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Figure 1: ForgeryNet is a new mega-scale face forgery dataset with comprehensive annotations and four forgery analysis

tasks. It contains thousands of subjects, various manipulation methods and diverse re-rendering processes. In (a), can you

distinguish which images are forged?

Abstract

The rapid progress of photorealistic synthesis tech-

niques have reached at a critical point where the bound-

ary between real and manipulated images starts to blur.

Thus, benchmarking and advancing digital forgery analy-

sis have become a pressing issue. However, existing face

forgery datasets either have limited diversity or only sup-

port coarse-grained analysis.
To counter this emerging threat, we construct the

ForgeryNet dataset, an extremely large face forgery dataset
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with unified annotations in image- and video-level data

across four tasks: 1) Image Forgery Classification, in-

cluding two-way (real / fake), three-way (real / fake with

identity-replaced forgery approaches / fake with identity-

remained forgery approaches), and n-way (real and 15
respective forgery approaches) classification. 2) Spa-

tial Forgery Localization, which segments the manipu-

lated area of fake images compared to their correspond-

ing real images. 3) Video Forgery Classification, which

re-defines the video-level forgery classification with manip-

ulated frames in random positions. This task is impor-

tant because attackers in real world are free to manipu-

late any target frame. and 4) Temporal Forgery Localiza-

tion, to localize the temporal segments which are manipu-

lated. ForgeryNet is by far the largest publicly available

deep face forgery dataset in terms of data-scale (2.9 million
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images, 221,247 videos), manipulations (7 image-level ap-

proaches, 8 video-level approaches), perturbations (36 in-

dependent and more mixed perturbations) and annotations

(6.3 million classification labels, 2.9 million manipulated

area annotations and 221,247 temporal forgery segment la-

bels). We perform extensive benchmarking and studies of

existing face forensics methods and obtain several valuable

observations. We hope that the scale, quality, and variety

of our ForgeryNet dataset will foster further research and

innovation in the area of face forgery classification, as well

as spatial and temporal forgery localization etc.

1. Introduction

Photorealistic facial forgery technologies, especially re-

cent deep learning driven approaches [17, 26, 35], give rise

to widespread social concerns on potential malicious abuse

of these techniques to eye-cheatingly forge media (i.e., im-

ages and videos, etc.) of human faces. Therefore, it is of vi-

tal importance to develop reliable methods for face forgery

analysis1, so as to distinguish whether and where an image

or video is manipulated.

Most recent progress about face forgery analysis are

sparked by gathering of face forgery detection datasets [12,

38] and early attempts of profiling intrinsic characteris-

tics within the forgery images. However, performances on

most datasets have already saturated (i.e. over 99% accu-

racy [19,23,33,44]) due to their limited scales (e.g. number

of images/videos and subject identities) and limited diver-

sity (e.g. forgery approaches, scenarios, realistic perturba-

tions, etc.). Moreover, in practical applications, it is often

required to detect forged faces by locating tampered areas

in an image and/or manipulated segments in an untrimmed

video, rather than merely providing a binary label.

In this paper, we construct a new mega-scale dataset

named ForgeryNet with comprehensive annotations, con-

sisting of two groups (i.e. image- and video-level) and four

tasks for real-world digital forgery analysis. We carefully

benchmark existing forensics methods on ForgeryNet. Ex-

tensive experiments and in-depth analysis show that this

larger and richer annotated dataset can boost the develop-

ment of next-generation algorithms for forgery analysis.

Specifically, ForgeryNet brings several unique advantages

over existing datasets.

(1) Wild Original Data. Most current datasets are captured

under controlled conditions (e.g. environment, angles and

lighting). We collect original data with diversified dimen-

sions of angle, expression, identity, lighting, scenario and

1In this paper, the definition of the term “face forgery” refers to an

image or a video containing modified identity, expressions or attribute(s)

with a learning-based approach, distinguished with 1) a so-called “Cheap-

Fakes” [34] that are created with off-the-shelf softwares without learn-

able components and 2) “DeepFakes” that only refer to manipulations with

swapped identities [12].

etc. from four datasets [6, 10, 14, 32]. Note that all the orig-

inal data have a Creative Commons Attribution license that

allows to share and adapt the material.

(2) Various Forgery Approaches. There are at most 8
forgery approaches in all current datasets, while ForgeryNet

is manipulated by 15 approaches, including face transfer,

face swap, face reenactment and face editing. We choose

approaches that span a variety of learning-based models,

including encoder-decoder structure, generative adversarial

network, graphics formation and RNN/LSTM (Fig. 4).

(3) Diverse Re-rendering Process. In the process of trans-

mission and re-rendering, media data (image/video) always

undergo compression, blurring and other operations, which

may smooth the traces of forgery and bring more challenge

for forgery detection. The ForgeryNet dataset posts 36 per-

turbations, such as optical distortion, multiplicative noise,

random compression, blur, and etc. As shown in Fig. 1(c),

circle sizes refer to the number of forgery approaches with

re-rendering process operations.

(4) Rich Annotations and Comprehensive Tasks. Accord-

ing to the real application scenario, we propose four tasks,

as shown in Fig. 1(b): 1) Image Forgery Classification, dis-

tinguishes whether an image is forgery or not and mean-

while tells its forgery type (i.e. manipulation approaches).

We provide three types of annotations including two-way,

three-way and n-way classification. Both intra- and cross-

forgery evaluations are set on three-way and n-way settings.

2) Spatial Forgery Localization, localizes manipulated areas

of forgery images. Due to the fact that a forgery image may

contain multiple faces and can be manipulated entirely or

in part, it is more substantial to segment modified pixels in

addition to only telling that it is forged. 3) Video Forgery

Classification, similar to image-level classification, contains

three types of annotations. Note that different from existing

forgery video datasets, we construct our video dataset with

untrimmed videos, each of which has part of the frames ma-

nipulated, considering the fact that forgery videos in real

world are often manipulated on a certain subject and some

key frames. 4) Temporal Forgery Localization, localizes

the temporal segments which are manipulated. This is a

new task for forgery analysis. Together with Video Forgery

Classification and Spatial Forgery Localization, it provides

comprehensive spatio-temporal forgery annotations.

2. Related Works

Due to the urgency in detecting face manipulation, many

efforts have been devoted to creating face forgery detection

datasets. Previous datasets can be grouped down into three

generations. Their statistical information is listed in Tab. 1.

The first generation consists of datasets such as DF-

TIMIT [25], UADFV [43], SwapMe and FaceSwap [47].

DF-TIMIT manually selects 16 pairs of appearance-similar

people from the publicly available VidTIMIT database, and
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Table 1: Comparison of various face forgery datasets. ForgeryNet surpasses any other dataset both in scale and diversity.

It provides both video- and image-level data. The forgery data are constructed by 15 manipulation approaches within 4
categories. We also employ 36 types of perturbations from 4 kinds of distortions for post-processing.

Dataset
Video Clips Still images

Approaches Subjects
Uniq.

Perturb.

Mix

Perturb.
Annotations

Real Fake Real Fake

UADFV [43] 49 49 241 252 1 49 - × 591

DF-TIMIT [25] 320 640 - - 2 43 - × 1,600

Deep Fake Detection [4] 363 3,068 - - 5 28 - × 3,431

Celeb-DF [27] 590 5,639 - - 1 59 - × 6,229

SwapMe and FaceSwap [47] - - 4,600 2,010 2 - - × 6,610

DFFD [11] 1,000 3,000 58,703 240,336 7 - - × 8,000

FaceForensics++ [38] 1,000 5,000 - - 5 - 2 × 11,000

DeeperForensics-1.0 [24] 50,000 10,000 - - 1 100 7 X 60,000

DFDC [12] 23,564 104,500 - - 8 960 19 × 128,064

ForgeryNet (Ours) 99,630 121,617 1,438,201 1,457,861 15 5400+ 36 X 9,393,574
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Figure 2: Representative examples of original data collected

from four face datasets respectively.

generates 640 videos with faces swapped. UADFV contains

98 videos, i.e. 49 real videos from YouTube and 49 fake

ones generated by FakeAPP [3]. SwapMe and FaceSwap

choose two face swapping Apps [1,2] to create 2010 forgery

images in total on 1005 original real images.

The second generation includes Google DeepFake Detec-

tion dataset [4] with 3,068 forgery videos by five publicly

available manipulation approaches, and Celeb-DF [27] con-

taining 590 YouTube real videos mostly from celebrities

and 5,639 manipulated video clips. FaceForensics++ [38]

consists of 4000 fake videos manipulated by four ap-

proaches (i.e. DeepFakes, Face2Face, FaceSwap and Neu-

ralTextures), and 1000 real videos from YouTube. The

data scale and quality of the second generation have been

improved. However, these datasets still lack diversity in

forgery approaches and task annotations, and are not well-

suited for challenges encountered in real world.

The third generation datasets are the most recent face

forgery datasets, i.e. DeeperForensics-1.0 [24], DFDC [12],

and DFFD [11] which contains tens of thousands of videos

and tens of millions of frames. DeeperForensics-1.0 con-

sists of 60,000 videos for real-world face forgery detection.

DFDC contains over 100,000 clips sourced from 960 paid

actors, produced with several face replacement forgery ap-

proaches including learnable and non-learnable approaches.

In a practical application, in addition to classification, it is

necessary to locate the manipulated areas or segments in an

image or an untrimmed video. A few datasets have taken

these tasks into consideration. DFFD provides annotations

of spatial forgery at the first time, yet it only presents binary

masks without manipulation density.

ID
-r

e
p

la
ce

d

DeepFakes FSGAN

BlendFace

FaceShifter

ID
-r

e
m

a
in

e
d Target

(a)

(b)

StarGAN2MaskGAN StyleGAN2SC-FEGAN
DiscoFace

GAN

2)

ATVG-Net
FirstOrder

Motion

Talking-

headVideo

1)

2)

1)

3)

SBS

DSS

𝑥!

Target 𝑥!

Source 𝑥"
MM

Replacement

Figure 3: Sampled forgeries in our ForgeryNet. (a) Identity-

remained forgery approaches: 1) Face reenactment, 2) Face

editing. (b) Identity-replaced forgery approaches: 1) Face

transfer, 2) Face swap, 3) Face stacked manipulation.

3. ForgeryNet Construction

Most of existing public face forgery datasets [4, 11, 12,

24,25,25,27,38,43,47] contain only single or no more than

10 specific manipulation approaches, and even the largest

one [12] only operates 8 manipulations with 19 perturba-

tions on 960 subjects. Moreover, these datasets take forgery

analysis solely as a classification task. On the contrary,

our proposed ForgeryNet dataset provides 15 manipulation

approaches with more than 36 mix-perturbations on over

5, 4002 subjects, and defines four tasks (i.e. image and video

classification, spatial and temporal localization) with a total

of 9.4M annotations. Our whole dataset consists of two sub-

sets: Image-forgery set provides over 2.9M still images and

Video-forgery set has more than 220k video clips. These

two subsets have their real data respectively randomly se-

lected from the original data, and 15 forgery approaches

are applied to image-forgery construction while 8 of them

also generate the video-forgery data3. We compare our

ForgeryNet with other publicly available datasets in Tab. 1.

2Some original datasets do not provide the identity annotation.
3There are 7 forgery approaches that are only suitable for generating

images.
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Figure 4: Pipeline of face forgery approaches. (a)-(c) Representation preparation: target image It, conditional source xs

and their intermediate representations. (d) Forgery models produce a forged target face Ĩ
f
t

by processing the representations.

(e)-(f) Re-render Ĩf
t

to full image It and get the forgery image Ĩt. (g) Apply perturbations to Ĩt to obtain final forgery data.

Over all the comparison items listed in the table, our dataset

surpasses the rest both in scale and diversity.

3.1. Original Data Collection

Source of Original Data. Four face datasets, CREMA-

D [6], RAVDESS [32], VoxCeleb2 [10] and AVSpeech [14],

are chosen as the original data to boost the diversity in di-

mensions of face identity, angle, expression, scenarios etc.

Note that CREMA-D is made available under the Open

Database License, while others are released under a Cre-

ative Commons Attribution License. The resolutions of

these original data range from 240p to 1080p, and face yaw

angles ranging from −90 to 90 degrees are all covered. Rep-

resentative examples are shown in Fig. 2.

Preprocess Original Data. For further manipulation, we

crop original videos into a controllable set of source videos

with reasonable lengths. Then we detect and select faces for

manipulation and obtain their face attribute labels.

3.2. Forgery Approach

To guarantee the diversity of forgery approaches in the

proposed ForgeryNet, we introduce 15 face forgery ap-

proaches They are selected according to perspectives of

modeling types, conditional sources, forgery effects and

functions. We denote xt as the target subject to be manipu-

lated while the source xs is regarded as the conditional me-

dia driving the target to change either identity or attributes,

or even both.

3.2.1 Forgery Category

According to the visual effects of facial manipulation,

we divide the forgery approaches into two categories,

i.e. Identity-remained and Identity-replaced. Sampled forg-

eries in Fig. 3 illustrate these categories and their sub-types.

Identity-remained Forgery Approach in Fig. 3(a) remains

the identity of xt and the identity-agnostic content like ex-

pression, mouth, hair and pose of xt are changed, driven

by xs. We adopt eight approaches and divide them into

two sub-types: 1) Face reenactment on xt(i, a) preserves

its identity but has its intrinsic attributes like pose, mouth

and expression manipulated by conditional source xs and

forms xt(i, ã
s), where i refers to identity and a denotes at-

tribute(s). Alternatively, with 2) Face editing on xt(i, a) has

its external attributes altered, such as facial hair, age, gen-

der and ethnicity, to obtain xt(i, â
s). We also include multi-

ple attribute manipulation with two editing approaches, e.g.

both hair and eyebrow are manipulated as shown with the

first example in Fig. 3(a-2).

Identity-replaced Forgery Approach in Fig. 3(b) replaces

the content of xt with that of xs preserving the identity of

s. Seven approaches are divided into three sub-types as

follows. 1) Face transfer transfers both identity-aware and

identity-agnostic content (e.g. expression and pose) from xs

to xt, resulting in xt(̃i
s, ãs). 2) Face swap which produces

xt(̃i
s, a) only swaps identity from the source xs to the tar-

get xt, and the identity-agnostic content a are preserved.

3) Face stacked manipulation refers to a combination of

both Identity-remained and Identity-replaced approaches.

We propose two assembles4, i.e. 〈editing ! transfer〉 and

〈swap ! editing〉, where the former one transfers both the

identity and attributes of the manipulated xs(i, â) to the tar-

get xt to obtain xt(̃i
s, ˜̂as) and the latter alters the external

attributes of the swapped target xt(̃i
s, a) to get xt(̃i

s, âs).

3.2.2 Forgery Pipeline

Although there are a wild variety of architectures designed

for the aforementioned approaches, most are created using

variations or combinations of generative networks, encoder-

decoder networks or graphics formation. We briefly sum-

marize the forgery pipeline in Fig. 4.

The target is always an image marked as It, while there

are various conditional source formats xs, including image,

4StarGAN2-BlendFace-Stack (SBS), DeepFakes-StarGAN2-Stack

(DSS)
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Figure 5: Annotations for Spatial Forgery Localization in

ForgeryNet. Examples of (a) real image, (b) forgery image,

(c) corresponding spatial annotations.

image sequence, sketch map, parsing mask, audio, label, or

even noise. We first detect the target face I
f
t , crop and align

it, and then transform both the target face as well as source

data to intermediate representations such as UV map, fea-

ture bank, 3DMM parameters and etc.

Forgery Modeling. These representations are forwarded to

the forgery models to obtain a forged target face Ĩ
f
t . We in-

clude five architecture variants as, 1) Encoder-Decoder [5],

2) Vanilla GAN [40], 3) Pix2Pix [26], 4) RNN/LSTM [7],

and 5) Graphics Formation [13].

Re-rendering Process. To acquire the full forged target,

the forged target face Ĩ
f
t is re-rendered back to the target

full image It to obtain Ĩt. In particular, according to differ-

ent forgery procedures, 1) Ĩ
f
t can be a face mask, shown in

Fig. 4(e-1), which contains the area from the eyebrows to

the face chin. 2) Ĩ
f
t can also be a face bounding-box, illus-

trated in Fig. 4(e-2,3), which keeps the same bounding box

as the original target face.

Perturbation. To better reflect real-world data distribu-

tion, we apply 36 types of perturbations to the forgery data

Ĩt. We follow common practices in visual quality assess-

ment [39] with distortions of compression, transmission,

capture, color, etc.

3.3. ForgeryNet Annotation

In contrast to most previous datasets, our ForgeryNet is

annotated comprehensively both in image- and video-level

across four tasks.

Image Forgery Classification. According to the forgery

definition in Sec. 3.2.1, given a forgery image, we pro-

vide three types of forgery labels, i.e. labels for two-way

(real / fake), three-way (real / fake with identity-replaced

forgery approaches / fake with identity-remained forgery

approaches), and n-way (n = 16, real and 15 respective

forgery approaches) classification tasks respectively. These

annotations make it possible to explore the correlation be-

tween different forgery meta-types or approaches.

Spatial Forgery Localization. As shown in Fig. 5, we take

the forgery image Ĩt and the corresponding real image It

to calculate their difference to obtain a forgery distribution

Forgery

Videos

Forgery

Images

Train

Test

Val

Figure 6: Illustration of image- and video-level sets. From

the inside to the outside are categories of Identity-remained

and Identity-replaced, corresponding sub-types, specific

forgery approaches and the situation of data split.

Ĩ
d
t . In this paper, we define the Spatial Forgery Localiza-

tion task as “localizing the face area manipulated by deep

forgery approaches”, and thus the forgery distribution be-

fore perturbation Ĩ
d
t is taken as the ground-truth annotation.

Video Forgery Classification & Temporal Forgery Lo-

calization. Note that in contrast to all the existing datasets,

we construct our video forgery dataset with untrimmed

forgery videos Ṽ
′

t, each of which splices real and ma-

nipulated frames together. Same as image-forgery, Video

Forgery Classification also contains three types of class an-

notations. We also provide the annotations on locations of

manipulated segments in the untrimmed forgery video and

propose a new task, i.e. Temporal Forgery Localization, to

localize these forged segments.

4. ForgeryNet Settings

On ForgeryNet, we set up two benchmarks, image and

video, with a series of tasks for face forgery analysis.

Dataset Preparation. Both image- and video-level sets are

split into training, validation and test subsets with a ratio

close to 7:1:2. Forgery data distributions and catagories of

the two sets are shown in Fig. 6. Forgery data in each subset

have identities matched with the corresponding real subset.

The ratio of real to fake in each subset is close to 1:1.

4.1. Image Benchmark Settings

4.1.1 Image Forgery Classification

In order to foster further researches on face forgery classifi-

cation, we carefully design two protocols to evaluate foren-

sics methods in this area.

Protocol 1: Intra-forgery Evaluation. In intra-forgery

evaluation, all the real and fake data in the training set are

used to train models, and the validation set is used for eval-

uation. This protocol has three variants, according to the

definition in Sec. 3.3, i.e. two-/three-/n-way classification.

Protocol 2: Cross-forgery Evaluation. To further evalu-

ate the generalization ability of training with our data, we

conduct cross-forgery evaluation by training the evaluated

4364



Table 2: Image Forgery Classification (Protocol 1): bi-

nary classification. We report accuracy and AUC scores of

the compared forensics methods.

Method Param. Acc AUC

MobileNetV3 Small [22] 1.7M 76.24 85.51

MobileNetV3 Large [22] 4.2M 78.30 87.56

EfficientNet-B0 [41] 4.0M 79.86 89.31

ResNet-18 [21] 11.2M 78.31 87.75

Xception [9] 20.8M 80.78 90.12

ResNeSt-101 [45] 46.2M 82.06 91.02

SAN19-patchwise [46] 18.5M 80.08 89.38

ELA-Xception [20] 20.8M 73.77 82.69

SNRFilters-Xception [8] 20.8M 81.09 90.52

GramNet [31] 22.1M 80.89 90.20

F3-Net [36] 57.3M 80.86 90.15

forensics method with one certain type of manipulation and

testing it with others. The manipulation type can either be

general (e.g. identity-replaced), or specific (e.g. ATVG-Net).

Note that this protocol only involves binary classification.

Metrics. For binary classification tasks, we evaluate with

Accuracy (Acc) and the Area under ROC curve (AUC). For

three- and n-way class settings, we use Accuracy (Acc) and

mean Average Precision (mAP) as evaluation metrics.

4.1.2 Spatial Forgery Localization

Compared with classification tasks, spatial forgery local-

ization aims to specify manipulated regions. Images along

with forgery masks are used to train the localization model.

Metrics. We utilize three metrics for evaluation: two vari-

ants of Intersection over Union (IoU) and L1 distance.

4.2. Video Benchmark Settings

Video Forgery Classification. Evaluation protocols for

video forgery classification are generally similar to the ones

designed for the image set, except that n=9 for n-class set-

ting. Metrics are the same as those for image classification.

Temporal Forgery Localization. For each video,

forensics methods to be evaluated are expected to pro-

vide temporal boundaries of forgery segments and the cor-

responding confidence values. We follow metrics used

in ActivityNet [18] evaluation, and employ Interpolated

Average Precision (AP) as well as Average Recall@K

(AR@K) for evaluating predicted segments with respect to

the groundtruth ones.

5. Image Forgery Analysis Benchmark

5.1. Image Forgery Classification

Protocol 1: Intra-forgery Evaluation. For compre-

hensive evaluation, we provide results of two-way class

classification with several representative models of dif-

ferent sizes. Considering the trade-off between perfor-

mance and efficiency, we use Xception [9] as the baseline

model. ELA-Xception [20] and SNRFilters-Xception [8]

Table 3: Image Forgery Classification (Protocol 1):

multi-class settings and their mappings to binary classifi-

cation. We report the accuracy, mAP and AUC scores.

3-way class 3→2-way class

Acc. mAP Acc. AUC

Xception 73.00 89.90 80.17 89.92

GramNet 73.30 90.00 80.75 90.13

F3-Net 74.45 90.41 81.75 90.63

16-way class 16→2-way class

Acc. mAP Acc. AUC

Xception 58.81 93.16 81.00 90.53

GramNet 56.77 92.27 80.83 90.25

F3-Net 59.82 92.98 81.88 90.91

Table 4: Image Forgery Classification (Protocol 2): bi-

nary classification. We report the accuracy and AUC scores.

Forensics methods trained with ID-replaced forgery ap-

proaches have significant performance drops when tested

on unseen ID-remained forgery approaches, and vice versa.

ID-replaced ID-remained

Acc. AUC Acc. AUC

Xception
ID-replaced 84.13 92.80 64.62 74.86

ID-remained 67.28 75.83 81.17 90.71

GramNet
ID-replaced 82.82 92.54 62.72 74.28

ID-remained 67.50 76.19 80.60 90.28

F3-Net
ID-replaced 83.84 92.73 64.33 73.82

ID-remained 68.44 77.24 81.18 90.29

are two variants of Xception. Smaller models include Mo-

bileNetV3 [22], EfficientNet-B0 [41] and ResNet-18 [21].

We select ResNeSt-101 [45] as the large model. We also

experiment with recent state-of-the-art methods for face

forgery detection, i.e. F3-Net [36] and GramNet [31], as

well as a fully-attentional network SAN19 [46].

All experiments are conducted on face images cropped

with face bounding boxes enlarged by 1.3×. During train-

ing, we use several types of data augmentation to mimic

distortions caused by compression and packet loss during

transmission, so as to improve the generalization of devel-

oped models.

As presented in Tab. 2, we list binary classification met-

rics of all aforementioned forensics methods. We also

show the corresponding ROC curves of these methods in

Fig. 7(a). For three-way and 16-way classification exper-

iments, as shown in Tab. 3, Acc scores show that classi-

fication becomes more difficult when the number of cate-

gories increases, yet the mAP metric indicates that the dis-

crimination ability becomes higher instead. Moreover, after

mapping back to binary classification, we can also observe

slight performance boosts on F3-Net compared to training

results with only binary labels. This suggests that more

auxiliary information potentially makes the forensics model

more discriminative.
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Binary-class Triple-class N-class
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Figure 7: Image Forgery Classification (Protocol 1): (a) We show the ROC curves of the compared methods under the

setting of binary classification. (b)-(d) t-SNE feature visualization of the data manipulated by different forgery approaches,

trained with binary, three-way and n-way classification respectively.
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Figure 8: Image Forgery Classification (Protocol 2): (a)

AUC score map, and (b) correlation map according to the

AUC scores. X-axis denotes the tested forgery approach

and Y-axis denotes the forgery approach for training.

Protocol 2: Cross-forgery Evaluation. For this proto-

col, we show the generalization ability of forensics methods

across forgery approaches. Tab. 4 lists the results of models

trained on ID-replaced but evaluated on ID-remained, and

vice versa. The more exhaustive cross-forgery setting with

15 specific forgery approaches is also evaluated and shown

in Fig. 8. We observe from these results that intra-forgery

testing naturally performs the best. From Fig. 8(a), we can

also see that training on ATVG-Net, StyleGAN2 or Blend-

Face gives the best generalization performance on average.

On the other hand, DiscoFaceGAN is the most generalizable

forgery approach, while SC-FEGAN is the most difficult ap-

proach to generalize to. There is another interesting finding

that forgery approaches with stronger similarity tend to in-

duce better cross-forgery performance. For example, Dis-

coFaceGAN is a StyleGAN-based approach, thus training

on the latter approach produces favorable results on the for-

mer. Similarly, StarGAN2 and the two face stack manipula-

tions which both involve StarGAN2 generalize well to each

other. In addition, as shown in Fig. 8(b), forgery approaches

belonging to the same meta-category usually have higher

correlations mutually. For example, for meta-category Face

reenactment, if a forensics method can obtain good perfor-

Table 5: Spatial Forgery Localization. We compare re-

sults with three metrics, i.e., IOU, IOUdiff and L1 distance.

Method
IoU IoUdiff Lossl10.1 0.2 0.01 0.05 0.1

Xception+Reg. 89.55 93.70 67.57 83.25 89.22 0.0131

Xeption+Unet [37] 95.99 98.76 79.71 92.70 97.13 0.0134

HRNet [42] 96.27 98.78 88.73 92.99 96.27 0.0114

Predicted MaskOriginal Target Before Perturb. After Perturb. GroundTruth

(a)
Face

Replacement

(b)
Face

Reenactment

(c)
Face

Editing

(d)
Real
Face

(e)
Real
Face

Figure 9: Spatial Forgery Localization. Examples of pre-

dicted manipulation masks by HRNet.

mance on ATVG-Net, it may also work for FirstOrderMo-

tion and Talking-headVideo.

5.2. Spatial Forgery Localization

We evaluate pixel regression and other two segmentation

methods for the spatial localization task. UNet [37] is a

popular segmentation architecture, which has been widely

used. For comparison, we also adopt HRNet [42] because

of its superior performance on other datasets.

In Tab. 5, HRNet outperforms other methods. Especially

in terms of IoUdiff with threshold 0.01, HRNet surpasses
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Table 6: Video Forgery Classification (Protocol 1): bi-

nary classificaiton. We report accuracy and AUC scores un-

der two crop strategies. Video-level classification has better

results than the image-level setting.

Single-crop Multi-crop

Method Parameters Acc AUC Acc AUC

X3D-M [15] 2.9M 87.93 93.75 88.97 96.99

Slow-only [16] 31.6M 86.76 92.64 87.37 95.96

TSM [28] 23.5M 88.04 93.05 89.11 96.25

SlowFast [16] 33.6M 88.78 93.88 89.92 97.28

Table 7: Video Forgery Classification (Protocol 1): multi-

class settings and their mappings to binary classification.

We report the accuracy, mAP and AUC scores.

Method
3-way class 3→2-way class

Acc. mAP Acc. AUC

X3D-M [15] 84.00 94.55 87.69 93.78

SlowFast [16] 85.73 94.89 89.11 94.37

9-way class 9→2-way class

Acc. mAP Acc. AUC

X3D-M [15] 76.91 95.06 87.51 93.81

SlowFast [16] 80.86 95.92 89.45 94.25

other methods by more than 10%. We also present predicted

manipulation maps for several test samples. In Fig. 9(c), the

slight beard change is hard to detect, while in Fig. 9(d), a

real image is misjudged as manipulated.

6. Video Forgery Analysis Benchmark

6.1. Video Forgery Classification

In this section, we select several typical video back-

bones of different sizes: X3D-M [15], Slow-only R-50 [16],

TSM [28], and SlowFast R-50 [16]. We sample 16 frames

with temporal stride 4 as input to all models.

Binary classfication results of video-level forensics

methods are listed in Tab. 6. Compared to image-level

evaluation, video-level Acc and AUC are generally higher.

SlowFast [16] obtains the best performance on video clas-

sification, while X3D-M [15], with only a very small num-

ber of parameters, also gives satisfying results. We select

these two as representatives of large and small models re-

spectively in subsequent experiments, as displayed in Tab. 7

and Tab. 8. Cross-forgery evaluation results are worse than

their image counterparts, suggesting harder generalization

with temporal information.

6.2. Temporal Forgery Localization

We experiment with both frame-based and video-based

models for temporal localization. For frame-based model,

after binarizing frame predictions with a fixed threshold

(0.25), we select consecutive fake sequences, with differ-

ent tolerance levels for real frames in the middle, as final

proposals. The confidence of a proposal is simply the av-

erage of the original frame scores. We adopt Boundary-

Sensitive Network (BSN) [30] and Boundary-Matching

Table 8: Video Forgery Classification (Protocol 2): bi-

nary classification. Forensics methods trained with ID-

replaced forgery approaches have substantial performance

drops (even more significant than their image-level coun-

terparts) when tested on unseen ID-remained forgery ap-

proaches, and vice versa.

ID-replaced ID-remained

Acc. AUC Acc. AUC

X3D-M
ID-replaced 87.92 92.91 55.25 65.59

ID-remained 55.93 62.87 88.85 95.40

SlowFast
ID-replaced 88.26 92.88 52.64 64.83

ID-remained 52.70 61.50 87.96 95.47

Table 9: Temporal Forgery Localization. We show AP,

AR and mAP scores of all compared methods.

AR AP avg.

AP2 5 0.5 0.75 0.9

Xception [9] 25.83 73.95 68.29 62.84 58.30 62.83

X3D-M+BSN [30] 81.33 86.88 80.46 77.24 55.09 70.29

X3D-M+BMN [29] 88.44 91.99 90.65 88.12 74.95 83.47

SlowFast+BSN [30] 83.63 88.78 82.25 80.11 60.66 73.42

SlowFast+BMN [29] 90.64 93.49 92.76 91.00 80.02 86.85

Network (BMN) [29] on top of X3D-M and SlowFast fea-

tures as the video-based models.

Tab. 9 compares these methods on the validation set. In

particular, video-based methods perform significantly bet-

ter than the frame-based method, demonstrating the impor-

tance of applying a boundary-aware network. Additionally,

BMN outperforms BSN with large margins, and achieves

∼87 average AP. This is of great significance since it shows

our model is capable of effectively locating manipulated

media in a large video database. We hope our results can

inspire more future works on forgery localization.

7. Conclusion

In this paper, we present ForgeryNet, a new mega-scale

benchmark for both image- and video-level face forgery

analysis. Compared with existing datasets for face forgery,

ForgeryNet possesses more variety and is more compre-

hensive in terms of wild sources, various manipulation ap-

proaches, diverse re-rendering process and richness of an-

notations. We further introduce four possible applications

with ForgeryNet: image and video classification, spatial

and temporal localization. The results obtained in these

tasks help us better understand facial forgery towards real-

world scenarios. For future works, we welcome inter-

ested researchers to contribute more novel facial forgery ap-

proaches. More forgery analysis can also be studied on our

dataset to improve the defense capabilities.
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