-

arts.

• We propose a novel hybrid motion inference module to

learn the challenging motion characteristics from the

supervised references modalities, as well as a robust

motion optimization module for accurate tracking.

• We introduce and make available a new challeng-

ing human motion dataset with both unsynchro-

nized marker-based and light-weight multi-image ref-

erences, covering 60 kinds of challenging motions and

20 performers with 120k corresponding images.

2. Related Work

As an alternative to the widely used marker-based so-

lutions [66, 70, 67], markerless motion capture [8, 15, 65]

technologies alleviate the need for body-worn markers and

have been widely investigated. In the following, we focus

on the field of marker-less 3D human motion capture.

Parametric Model-based Capture. Many general human

parametric models [3, 41, 49, 47] learned from thousands

of high-quality 3D scans have been proposed in the last

decades, which factorize human deformation into pose and

shape components. Deep learning is widely used to ob-

tain skeletal pose and human shape prior through model

fitting [25, 37, 7, 36] or directly regressing the model pa-

rameters from the input [32, 33, 35, 78]. Besides, var-

ious approaches [81, 64, 52, 2, 80] propose to predict

detailed human geometry by utilizing parametric human

model as a basic estimation. Beyond human shape and pose,

recent approaches further include facial and hand mod-

els [69, 30, 49, 11] for expressive reconstruction or lever-

age garment and clothes modeling on top of parametric hu-

man model [51, 5, 48, 42]. But these methods are still lim-

ited to the parametric model and cannot provide space-time

coherent results for loose clothes. Instead, our method is

based on person-specific templates and focuses on captur-

ing space-time coherent challenging human motions using

multi-modal references.

Free-form Volumetric Capture. Free-form volumetric

capture approaches with real-time performance have been

proposed by combining the volumetric fusion [13] and the

nonrigid tracking [62, 38, 82, 20] using depth sensors. The

high-end solutions [17, 16, 73, 19] rely on multi-view stu-

dios which are difficult to be deployed. The most handy

monocular approaches for general non-rigid scenes [46,

26, 21, 57, 58, 59, 71] can only capture small, controlled,

and slow motions. Researchers further utilize parametric

model [76, 77, 73, 61] or extra body-worn sensors [79]

into the fusion pipeline to increase the tracking robustness.

However, these fusion approaches rely on depth cameras

which are not as cheap and ubiquitous as color cameras. Re-

cently, the learning-based techniques enable free-form hu-

man reconstruction from monocular RGB input with vari-

ous representations, such as volume [80], silhouette [45] or

implicit representation [54, 55, 39, 10, 4]. However, such

data-driven approaches do not recover temporal-coherent

reconstruction, especially under the challenging motion set-

ting. In contrast, our template-based approach can explic-

itly obtain the per-vertex correspondences over time even

for challenging motions.

Template-based Capture. A good compromising settle-

ment between from-form capture and parametric Modal-

based Capture is to utilize a specific human template mesh

as prior. Early solutions [18, 60, 40, 53, 50, 56, 72] require
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Figure 2. The pipeline of ChallenCap with multi-modal references. Assuming the video input from monocular camera, our approach

consists of a hybrid motion inference stage (Sec.4.1) and a robust motion optimization stage (Sec.4.2) to capture 3D challenging motions.

D represents the discriminator.

multi-view capture to produce high quality skeletal and

surface motions but synchronizing and calibrating multi-

camera systems is still cumbersome. Recent work only

relies on a single-view setup [75, 22, 74] achieve space-

time coherent capture and even achieves real-time perfor-

mance [22]. However, these approaches fail to capture the

challenging motions such as yoga or rolling on the floor,

which suffer from extreme poses and severe self-occlusion

under the monocular setting. The recent work [23] utilizes

weekly supervision on multi-view images directly so as to

improve the 3D tracking accuracy during test time. How-

ever, their training strategy leads to dedicated per-performer

training. Similarly, our approach also employs a person-

specific template mesh. Differently, we adopt a specific

learning-and-optimization framework for challenging hu-

man motion capture. Our learning module is supervised on

the motion itself instead of the input images of specific per-

formers for improving the generation performance to vari-

ous performers and challenging motions.

3. Overview

Our goal is to capture challenging 3D human motions

from a single RGB video, which suffers from extreme

poses, complex motion patterns and severe self-occlusion.

Fig. 2 provides an overview of ChallenCap, which relies

on a template mesh of the actor and makes full usage

of multi-modal references in a learning-and-optimization

framework. Our method consists of a hybrid motion infer-

ence module to learn the challenging motion characteristics

from the supervised references modalities, and a robust mo-

tion optimization module to further extract the reliable mo-

tion hints in the input images for more accurate tracking.

Template and Motion Representation. We use a 3D

body scanner to generate the template mesh of the ac-

tor and rig it by fitting the Skinned Multi-Person Linear

Model (SMPL)[41] to the template mesh and transferring

the SMPL skinning weights to our scanned mesh. The kine-

matic skeleton is parameterized as S = [θ,R, t], including

the joint angles θ ∈ R
30 of the NJ joints, the global rotation

R ∈ R
3 and translation t ∈ R

3 of the root. Furthermore,

let Q denotes the quaternions representation of the skeleton.

Thus, we can formulate S = M(Q, t) where M denotes the

motion transformation between various representations.

Hybrid Motion Inference. Our novel motion inference

scheme extracts the challenging motion characteristics from

the supervised marker-based and sparse multi-view refer-

ences in a data-driven manner. We first obtain the ini-

tial noisy skeletal motion map from the monocular video.

Then, a novel generation network, HybridNet, is adopted

to boost the initial motion map, which consists of a tempo-

ral encoder-decoder to extract local and global motion de-

tails from the sparse-view references, as well as a motion

discriminator to utilize the motion characteristics from the

unpaired marker-based references. To train our HybridNet,

a new dataset with rich references modalities and various

challenging motions is introduced (Sec. 4.1).

Robust Motion Optimization. Besides the data-driven 3D

motion characteristics from the previous stage, the input

RGB video also encodes reliable motion hints for those

non-extreme poses, especially for the non-occluded regions.

Thus, a robust motion optimization is introduced to refine

the skeletal motions so as to increase the tracking accuracy

and overlay performance, which jointly utilizes the learned

3D prior from the supervised multi-modal references as

well as the reliable 2D and silhouette information from the

input image references (Sec. 4.2).
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Figure 3. Illustration of our hybrid motion network, HybridNet, which encodes the global and local temporal motion information with

the losses on both the generator and the discriminator. Note that the attention pooling operation is performed by applying element-wise

addition (blue branches) on the features of the adjacent body joints. The features after attention pooling are concatenated together with the

global feature as input to the fully connected layers.

4. Approach

4.1. Hybrid Motion Inference

Preprocessing. Given an input monocular image sequence

It, t ∈ [1, T ] of length T and a well-scanned template

model, we first adopt the off-the-shelf template-based mo-

tion capture approach [75] to obtain the initial skeletal mo-

tion St and transform it into quaternions format, denoted

as Qinit
t . More specifically, we only adopt the 2D term

from [75] using OpenPose [9] to obtain 2D joint detections.

Please refer to [75] for more optimization details. Note that

such initial skeletal motions suffer from severe motion am-

biguity since no 3D prior is utilized, as illustrated in the

pre-processing stage in Fig. 2. After the initial optimiza-

tion, we concatenate the Qinit
t and the detection confidence

from OpenPose [9] for all the T frames into a motion map

Q ∈ R
T×4NJ as well as a confidence map C ∈ R

T×NJ .

HybridNet Training. Based on the initial noisy motion

map Q and confidence map C, we propose a novel genera-

tion network, HybridNet, to boost the initial capture results

for challenging human motions.

As illustrated in Fig. 3, our HybridNet learns the chal-

lenging motion characteristics by the supervision from

multi-modal references. To avoid tedious 3D pose annota-

tion, we utilize the supervision from the optimized motions

using sparse multi-view image reference. Even though such

sparse-view reference still cannot recover all the extreme

poses, it provides rich pair-wise overall 3D motion prior.

To further extract the fine challenging motion details, we

utilize adversarial supervision from the marker-based refer-

ence since it only provides accurate but temporally unsyn-

chronized motion characteristics due to re-performing. To

this end, we utilize the well-known Generative Adversarial

Network (GAN) structure in our HybridNet with the gener-

ative network G and the discriminator network D.

Our generative module consists of a global-local mo-

tion encoder with a hierarchical attention pooling block and

a GRU-based decoder to extract motion details from the

sparse-view references, which takes the concatenated Q and

C as input. In our encoder, we design two branches to en-

code the global and local skeletal motion features indepen-

dently. Note that we mainly use 1D convolution layers dur-

ing the encoding process to extract corresponding temporal

information. We apply three layers of 1D convolution for

the global branch while splitting the input motion map into

NJ local quaternions for the local branch inspired by [6].

Differently, we utilize a hierarchy attention pooling layer to

connect the feature of adjacent joints and compute the latent

codes from five local body regions, including the four limbs

and the torso. We concatenate the global and local feature

of two branches as the final latent code, and decode them

to the original quaternions domain with three linear layers

in our GRU-based decoder (see Fig. 3 for detail). Here, the

loss of our generator G is formulated as:

LG = Lsv + Ladv, (1)

where Lsv is the sparse-view loss and Ladv is the adversar-

ial loss. Our sparse-view loss is formulated as:

Lsv =

T
∑

t=1

∥

∥

∥
Q̂t − Qsv

t

∥

∥

∥

2

2
+ λquat

T
∑

t=1

NJ
∑

i=1

(‖Q̂
(i)

t ‖ − 1)2.

(2)

Here, the first term is the L2 loss between the regressed

output motion Q̂t and the 3D motion prior Qsv
t from sparse-

views reference. Note that we obtain Qsv
t from the reference

sparse multi-view images by directly extending the same

optimization process to the multi-view setting. The second

regular term forces the network output quaternions to rep-

resent a rotation. Besides, NJ denotes the number of joints

which is 15 in our case while λquat is set to be 1× 10−5.
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Our motion discriminator D further utilizes the motion

characteristics from the unpaired marker-based references,

which maps the motion map Q̂ corrected by the generator

to a value ∈ [0, 1] to represent the probability Q̂ is a plau-

sible human challenging motion. Specifically, we follow

the video motion capture approach VIBE [35] to design two

losses, including the adversarial loss Ladv to backpropagate

to the generator G and the discriminator loss LD for the dis-

criminator D:

Ladv = E
Q̂∼pG

[

(

D(Q̂)− 1
)2

]

, (3)

LD = EQmb∼pV

[

(

D(Qmb)− 1
)2
]

+ E
Q̂∼pG

[

(

D(Q̂)
)2

]

.

(4)

Here, the adversarial loss Ladv is the expectation that Q̂ be-

longs to a plausible human challenging motion, while pG
and pV represents the corrected motion sequence the cor-

responding captured maker-based challenging motion se-

quence, respectively. Note that Qmb denotes the accurate

but temporally unsynchronized motion map captured by the

marker-based system. Compared to VIBE [35] which ex-

tracts general motion prior, our scheme can recover the

characteristics of more specific challenging motion.

Training Details. We train our HybridNet for 500 epochs

with Adam optimizer [34], and set the dropout ratio as 0.1

for the GRU layers. We apply Exponential Linear Unit

(ELU) activation and batch normalization layer after every

our 1D convolutional layer with kernel size 7, except the

final output layer before the decoder. During training, four

NVidia 2080Ti GPUs are utilized. The batch size is set to be

32, while the learning rate is set to be 1×10−3 for the gener-

ator and 1×10−2 for the discriminator, the decay rate is 0.1

(final 100 epochs). To train our HybridNet, a new dataset

with rich references modalities and various challenging mo-

tions and performers is further introduced and more details

about our dataset are provided in Sec. 5

Our hybrid motion inference utilizes multi-modal ref-

erences to extract fine motion details for challenging hu-

man motions in a data-driven manner. At test time, our

method can robustly boost the tracking accuracy of the ini-

tial noisy skeletal motions via a novel generation network.

Since our learning scheme is not directly supervised on the

input images of specific performers, it’s not restricted by

per-performer training. Instead, our approach focus on ex-

tracting the characteristics of challenging motions directly.

4.2. Robust Motion Optimization

Besides the data-driven 3D motion characteristics from

the previous stage, the input RGB video also encodes reli-

able motion hints for those non-extreme poses, especially

for the non-occluded regions. We thus introduce this ro-

bust motion optimization to refine the skeletal motions so as

to increase the tracking accuracy and overlay performance,

which jointly utilizes the learned 3D prior from the super-

vised multi-modal references as well as the reliable 2D and

silhouette information from the input image references. The

optimization to refine the skeletal pose is formulated as:

Etotal(St) = E3D + λ2DE2D + λTET + λSES. (5)

Here, E3D makes the final motion sequence close to the

output of network on occluded and invisible joints while

E2D adds a re-projection constraint on high-confidence 2D

keypoints detected. ET enforces the final motion to be

temporally smooth, while the ES enforces alignment of the

projected 3D model boundary with the detected silhouette.

Specifically, the 3D term E3D is as following:

E3D =

T
∑

t=1

‖St −M(Q̂t, tt)‖
2
2, (6)

where Q̂t is the regressed quaternions motion from our pre-

vious stage; M is the mapping from quaternions to skeletal

poses; tt is the global translation of St. Note that the joint

angles θt of St locate in the pre-defined range [θmin,θmax]
of physically plausible joint angles to prevent unnatural

poses. We then propose the projected 2D term as:

E2D =
1

T

T
∑

t=1

1

|Ct|

∑

i∈Ct

‖Π(Ji(St))− p
(i)
t ‖22, (7)

where Ct = {i | c
(i)
t ≥ thred} is the set of indexes of high-

confidence keypoints on the image It; c
(i)
t is the confidence

value of the ith keypoint p
(i)
t ; thred is 0.8 in our implemen-

tation. The projection function Π maps 3D joint positions

to 2D coordinates while Ji computes the 3D position of the

ith joint. Then, the temporal term ET is formulated as:

ET =

T−1
∑

t=1

‖M(Q̂t, tt)−M(Q̂t+1, tt+1)‖
2
2, (8)

where Q̂t and Q̂t+1 are two adjacent regressed quaternions

motion from our hybrid motion inference module. We uti-

lize temporal smoothing to enable globally consistent cap-

ture in 3D space. Moreover, we follow [75] to formulate the

silhouette term ES and please refer to [75] for more detail.

The constrained optimization problem to minimize the

Eqn. 5 is solved using the Levenberg-Marquardt (LM) algo-

rithm of ceres [1]. In all experiments, we use the following

empirically determined parameters: λ2D = 1.0, λT = 20.0
and λS = 0.3. Note that the initial tt for the mapping from

quaternions to skeletal poses is obtained through the pre-

processing stage in Sec. 4.1. To enable more robust opti-

mization, we first optimize the global translation tt for all
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Figure 4. 3D capturing results on challenging human motions. For each body motions, the top row shows the input images, the middle row

shows the captured body results on camera view, and the bottom row shows the rendering result of the captured body from side view.

the frames and then optimize the St. Such a flip-flop op-

timization strategy improves the overlay performance and

tracking accuracy, which jointly utilizes the 3D challenging

motion characteristics from the supervised multi-modal ref-

erences as well as the reliable 2D and silhouette information

from the input image references.

5. Experimental Results

In this section, we introduce our new dataset and evaluate

our ChallenCap in a variety of challenging scenarios.

ChallenCap Dataset. There are existing datasets for 3D

pose estimation and human performance capture, such as

the Human3.6M[27] dataset that contains 3D human poses

in daily activities, but it lacks challenging motions and tem-

plate human meshes. The AMASS [43] dataset provides

a variety of human motions using marker-based approach,

but the corresponding RGB videos are not provided. To

evaluate our method, we propose a new challenging hu-

man motion dataset containing 20 different characters with

a wide range of challenging motions such as dancing, box-

ing, gymnastic, exercise, basketball, yoga, rolling, leap,

etc(see Fig.5). We adopt a 12-view marker-based Vicon mo-

tion capture system to capture challenging human motions.

Each challenging motion consists of data from two modal-

ities: synchronized sparse-view RGB video sequences and

marker-based reference motion captured in an unsynchro-

nized manner.
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Camera

RGB
Camera

Figure 5. Illustration of our capturing system and examples of our

dataset. The left shows our capturing system, including four RGB

cameras (blue) for sparse-view image sequences and Vicon cam-

eras (red) for marker-based motion capture (partially annotated).

The right shows the animated meshes from the rigged character-

wise template models with various challenging motions.

Input HMR MonoPerfCap VIBE Ours

Figure 6. Qualitative comparison. Our results overlay better with

the input video frames than the results of other methods.

Table 1. Quantitative comparision of several methods in terms of

tracking accuracy and template mesh overlay.

Method MPJPE (mm)↓ PCK0.5(%)↑ PCK0.3↑ mIoU(%)↑
HMR [32] 154.3 77.2 68.9 57.0

VIBE [35] 116.7 83.7 71.8 73.7

MonoPerfCap [75] 134.7 77.4 65.6 65.5

Ours 52.6 96.6 87.4 83.6

5.1. Comparison

Our method enables more accurate motion capture for

challenging human motions. For further comparison, we do

experiments to demonstrate its effectiveness. We compare

the proposed ChallenCap method with several monocular

3D human motion capture methods. Specifically, we apply

MonoPerfCap [75] which is based on optimization. We also

apply HMR [32] and VIBE [35] where the latter also relies

on an adversarial learning framework. For fair comparisons,

we fine-tune HMR and VIBE with part of manually anno-

tated data from our dataset. As shown in Fig.6, our method

outperforms other methods in motion capture quality. Ben-

Input HMR MonoPerfCap VIBE Ours

Figure 7. Qualitative comparison with side views. Our method

maintains projective consistency in the side views while other

methods have misalignment errors.

Figure 8. Qualitative comparison between ChallenCap (green)

and MonoPerfCap (yellow) with reference-view verification. As

marked in the figure, MonoPerfCap misses limbs in the reference

view.

efiting from multi-modal references, our method performs

better on the overall scale and also gets better overlays of

the captured body.

As illustrated in Fig.7, we perform a qualitative compar-

ison with other methods on the main camera view and a cor-

responding side view. The figure shows that the side view

results of other methods wrongly estimated the global posi-

tion of arms or legs. This is mainly because our HybridNet

promotes capture results for challenging human motions in

the world frame.

Fig.8 shows the reference view verification results. We

capture challenging motions in the main view and verify the

result in a reference view with a rendered mesh. The figure

shows that even MonoPerfCap gets almost right 3D capture

results in the main camera view, the results in the reference

view show the misalignments on the limbs of the human

body.

Tab.1 shows the quantitative comparisons between our

method and state-of-the-art methods using different evalu-

ation metrics. We report the mean per joint position error

(MPJPE), the Percentage of Correct Keypoints (PCK), and
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Figure 9. Evaluation for the optimization stage. The figure shows

that our robust optimization stage improves the overlay perfor-

mance.

Table 2. Quantitative evaluations on different optimization config-

urations.

Method MPJPE↓ PCK0.5↑ PCK0.3 ↑
MonoPerfCap 134.7 77.4 65.6

Ours 106.5 92.8 82.2

Ours + optimization 52.6 96.6 87.4

the Mean Intersection-Over-Union (mIoU) results. Benefit-

ing from our multi-modal references, our method gets bet-

ter performance than optimization-based methods and other

data-driven methods.

5.2. Evaluation

We apply two ablation experiments. One verifies that it

is more effective to apply the robust optimization stage, the

other validates that the diligently-designed network struc-

ture and loss functions gain for the challenge human mo-

tions by comparing with other network structures.

Evaluation on optimization. Tab.2 shows the performance

of models with or without the optimization module. The

baseline 3D capture method is MonoPerfCap [75]. The ta-

ble demonstrates that whether the robust optimization stage

is applied, our method outperforms MonoPerfCap. As il-

lustrated in Fig.9, the obvious misalignment on the limb is

corrected when the robust optimization stage is applied.

Evaluation on network structure. We experiment with

several different network structures and loss design config-

urations, the results are demonstrated in Tab.3. The table

shows that even only using sparse-view loss or adversarial

loss, our method performs better than the simple encoder-

decoder network structure without the attention pooling de-

sign. It also outperforms VIBE. When using both sparse-

view loss and adversarial loss, our method gets 4% to 5% in-

crease for PCK-0.5 and 12 to 32 decrease for MPJPE, com-

pared with using only sparse-view or adversarial loss. The

experiment illustrates multi-modal references contribute a

lot to the improvement of results as illustrated in Fig. 10.

Input Ours + ℒ𝑠𝑠𝑠𝑠 Ours + ℒ𝑎𝑎𝑎𝑎𝑠𝑠 Ours finalVIBEEncoder-Decoder

Figure 10. Evaluation of our network structure. The figure shows

the effectiveness of both of our losses. Note that all experiments

are applied with the robust optimization stage. Results of the full

pipeline overlay more accurately with the input video frames.

Table 3. Quantitative evaluation of different network structure con-

figurations. Our full pipeline achieves the lowest error.

Method MPJPE ↓ PCK0.5 ↑ PCK0.3 ↑
Encoder-Decoder 109.1 85.7 81.5

VIBE 94.2 90.2 82.0

Ours + Lsv 64.3 92.5 84.1

Ours + Ladv 84.6 91.2 84.1

Ours + Lsv + Ladv 52.6 96.6 87.4

6. Discussion

Limitation. As the first trial to explore challenging human

motion capture with multi-modal references, the proposed

ChallenCap still owns limitations as follows. First, our

method relies on a pre-scanned template and cannot han-

dle topological changes like clothes removal. Our method

is also restricted to human reconstruction, without mod-

eling human-object interactions. It’s interesting to model

the human-object scenarios in a physically plausible way

to capture more challenging and complicated motions. Be-

sides, our current pipeline turns to utilize the references in

a two-stage manner. It’s a promising direction to formulate

the challenging motion capture problem in an end-to-end

learning-based framework.

Conclusion. We present a robust template-based approach

to capture challenging 3D human motions using only a sin-

gle RGB camera, which is in a novel two-stage learning-

and-optimization framework to make full usage of multi-

modal references. Our hybrid motion inference learns the

challenging motion details from various supervised refer-

ences modalities, while our robust motion optimization fur-

ther improves the tracking accuracy by extracting the reli-

able motion hints in the input image reference. Our experi-

mental results demonstrate the effectiveness and robustness

of ChallenCap in capturing challenging human motions in

various scenarios. We believe that it is a significant step to

enable robust 3D capture of challenging human motions,

with many potential applications in VR/AR, and perfor-

mance evaluation for gymnastics, sports, and dancing.
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