
DiNTS: Differentiable Neural Network Topology Search

for 3D Medical Image Segmentation

Yufan He1 Dong Yang2 Holger Roth2 Can Zhao2 Daguang Xu2

1Johns Hopkins University 2NVIDIA

Abstract

Recently, neural architecture search (NAS) has been ap-

plied to automatically search high-performance networks

for medical image segmentation. The NAS search space

usually contains a network topology level (controlling con-

nections among cells with different spatial scales) and a

cell level (operations within each cell). Existing meth-

ods either require long searching time for large-scale 3D

image datasets, or are limited to pre-defined topologies

(such as U-shaped or single-path) . In this work, we fo-

cus on three important aspects of NAS in 3D medical image

segmentation: flexible multi-path network topology, high

search efficiency, and budgeted GPU memory usage. A

novel differentiable search framework is proposed to sup-

port fast gradient-based search within a highly flexible

network topology search space. The discretization of the

searched optimal continuous model in differentiable scheme

may produce a sub-optimal final discrete model (discretiza-

tion gap). Therefore, we propose a topology loss to alleviate

this problem. In addition, the GPU memory usage for the

searched 3D model is limited with budget constraints dur-

ing search. Our Differentiable Network Topology Search

scheme (DiNTS) is evaluated on the Medical Segmentation

Decathlon (MSD) challenge, which contains ten challeng-

ing segmentation tasks. Our method achieves the state-of-

the-art performance and the top ranking on the MSD chal-

lenge leaderboard.

1. Introduction

Automated medical image segmentation is essential for

many clinical applications like finding new biomarkers and

monitoring disease progression. The recent developments

in deep neural network architectures have achieved great

performance improvements in image segmentation. Man-

ually designed networks, like U-Net [34], have been widely

used in different tasks. However, the diversity of medical

image segmentation tasks could be extremely high since the

image characteristics & appearances can be completely dis-

tinct for different modalities and the presentation of diseases

𝜷𝟐
𝜷𝟑
𝜷𝟏 0.1 0.9

0.9

0.8

0.1

0.1

0.9

0.1

0.1

0.8

0.1

0.9

0.1

0.1𝜷𝟏+𝜷𝟐+𝜷𝟑=1

Search Discretization

Continuous Model Discrete Model

Gap

Figure 1. Limitations of existing differentiable topology search

formulation. E.g. in Auto-DeepLab [21], each edge in the topol-

ogy search space is given a probability β. The probabilities of in-

put edges to a node sum to one, which means only one input edge

for each node would be selected. A single-path discrete model (red

path) is extracted from the continuous searched model. This can

result in a large “discretization gap” between the feature flow of

the searched continuous model and the final discrete model.

can vary considerably. This makes the direct application of

even a successful network like U-Net [34] to a new task less

likely to be optimal.

The neural architecture search (NAS) algorithms [49]

have been proposed to automatically discover the opti-

mal architectures within a search space. The NAS search

space for segmentation usually contains two levels: net-

work topology level and cell level. The network topology

controls the connections among cells and decides the flow

of the feature maps across different spatial scales. The cell

level decides the specific operations on the feature maps.

A more flexible search space has more potential to contain

better performing architectures.

In terms of the search methods in finding the optimal ar-

chitecture from the search space, evolutionary or reinforce-

ment learning-based [49, 33] algorithms are usually time

consuming. C2FNAS [45] takes 333 GPU days to search

one 3D segmentation network using the evolutionary-based

methods, which is too computationally expensive for com-

mon use cases. Differentiable architecture search [23] is

much more efficient and Auto-DeepLab [21] is the first

work to apply differentiable search for segmentation net-

work topology. However, Auto-DeepLab’s differentiable

formulation limits the searched network topology. As

shown in Fig. 1, this formulation assumes that only one in-

5841

put edge would be kept for each node. Its final searched

model only has a single path from input to output which

limits its complexity. Our first goal is to propose a new dif-

ferentiable scheme to support more complex topologies in

order to find novel architectures with better performance.

Meanwhile, the differentiable architecture search suffers

from the “discretization gap” problem [4, 38]. The dis-

cretization of the searched optimal continuous model may

produce a sub-optimal discrete final architecture and cause

a large performance gap. As shown in Fig. 1, the gap

comes from two sides: 1) the searched continuous model

is not binary, thus some operations/edges with small but

non-zero probabilities are discarded during the discretiza-

tion step; 2) the discretization algorithm has topology con-

straints (e.g. single-path), thus edges causing infeasible

topology are not allowed even if they have large probabili-

ties in the continuous model. Alleviating the first problem

by encouraging a binarized model during search has been

explored [5, 38, 27]. However, alleviating the second prob-

lem requires the search to be aware of the discretization al-

gorithm and topology constraints. In this paper, we propose

a topology loss in search stage and a topology guaranteed

discretization algorithm to mitigate this problem.

In medical image analysis, especially for some longitu-

dinal analysis tasks, high input image resolution and large

patch size are usually desired to capture miniscule longitu-

dinal changes. Thus, large GPU memory usage is a major

challenge for training with large high resolution 3D images.

Most NAS algorithms with computational constraints focus

on latency [1, 3, 18, 36] for real-time applications. How-

ever, real-time inference often is not a major concern com-

pared to the problem caused by huge GPU memory usage in

3D medical image analysis. In this paper, we propose addi-

tional GPU memory constraints in the search stage to limit

the GPU usage needed for retraining the searched model.

We validate our method on the Medical Segmentation

Decathlon (MSD) dataset [37] which contains 10 repre-

sentative 3D medical segmentation tasks covering differ-

ent anatomies and imaging modalities. We achieve state-

of-the-art results while only takes 5.8 GPU days (recent

C2FNAS [45] takes 333 GPU days on the same dataset).

Our contributions can be summarized as:

• We propose a novel Differentiable Network Topology

Search scheme DiNTS, which supports more flexible

topologies and joint two-level search.

• We propose a topology guaranteed discretization algo-

rithm and a discretization aware topology loss for the

search stage to minimize the discretization gap.

• We develop a memory usage aware search method

which is able to search 3D networks with different

GPU memory requirements.

• We achieve the new state-of-the-art results and top

ranking in the MSD challenge leaderboard while only

taking 1.7% of the search time compared to the NAS-

based C2FNAS [45].

2. Related Work

2.1. Medical Image Segmentation

Medical image segmentation faces some unique chal-

lenges like lacking manual labels and vast memory us-

age for processing 3D high resolution images. Compared

to networks used in natural images like DeepLab [2] and

PSPNet [46], 2D/3D UNet [34, 6] is better at preserving

fine details and memory friendly when applied to 3D im-

ages. VNet [26] improves 3D UNet with residual blocks.

UNet++ [47] uses dense blocks [13] to redesign skip con-

nections. H-DenseUNet [17] combines 2D and 3D UNet

to save memory. nnUNet [14] ensembles 2D, 3D, and cas-

caded 3D UNet and achieves state-of-the-art results on a

variety of medical image segmentation benchmarks.

2.2. Neural Architecture Search

Neural architecture search (NAS) focuses on designing

network automatically. The work in NAS can be catego-

rized into three dimensions: search space, search method

and performance estimation [8]. The search space defines

what architecture can be searched, which can be further di-

vided into network topology level and cell level. For image

classification, [23, 50, 22, 33, 31, 11] focus on searching op-

timal cells and apply a pre-defined network topology while

[9, 42] perform search on the network topology. In seg-

mentation, Auto-DeepLab [21] uses a highly flexible search

space while FasterSeg [3] proposes a low latency two level

search space. Both perform a joint two-level search. In

medical image segmentation, NAS-UNet [40], V-NAS [48]

and Kim et al [15] search cells and apply it to a U-Net-

like topology. C2FNAS [45] searches 3D network topol-

ogy in a U-shaped space and then searches the operation for

each cell. MS-NAS [44] applies PC-Darts [43] and Auto-

DeepLab’s formulation to 2D medical images.

Search method and performance estimation focus on

finding the optimal architecture from the search space. Evo-

lutionary and reinforcement learning has been used in [49,

33] but those methods require extremely long search time.

Differentiable methods [23, 21] relax the discrete architec-

ture into continuous representations and allow direct gradi-

ent based search. This is magnitudes faster and has been ap-

plied in various NAS works [23, 21, 43, 48, 44]. However,

converting the continuous representation back to the dis-

crete architecture causes the “discretization gap”. To solve

this problem, FairDARTS [5] and Tian et al [38] proposed

zero-one loss and entropy loss respectively to push the con-

tinuous representation close to binary. Some works [27, 12]

5842

1/2

1/4

1/8

1/16

1 IN

d2x

d2x

d2x

u2x

u2x

u2x

u2x

cell

d2x

+cell

cell

u2x

3D: 3x3x3

P3D: 3x3x1

P3D: 3x1x3

P3D: 1x3x3

skip

+

OUT

0 1 2 3 4 5 6 7 8 9 10 11 12

Topology Search Space Cell Search Space

d2x d2x

2x downsample

u2x u2x

2x upsample feature nodes 3x3x3 conv 3x3x3 conv, stride 2 direct pass1x1x1 conv

Scale

Figure 2. Our search space contains L=12 layers. The blue edges are the stem containing pre-defined operations. The cell operations are

defined on the edges while the nodes are feature maps. Edges in the topology search space that are selected for features to flow from input

to output form a candidate network topology. Each edge in the search space includes a cell which contains O=5 operations to select from.

A downsample/upsample edge also contains a 2× downsample/upsample operation.

use temperature annealing to achieve the same goal. An-

other problem of the differentiable method is the large

memory usage during search stage. PC-DARTS [43] uses

partial channel connections to reduce memory, while Auto-

DeepLab [21] reduces the filter number at search stage.

It’s a common practice to retrain the searched model while

increasing the filter number, batch size, or patch size to

gain better performance. But for 3D medical image seg-

mentation, the change of retraining scheme (e.g. transfer-

ring to a new task which requires larger input size) can

still cause out-of-memory problem. Most NAS work has

been focused on searching architecture with latency con-

straints [1, 3, 18, 36], while only a few considered memory

as a constraint. Mem-NAS [24] uses a growing and trim-

ming framework to constrain the inference GPU memory

but does not allow integration in a differentiable scheme.

3. Method

3.1. Network Topology Search Space

Inspired by Auto-Deeplab [21] and [19], we propose a

search space with fully connected edges between adjacent

resolutions (2× higher, 2× lower or the same) from adja-

cent layers as shown in Fig. 2. A stack of multi-resolution

images are generated by down-sampling the input image

by 1/2, 1/4, 1/8 along each axis. Together with the orig-

inal image, we use four 3 × 3 × 3 3D convolutions with

stride 2 to generate multi-resolution features (layer 0 in

Fig. 2) to the following search space. The search space

has L layers and each layer consists of feature nodes (green

nodes) from D=4 resolutions and E=3D-2 candidate input

edges (dashed green edges). Each edge contains a cell op-

eration, and a upsample/downsample operation (factor 2) is

used before the cell if the edge is an upsample/downsample

edge. A feature node is the summation of the output features

from each input edge. Compared to Auto-DeepLab [21],

our search space supports searching for input image scales

0 1 2 3 4 5 6 7 8 9 10 11 12

(a) Multi-path topology: UNet [35]
0 1 2 3 4 5 6 7 8 9 10 11 12

(b) Single-path topology: Auto-DeepLab [21]
0 1 2 3 4 5 0 1 2 3 4 5

(c) Multi-resolution input [20] and Input selection

Figure 3. Our search space covers a variety of topologies (single-

path, multi-path) and can select input resolutions.

and complex multi-path topologies, as shown in Fig. 3.

As for multi-path topology, MS-NAS [44] discretizes and

combines multiple single-path models searched from Auto-

DeepLab’s framework, but the search is still unaware of

the discretization thus causing the gap. [19] also supports

multi-path topology, but [19] is more about feature routing

in a “fully connected” network, not a NAS method.

3.2. Cell Level Search Space

We define a cell search space to be a set of basic opera-

tions where the input and output feature maps have the same

spatial resolution. The cell search space in DARTS [23]

and Auto-Deeplab [21] contains multiple blocks and the

connections among those blocks can also be searched.

However, the searched cells are repeated over all the cells

5843

in the network topology level. Similar to C2FNAS [45],

our algorithm searches the operation of each cell indepen-

dently, with one operation selected from the following:

(1) skip connection (2) 3x3x3 3D convolution

(3) P3D 3x3x1: 3x3x1 followed by 1x1x3 convolution

(4) P3D 3x1x3: 3x1x3 followed by 1x3x1 convolution

(5) P3D 1x3x3: 1x3x3 followed by 3x1x1 convolution

P3D represents pseudo 3D [32] and has been used in

V-NAS [48]. A cell also includes ReLU activation and

Instance Normalization [39] which are used before and

after those operations respectively (except for skip con-

nection). The cell operations do not include multi-scale

feature aggregation operations like atrous convolution and

pooling. The feature spatial changes are performed by the

upsample/downsample operations in the edges searched

from the topology level.

3.3. Continuous Relaxation and Discretization

3.3.1 Preliminaries

We briefly recap the relaxation in DARTS [23]. NAS tries

to select one from N candidate operations O1, O2, · · · , ON

for each computational node. Each operation Oi is paired

with a trainable parameter αi where
∑N

i=1 αi = 1, αi ≥ 0,

and the output feature xout =
∑N

i=1 αiOi(xin), where xin

is the input feature. Thus, the discrete operation is relaxed

by the continuous representation α which can be optimized

using gradient descent. After optimization, Oi with larger

αi is more important and will be selected. However, a small

αj (as long as αj 6= 0) can still make a significant difference

on xout and following layers. Therefore, directly discarding

non-zero operations will lead to the discretization gap.

Auto-DeepLab [21] extends this idea to edge selection in

network topology level. As illustrated in Fig. 1, every edge

is paired with a trainable parameter β (0 ≥ β ≥ 1), and

parameters paired with edges that pointed to the same fea-

ture node sum to one. This is based on an assumption that

“one input edge for each node” because the input edges to

a node are competing with each other. After discretization,

a single path is kept while other edges, even with a large β,

are discarded. This means the feature flow in the searched

continuous model has a significant gap with the feature flow

in the final discrete model. The single-path topology limita-

tion comes from the previous assumption for topology level

relaxation while the gap comes from the unawareness of the

discretization in the search stage, such that edges with large

probabilities can be discarded due to topology.

3.3.2 Sequential Model with Super Feature Node

We propose a network topology relaxation framework

which converts the multi-scale search space into a sequen-

tial space using “Super Feature Node”. For a search space

with L layers and D resolution levels, these D feature nodes

𝒔𝟎 𝒔𝟏 𝒔𝑳−𝟏 𝒔𝑳
select one from 𝒄𝟏𝟏, 𝒄𝟐𝟏, ⋯ , 𝒄𝑴𝟏 with probability 𝜼𝟏𝟏, 𝜼𝟐𝟏, ⋯ , 𝜼𝑴𝟏

𝒄𝑴𝟏

𝒄𝟏𝟏
𝒄𝒊𝟏

𝒄𝑴𝑳

𝒄𝟏𝑳
𝒄𝒊𝑳

Original Sequential

𝑫

𝑳𝒔𝟎 𝒔𝟏 𝒔𝑳𝒔𝑳−𝟏
Figure 4. The feature nodes at the same layer i are combined as a

super node si. A set of selected edges (e.g. red edges in a dashed

yellow block) that connects si−1 and si is a “connection”. For

E edges, there are M = 2E − 1 connection patterns. Topology

search becomes selecting one connection pattern to connect adja-

cent super nodes sequentially.

in the same layer i are combined as a super feature node si
and features flow sequentially from these L super nodes as

shown in Fig. 4. There are E=3D-2 candidate input edges

to each super node and the topology search is to select an

optimal set of input edges for each super node. We define

a connection pattern as a set of selected edges and there are

M = 2E − 1 feasible candidate connection patterns. The

j-th connection pattern cpj is an indication vector of length

E, where cpj(e) = 1, if e-th edge is selected in j-th pattern.

We define the input connection operation to si with con-

nection pattern cpj as cij . cpj defines cij’s topology while

cij also includes cell operations on the selected edges in cpj .

cij , c
i+1
k means the input/output connection patterns for si

are cpj , cpk respectively. Under this formulation, the topol-

ogy search becomes selecting an input connection pattern

for each super node and the competition is among all M
connection patterns, not among edges. We associate a vari-

able ηij to the connection operation cij for every si and every

pattern j. Denote the input features at layer 0 as s0, we have

a sequential feature flow equation:

si =

M
∑

j=1

(ηij ∗ c
i
j(si−1)) i = 1 · · · , L (1)

M
∑

j=1

ηij = 1, ηj ≥ 0 ∀i, j

ηij =

∏E

e=1(1− pie)
1−cpj(e)(pie)

cpj(e)

∑M

j=1

∏E

e=1(1− pie)
1−cpj(e)(pie)

cpj(e)
(2)

0 ≤ pie ≤ 1 ∀i, e

However, M is growing exponentially with D. To reduce

the architecture parameters, we parameterize ηij with a set

of edge probability parameters pie, e=1, · · · , E in Eq. 2.

5844

For a search space with L=12 layers and D=4, the net-

work topology parameter number is reduced from M×L =
1023 × 12 to E × L = 10 × 12. Under this formulation,

the probability η of connections are highly correlated. If

an input edge e to si has low probability, all the candidate

patterns to si with e selected will have lower probabilities.

For cell operation relaxation, we use the method in

Sec. 3.3.1. Each cell on the input edge e to si has its own

cell architecture parameters αi,e
1 , αi,e

2 , · · · , αi,e
N and will be

optimized. Notice the cij in Eq. 1. contains the cell opera-

tions defined on the selected edges, and it contains relaxed

cell architecture parameters α. Thus we can perform gradi-

ent based search for topology and cell levels jointly.

3.3.3 Discretization with Topology Constraints

After training, the final discrete architecture is derived from

the optimized continuous architecture representation η (de-

rived from pie) and α. ηji represents the probability of using

input connection pattern cpij for super node si. Since the

network topology search space is converted into a sequen-

tial space, the easiest way for topology discretization is to

select cpj with the maximum ηij . However, the topology

may not be feasible. We define topology infeasibility as:

“a feature node has an input edge but no output edge or

has an output edge but no input edge”.

The gray feature nodes in Fig. 5 indicate infeasible topol-

ogy. Therefore, we cannot select cpj and cpk as si’s in-

put/output connection patterns even if they have the largest

probabilities. For every connection pattern cpj , we generate

a feasible set F(j). If a super node with input pattern j and

output pattern k is feasible (all feature nodes of the super

node are topologically feasible), then k ∈ F(j). Denote the

array of selected input connection pattern indexes for these

L super nodes as I , and the topology discretization can be

performed by sampling I from its distribution p(I) using

maximum likelihood (minimize negative log likelihood):

p(I) =

{

∏L

i=1 η
I(i)
i , ∀i : I(i+ 1) ∈ F(I(i))

0, else.
(3)

I = argmin
I

L
∑

i=1

-log(η
I(i)
i), ∀i : I(i+ 1) ∈ F(I(i)) (4)

We build a directed graph G using η and F as illustrated in

Fig. 5. The nodes (yellow blocks) of G are connection oper-

ations and the input edge cost to a node cij in G is −log(ηij).
The path with minimum cost from the source to the sink

nodes (green nodes with gray contour) corresponds to Eq. 4,

and we obtained the optimal I using Dijkstra algorithm [7].

For cell operations on the selected edges from I , we simply

use the operation with the largest α.

𝒔𝒊+𝟏𝒔𝒊𝒄𝒋𝒊 𝒄𝒌𝒊+𝟏

𝑐11
𝑐𝑖1
𝑐𝑀1

𝑐12
𝑐𝑖2
𝑐𝑀2

-log(𝜼𝟏𝟏)
-log(𝜼𝒊𝟏)

-log(𝜼𝑴𝟏)

-log(𝜼𝟏𝟐)
-log(𝜼𝟏𝟐)
-log(𝜼𝒊𝟐)

-log(𝜼𝒊𝟐)
-log(𝜼𝑴𝟐)

0.001

0.001

0.001

𝑐1𝐿
𝑐𝑖𝐿
𝑐𝑀𝐿

sinksource

𝑳 layers

Figure 5. Left: The gray feature nodes are topologically infeasible,

thus connection pattern index k is not in j’s feasible set, k /∈ F(j).
Right: A directed graph G which contains L×M+2 nodes. A node

cij (yellow block) is connected with ci+1

k and ci−1
m if j ∈ F(m)

and k ∈ F(j). The cost of edges directed to cij is -logηi
j . The

source connects to all first layer nodes and all L-th layer nodes

connect to the sink (edge cost is a constant value). Those L nodes

on the shortest path from source to sink (red path) in G represent

the optimal feasible connection operations (final architecture).

3.4. Bridging the Discretization Gap

To minimize the gap between the continuous represen-

tation and the final discretized architecture, we add entropy

losses to encourage binarization of α and η:

Lα =
−1

L ∗ E ∗N

L
∑

i=1

E
∑

e=1

N
∑

n=1

αi,e
n ∗ log(αi,e

n)

Lη =
−1

L ∗M

L
∑

i=1

M
∑

j=1

ηij ∗ log(η
i
j)

(5)

However, even if the architecture parameters α and η are

almost binarized, there may still be a large gap due to the

topology constraints in the discretization algorithm. Recall

the definition of topology feasibility in Sec. 3.3.3: an acti-

vated feature node (node with at least one input edge) must

have an output edge while an in-activated feature node can-

not have an output edge. Each super node has D feature

nodes, thus there are 2D − 1 node activation pattern. We

define A as the set of all node activation patterns. Each el-

ement a ∈ A is a indication function of length D, where

a(i) = 1 if the i-th node of the super-node is activated. We

further define two sets Fin(a) and Fout(a) representing all

feasible input and output connection pattern indexes for a

super node with node activation a as shown in Fig. 6. We

propose the following topology loss:

piin(a) =
∑

j∈Fin(a)

ηij , piout(a) =
∑

j∈Fout(a)

ηi+1
j (6)

Ltp = −
L−1
∑

i=1

∑

a∈A

(piin(a)log(piout(a)) +

(1− piin(a))log(1− piout(a))) (7)

piin(a) is the probability that the activation pattern for si
is a, and piout(a) is the probability that si with pattern a

5845

Node Activation 𝒂=[0,1,1]ℱ𝒊𝒏(𝒂) ℱ𝒐𝒖𝒕(𝒂)
Figure 6. The connection patterns in Fin(a) activates pattern a,

and all feasible output connection patterns are in Fout(a). a =
[0, 1, 1] means the last two nodes of the super-node are activated.

is feasible. By minimizing Ltp, the search stage is aware

of the topology constraints and encourages all super nodes

to be topologically feasible, thus reduce the gap caused by

topology constraints in the discretization step.

3.5. Memory Budget Constraints

The searched model is usually retrained under differ-

ent training settings like patch size, filter number, or tasks.

Auto-DeepLab [21] used 4× larger image patch and 6×
more filters in retraining compared to the search stage. But

this can cause out of memory problem for 3D images in re-

training, thus we consider memory budget in architecture

search. A cell’s expected memory usage is estimated by

M i,e =
∑N

n=1 α
i,e
n Mn. Mn is the memory usage of opera-

tion On (estimated by tensor size [10]) defined in Sec. 3.2.

The expected memory usage Me of the searched model is:

Me =

L
∑

i=1

M
∑

j=1

ηij ∗ (
E
∑

e=1

M i,e ∗ cpj(e)) (8)

Similar to [19], we consider the budget as the percentage σ
of the maximum memory usage Ma, of which all α and η
equal to one.

Ma =

L
∑

i=1

M
∑

j=1

∗(
E
∑

e=1

(

N
∑

n=1

Mn) ∗ cpj(e)) (9)

Lm = |Me/Ma − σ|1 (10)

3.6. Optimization

We adopt the same optimization strategy as in

DARTS [23] and Auto-DeepLab [21]. We partition the

training set into train1 and train2, and optimize the network

weights w (e.g. convolution kernels) using Lseg on train1

and network architecture weights α and pe using Larch on

train2 alternately. The loss Lseg for w is the evenly sum of

dice and cross-entropy loss [45] in segmentation, while

Larch = Lseg + t/tall ∗ (Lα +Lη + λ ∗ Ltp +Lm) (11)

t and tall are the current and total iterations for architecture

optimization such that the searching is focusing more on

Lseg at the starting point. We empirically scale Ltp to the

same range with other losses by setting λ=0.001.

4. Experiments

We conduct experiments on the MSD dataset [37] which

is a comprehensive benchmark for medical image segmen-

tation. It contains ten segmentation tasks covering different

anatomies of interest, modalities and imaging sources (insti-

tutions) and is representative for real clinical problems. Re-

cent C2FNAS [45] reaches state-of-the-art results on MSD

dataset using NAS based methods. We follow its experi-

ment settings by searching on the MSD Pancreas dataset

and deploying the searched model on all 10 MSD tasks

for better comparison. All images are resampled to have

a 1.0× 1.0× 1.0 mm3 voxel resolution.

4.1. Implementation Details

Our search space has L=12 layers and D=4 resolution

levels as shown in Fig. 2. The stem cell at scale 1 has 16

filters and we double the filter number when decreasing the

spatial size by half in each axis. The search is conducted on

Pancreas dataset following the same 5 fold data split (4 for

training and last 1 for validation) as C2FNAS [45]. We use

SGD optimizer with momentum 0.9, weight decay of 4e-5

for network weights w. We train w for the first one thou-

sand (1k) warm-up and following 10k iterations without up-

dating architecture. The architecture weights α, pe are ini-

tialized with Gaussian N (1, 0.01),N (0, 0.01) respectively

before softmax and sigmoid. In the following 10k iterations,

we jointly optimize w with SGD and α, pe with Adam opti-

mizer [16] (learning rate 0.008, weight decay 0). The learn-

ing rate of SGD linearly increases from 0.025 to 0.2 in the

first 1k warm-up iterations, and decays with factor 0.5 at the

following [8k, 16k] iterations. The search is conducted on

8 GPUs with batch size 8 (each GPU with one 96×96×96

patch). The patches are randomly augmented with 2D rota-

tion by [90, 180, 270] degrees in the x-y plane and flip in all

three axis. The total training iterations, SGD learning rate

scheduler and data pre-processing and augmentation are the

same with C2FNAS [45]. After searching, the discretized

model is randomly initialized and retrained with doubled fil-

ter number and doubled batch size to match C2FNAS [45]’s

setting. We use the SGD optimizer with 1k warm-up and

40k training iterations and decay the learning rate by a fac-

tor of 0.5 at [8k, 16k, 24k, 32k] iterations after warm-up.

The learning rate scheduler is the same with search stage

in the warm-up and the first 20k iterations. The latter 20k

iterations are for better convergence and match the 40k to-

tal retraining iterations used in C2FNAS [45]. The same

data augmentation as C2FNAS (also the same as the search

stage) is used for the Pancreas dataset for better compari-

son. To test the generalizability of the searched model, we

retrain the model on all of the rest nine tasks. Some tasks in

the MSD dataset contain very few training data so we use

additional basic 2D data augmentations of random rotation,

scaling and gamma correction for all nine tasks. We use

5846

Table 1. Comparison of FLOPs, Parameters and Retraining GPU

memory usage and the 5-Fold cross validation Dice-Sørensen

score of our searched architectures on Pancreas dataset

Model
FLOPs

(G)

Params.

(M)

Memory

(MB)
DSC1 DSC2 Avg.

3D UNet [6] (nn-UNet) 658 18 9176 - - -

Attention UNet [28] 1163 104 13465 - - -

C2FNAS [45] 151 17 5730 - - -

DiNTS (σ=0.2) 146 163 5787 77.94 48.07 63.00

DiNTS (σ=0.5) 308 147 10110 80.20 52.25 66.23

DiNTS (σ=0.8) 334 152 13018 80.06 52.53 66.29

0 1 2 3 4 5 6 7 8 9 10 11 12

Skip 3x3x3 P3D 3x3x1 P3D 3x1x3 P3D 1x3x3

(a) Searched architecture with σ = 0.8
0 1 2 3 4 5 6 7 8 9 10 11 12

Skip 3x3x3 P3D 3x3x1 P3D 3x1x3 P3D 1x3x3

(b) Searched architecture with σ = 0.5
0 1 2 3 4 5 6 7 8 9 10 11 12

Skip 3x3x3 P3D 3x3x1 P3D 3x1x3 P3D 1x3x3

(c) Searched architecture with σ = 0.2

Figure 7. Searched architectures (not including the stem in Fig. 2)

on Pancreas dataset with varying memory constraints.

patch size 96× 96× 96 and stride 16× 16× 16 for all ten

tasks except Prostate and Hippocampus. Prostate data has

very few slices (less than 40) in the z-axis, so we use patch

size 96×96×32 and stride 16×16×4. Hippocampus data

size is too small (around 36 × 50 × 35) and we use patch

size 32×32×32 and stride 4×4×4. Post-processing with

largest connected component is also applied.

4.2. Pancreas Dataset Search Results

The search takes 5.8 GPU days while C2FNAS takes 333

GPU days on the same dataset (both using 8 16GB V100

GPU). We vary the memory constraints σ = [0.2, 0.5, 0.8]
and show the search results in Fig. 7. The searched

models have highly flexible topology which are searched

jointly with the cell level. The 5-fold cross-validation re-

sults on Pancreas are shown in Table 1. By increasing

σ, the searched model is more “dense in connection” and

can achieve better performance while requiring more GPU

memory (estimated using PyTorch [29] functions in train-

ing described in Sec. 4.1). The marginal performance drop

by decreasing σ = 0.8 to σ = 0.5 shows that we can reduce

memory usage without losing too much accuracy. Although

techniques like mixed-precision training [25] can be used

to further reduce memory usage, our memory aware search

tries to solve this problem from NAS perspective. Com-

pared to nnUNet [14] (represented by 3D UNet because it

ensembles 2D/3D/cascaded-3D U-Net differently for each

task) and C2FNAS in Table 1, our searched models have no

advantage in FLOPs and Parameters which are important in

mobile settings. We argue that for medical image analysis,

light model and low latency are less a focus than better GPU

memory usage and accuracy. Our DiNTS can optimize the

usage of the available GPU and achieve better performance.

4.3. Segmentation Results on MSD

The searched model with σ = 0.8 from Pancreas is used

for retraining and testing on all ten tasks of MSD dataset.

Similar to the model ensemble used in nnUNet [14] and

C2FNAS [45], we use a 5 fold cross validation for each task

and ensemble the results using majority voting. The largest

connected component post-processing in nnUNet [14] is

also applied. The Dice-Sørensen (DSC) and Normalised

Surface Distance (NSD) as used in the MSD challenge are

reported for the test set in Table 2. nnUNet [14] uses ex-

tensive data augmentation, different hyper-parameters like

patch size, batch size for each task and ensembles net-

works with different architectures. It focuses on hyper-

parameter selection based on hand-crafted rules and is the

champion of multiple medical segmentation challenges in-

cluding MSD. Our method and C2FNAS [45] focus on ar-

chitecture search and use consistent hyper-parameters and

basic augmentations for all ten tasks. We achieved better

results than C2FNAS [45] in all tasks with similar hyper-

parameters while only takes 1.7% searching time. Com-

paring to nn-UNet [14], we achieve much better perfor-

mance on challenging datasets like Pancrease, Brain and

Colon, while worse on smaller datasets like Heart (10

test cases), Prostate (16 test cases) and Spleen (20 test

cases). Task-specific hyper-parameters, test-time augmen-

tation, extensive data augmentation and ensemble more

models as used in nn-UNet [14] might be more effective

on those small datasets than our unified DiNTS searched

architecture. Overall, we achieved the best average results

and top ranking in the MSD challenge leaderboard, show-

ing that a non-UNet based topology can achieve superior

performance in medical imaging.

4.4. Ablation Study

4.4.1 Search on Different Datasets

The models in Sec. 4.2 and Sec. 4.3 are searched from the

Pancreas dataset (282 CT 3D training images). To test the

generalizability of DiNTS, we perform the same search as

in Sec. 4.1 on Brain (484 MRI data), Liver (131 CT data)

5847

Brain

Metric DSC1 DSC2 DSC3 Avg. NSD1 NSD2 NSD3 Avg.

CerebriuDIKU [30] 69.52 43.11 66.74 59.79 88.25 68.98 88.90 82.04

NVDLMED [41] 67.52 45.00 68.01 60.18 86.99 69.77 89.82 82.19

Kim et al [15] 67.40 45.75 68.26 60.47 86.65 72.03 90.28 82.99

nnUNet [14] 68.04 46.81 68.46 61.10 87.51 72.47 90.78 83.59

C2FNAS [45] 67.62 48.60 69.72 61.98 87.61 72.87 91.16 83.88

DiNTS 69.28 48.65 69.75 62.56 89.33 73.16 91.69 84.73

Heart Liver

Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg.

CerebriuDIKU [30] 89.47 90.63 94.27 57.25 75.76 96.68 72.60 84.64

NVDLMED [41] 92.46 95.57 95.06 71.40 83.23 98.26 87.16 92.71

Kim et al [15] 93.11 96.44 94.25 72.96 83.605 96.76 88.58 92.67

nnUNet [14] 93.30 96.74 95.75 75.97 85.86 98.55 90.65 94.60

C2FNAS [45] 92.49 95.81 94.98 72.89 83.94 98.38 89.15 93.77

DiNTS 92.99 96.35 95.35 74.62 84.99 98.69 91.02 94.86

Lung Hippocampus

Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg.

CerebriuDIKU [30] 58.71 56.10 89.68 88.31 89.00 97.42 97.42 97.42

NVDLMED [41] 52.15 50.23 87.97 86.71 87.34 96.07 96.59 96.33

Kim et al [15] 63.10 62.51 90.11 88.72 89.42 97.77 97.73 97.75

nnUNet [14] 73.97 76.02 90.23 88.69 89.46 97.79 97.53 97.66

C2FNAS [45] 70.44 72.22 89.37 87.96 88.67 97.27 97.35 97.31

DiNTS 74.75 77.02 89.91 88.41 89.16 97.76 97.56 97.66

Spleen Prostate

Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg.

CerebriuDIKU [30] 95.00 98.00 69.11 86.34 77.73 94.72 97.90 96.31

NVDLMED [41] 96.01 99.72 69.36 86.66 78.01 92.96 97.45 95.21

Kim et al [15] 91.92 94.83 72.64 89.02 80.83 95.05 98.03 96.54

nnUNet [14] 97.43 99.89 76.59 89.62 83.11 96.27 98.85 97.56

C2FNAS [45] 96.28 97.66 74.88 88.75 81.82 98.79 95.12 96.96

DiNTS 96.98 99.83 75.37 89.25 82.31 95.96 98.82 97.39

Colon Hepatic Vessels

Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg.

CerebriuDIKU [30] 28.00 43.00 59.00 38.00 48.50 79.00 44.00 61.50

NVDLMED [41] 55.63 66.47 61.74 61.37 61.56 81.61 68.82 75.22

Kim et al [15] 49.32 62.21 62.34 68.63 65.485 83.22 78.43 80.825

nnUNet [14] 58.33 68.43 66.46 71.78 69.12 84.43 80.72 82.58

C2FNAS [45] 58.90 72.56 64.30 71.00 67.65 83.78 80.66 82.22

DiNTS 59.21 70.34 64.50 71.76 68.13 83.98 81.03 82.51

Pancreas Overall

Metric DSC1 DSC2 Avg. NSD1 NSD2 Avg. DSC NSD

CerebriuDIKU [30] 71.23 24.98 48.11 91.57 46.43 69.00 67.01 77.86

NVDLMED [41] 77.97 44.49 61.23 94.43 63.45 78.94 72.78 83.26

Kim et al [15] 80.61 51.75 66.18 95.83 73.09 84.46 74.34 85.12

nnUNet [14] 81.64 52.78 67.21 96.14 71.47 83.81 77.89 88.09

C2FNAS [45] 80.76 54.41 67.59 96.16 75.58 85.87 76.97 87.83

DiNTS 81.02 55.35 68.19 96.26 75.90 86.08 77.93 88.68

Table 2. Dice-Sørensen score (DSC) and Normalised Surface Dis-

tance (NSD) results on the MSD test dataset (numbers from MSD

challenge live leaderboard).

Test Dataset Brain Liver Lung

Search Dataset Brain Pancreas Liver Pancreas Lung Pancreas

DSC1 80.20 79.68 94.15 94.12 69.30 68.90

DSC2 61.09 60.67 58.74 57.86 - -

DSC3 77.63 77.48 - - - -

Avg. 72.97 72.61 76.44 75.99 69.30 68.90

Table 3. Dice-Sørensen score (DSC) of 5-fold cross validation on

Brain, Liver and Lung datasets of architectures searched from Pan-

creas, Brain, Liver and Lung datasets with σ = 0.8.

and Lung (64 CT data) covering big, medium and small

datasets. The results are shown in Table. 3 and demonstrate

the good generalizability of our DiNTS.

4.4.2 Necessity of Topology Loss

As illustrated in Sec. 1, the discretization algorithm discards

topologically infeasible edges (even with large probabili-

1 2 3 4 5 6 7 8 9 10
iteration(x1000)

0

2

4

6

8

10

12

14

16

18

20

G

=0.2, Ltp
=0.2
=0.5, Ltp
=0.5
=0.8, Ltp
=0.8

Figure 8. The indication G of discretization gap during archi-

tecture search with different memory constraints σ. With topol-

ogy loss (dashed line), G is decreased compared to no topology

loss (solid line), showing the importance of topology loss.

ties), which causes a gap between feature flow in the op-

timized continuous model (Eq. 1) and the discrete model.

Our topology loss encourages connections with large prob-

abilities to be feasible, thus will not be discarded and caus-

ing the gap. We denote Cmax as the topology decoded by

selecting connection j with largest ηij for each layer i (can

be infeasible). Ctop is the topology decoded by our dis-

cretization algorithm. Cmax, Ctop are the indication matri-

ces of size [L,E] representing whether an edge is selected,

and G =
∑L

i=1

∑E

e=1 |Cmax(i, e) − Ctop(i, e)|. Larger G
represents larger gap between the feature flow before and

after discretization. Fig. 8 shows the change of G during

search with/without topology loss under different memory

constraints. With topology loss, the gap between Cmax and

Ctop is reduced, and it’s more crucial for smaller σ where

the searched architecture is more sparse and more likely to

have topology infeasibility.

5. Conclusions

In this paper, we present a novel differentiable network
topology search framework (DiNTS) for 3D medical
image segmentation. By converting the feature nodes
with varying spatial resolution into super nodes, we are
able to focus on connection patterns rather than individual
edges, which enables more flexible network topologies
and a discretization aware search framework. Medical
image segmentation challenges have been dominated by
U-Net based architectures [14], even NAS-based C2FNAS
is searched within a U-shaped space. DiNTS’s topology
search space is highly flexible and achieves the best
performance on the benchmark MSD challenge using
non-UNet architectures, while only taking 1.7% search
time compared to C2FNAS. Since directly converting
Auto-DeepLab [21] to the 3D version will have memory
issues, we cannot fairly compare with it. For future work,
we will test our proposed algorithm on 2D natural image
segmentation benchmarks and explore more complex cells.

5848

References

[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,

2019.

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, pages 801–818, 2018.

[3] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang,

Yuan Li, and Zhangyang Wang. Fasterseg: Searching for

faster real-time semantic segmentation. ICLR, 2020.

[4] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1294–

1303, 2019.

[5] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.

Fair darts: Eliminating unfair advantages in differentiable ar-

chitecture search. arXiv preprint arXiv:1911.12126, 2019.

[6] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning

dense volumetric segmentation from sparse annotation. In

MICCAI, pages 424–432. Springer, 2016.

[7] Edsger W Dijkstra. A note on two problems in connexion

with graphs. Numerische mathematik, 1(1):269–271, 1959.

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.

Neural architecture search: A survey. JMLR, 2019.

[9] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,

and Xinggang Wang. Densely connected search space for

more flexible neural architecture search. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10628–10637, 2020.

[10] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao

Zhu, Haoxiang Lin, and Mao Yang. Estimating gpu mem-

ory consumption of deep learning models. Technical report,

Microsoft, May 2020.

[11] Yu-Chao Gu, Yun Liu, Yi Yang, Yu-Huan Wu, Shao-Ping

Lu, and Ming-Ming Cheng. Dots: Decoupling operation and

topology in differentiable architecture search. arXiv preprint

arXiv:2010.00969, 2020.

[12] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jian-

ping Shi, Xunying Liu, and Dahua Lin. Dsnas: Direct neural

architecture search without parameter retraining. In CVPR,

pages 12084–12092, 2020.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In CVPR, pages 4700–4708, 2017.

[14] Fabian Isensee, Paul F Jäger, Simon AA Kohl, Jens Petersen,

and Klaus H Maier-Hein. Automated design of deep learning

methods for biomedical image segmentation. arXiv preprint

arXiv:1904.08128, 2019.

[15] Sungwoong Kim, Ildoo Kim, Sungbin Lim, Woonhyuk

Baek, Chiheon Kim, Hyungjoo Cho, Boogeon Yoon, and

Taesup Kim. Scalable neural architecture search for 3d

medical image segmentation. In MICCAI, pages 220–228.

Springer, 2019.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015.

[17] Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing

Fu, and Pheng-Ann Heng. H-denseunet: hybrid densely con-

nected unet for liver and tumor segmentation from ct vol-

umes. TMI, 37(12):2663–2674, 2018.

[18] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial

order pruning: for best speed/accuracy trade-off in neural

architecture search. In CVPR, pages 9145–9153, 2019.

[19] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu

Zhang, Xingang Wang, and Jian Sun. Learning dynamic

routing for semantic segmentation. In CVPR, pages 8553–

8562, 2020.

[20] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian

Reid. Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In CVPR, July 2017.

[21] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In CVPR, pages 82–92, 2019.

[22] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, pages 19–34, 2018.

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. ICLR, 2019.

[24] Peiye Liu, Bo Wu, Huadong Ma, and Mingoo Seok. Mem-

nas: Memory-efficient neural architecture search with grow-

trim learning. In CVPR, pages 2108–2116, 2020.

[25] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory

Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael

Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed

precision training. ICLR, 2018.

[26] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In 3DV, pages 565–571. IEEE,

2016.

[27] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong

Jin, and Lihi Zelnik. Xnas: Neural architecture search with

expert advice. In NeurIPS, pages 1977–1987, 2019.

[28] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee,

Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven

McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Atten-

tion u-net: Learning where to look for the pancreas. MIDL,

2018.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, pages 8026–8037, 2019.

[30] Mathias Perslev, Erik Bjørnager Dam, Akshay Pai, and

Christian Igel. One network to segment them all: A general,

lightweight system for accurate 3d medical image segmenta-

tion. In MICCAI, pages 30–38. Springer, 2019.

5849

[31] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. ICML, 2018.

[32] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In ICCV, pages 5533–5541, 2017.

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241. Springer, 2015.

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241. Springer, 2015.

[36] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy

Sidhu. Squeezenas: Fast neural architecture search for faster

semantic segmentation. In ICCV Workshops, Oct 2019.

[37] Amber L Simpson, Michela Antonelli, Spyridon Bakas,

Michel Bilello, Keyvan Farahani, Bram Van Ginneken, An-

nette Kopp-Schneider, Bennett A Landman, Geert Litjens,

Bjoern Menze, et al. A large annotated medical image dataset

for the development and evaluation of segmentation algo-

rithms. arXiv preprint arXiv:1902.09063, 2019.

[38] Yunjie Tian, Chang Liu, Lingxi Xie, Jianbin Jiao, and Qix-

iang Ye. Discretization-aware architecture search. arXiv

preprint arXiv:2007.03154, 2020.

[39] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv:1607.08022, 2016.

[40] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-

unet: Neural architecture search for medical image segmen-

tation. IEEE Access, 7:44247–44257, 2019.

[41] Yingda Xia, Fengze Liu, Dong Yang, Jinzheng Cai, Lequan

Yu, Zhuotun Zhu, Daguang Xu, Alan Yuille, and Holger

Roth. 3d semi-supervised learning with uncertainty-aware

multi-view co-training. In WACV, pages 3646–3655, 2020.

[42] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-

ing He. Exploring randomly wired neural networks for im-

age recognition. In ICCV, pages 1284–1293, 2019.

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient differentiable architecture

search. ICLR, 2020.

[44] Xingang Yan, Weiwen Jiang, Yiyu Shi, and Cheng Zhuo.

Ms-nas: Multi-scale neural architecture search for medical

image segmentation. In International Conference on Med-

ical Image Computing and Computer-Assisted Intervention,

pages 388–397. Springer, 2020.

[45] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao

Zhang, Alan L Yuille, and Daguang Xu. C2FNAS: Coarse-

to-Fine Neural Architecture Search for 3D Medical Image

Segmentation. In CVPR, pages 4126–4135, 2020.

[46] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, pages 2881–2890, 2017.

[47] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima

Tajbakhsh, and Jianming Liang. Unet++: Redesigning skip

connections to exploit multiscale features in image segmen-

tation. TMI, 39(6):1856–1867, 2019.

[48] Zhuotun Zhu, Chenxi Liu, Dong Yang, Alan Yuille, and

Daguang Xu. V-nas: Neural architecture search for volumet-

ric medical image segmentation. In 3DV, pages 240–248.

IEEE, 2019.

[49] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. ICLR, 2017.

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, pages 8697–8710, 2018.

5850

