
Learnable Graph Matching: Incorporating Graph Partitioning with Deep

Feature Learning for Multiple Object Tracking

Jiawei He1,3 Zehao Huang2 Naiyan Wang2 Zhaoxiang Zhang1,3,4

1 Institute of Automation, Chinese Academy of Sciences (CASIA) 2 TuSimple
3 School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)

4 Centre for Artificial Intelligence and Robotics, HKISI CAS

{hejiawei2019, zhaoxiang.zhang}@ia.ac.cn {zehaohuang18, winsty}@gmail.com

Abstract

Data association across frames is at the core of Mul-

tiple Object Tracking (MOT) task. This problem is usu-

ally solved by a traditional graph-based optimization or di-

rectly learned via deep learning. Despite their popularity,

we find some points worth studying in current paradigm:

1) Existing methods mostly ignore the context information

among tracklets and intra-frame detections, which makes

the tracker hard to survive in challenging cases like severe

occlusion. 2) The end-to-end association methods solely

rely on the data fitting power of deep neural networks, while

they hardly utilize the advantage of optimization-based as-

signment methods. 3) The graph-based optimization meth-

ods mostly utilize a separate neural network to extract fea-

tures, which brings the inconsistency between training and

inference. Therefore, in this paper we propose a novel

learnable graph matching method to address these issues.

Briefly speaking, we model the relationships between track-

lets and the intra-frame detections as a general undirected

graph. Then the association problem turns into a gen-

eral graph matching between tracklet graph and detection

graph. Furthermore, to make the optimization end-to-end

differentiable, we relax the original graph matching into

continuous quadratic programming and then incorporate

the training of it into a deep graph network with the help

of the implicit function theorem. Lastly, our method GM-

Tracker, achieves state-of-the-art performance on several

standard MOT datasets. Our code is available at https:

//github.com/jiaweihe1996/GMTracker.

1. Introduction

Multiple Object Tracking (MOT) is a fundamental task

that aims at associating the same object across successive

frames in a video clip. A robust and accurate MOT algo-

rithm is indispensable in broad applications, such as au-

tonomous driving and video surveillance. The tracking-by-

2 3

1

Tracklets Detections

(a) Hungarian Algorithm

(b) Graph Matching (c) occlusion case

2 3

1

1

2
3

Figure 1: An illustration of intra-graph relationship used

in our graph matching formulation. We utilize the second-

order edge-to-edge similarity to model the group activity,

which is more robust under heavy occlusion. Note that not

all vertices in tracklet graph can be matched to the detection

graph because they disappear in the current frame.

detection is currently the dominant paradigm in MOT. This

paradigm consists of two steps: (1) obtaining the bounding

boxes of objects by detection frame by frame; (2) gener-

ating trajectories by associating the same objects between

frames. With the rapid development of deep learning based

object detectors, the first step is largely solved by the power-

ful detectors such as [37, 38]. As for the second one, recent

MOT works focus on improving the performance of data

association mainly from the following two aspects: (1) for-

mulating the association problem as a combinatorial graph

partitioning problem and solve it by advanced optimization

techniques [5, 7, 62, 8, 65, 18]; (2) improving the appear-

ance models by the power of deep learning[28, 67, 31, 64].

Although very recently, there are works [77, 53, 8, 65] try-

ing to unify feature learning and data association into an

end-to-end trained neural network, these two directions are

almost isolated so that these recent attempts hardly utilize

5299

https://github.com/jiaweihe1996/GMTracker
https://github.com/jiaweihe1996/GMTracker

the progress from the combinatorial graph partitioning.

In the graph view of MOT, each vertex represents a de-

tection bounding box or a tracklet, while the edges are con-

structed between the vertices across different frames to rep-

resent the similarities between them. Then the association

problem can be formulated as a min-cost flow problem [72].

The most popular used method is to construct a bipartite

graph between two frames and adopt Hungarian algorithm

[27] to solve it. This online strategy is widely used in prac-

tice because of its simplicity [7, 64]. Nevertheless, these

methods are not robust to occlusions due to the lack of

history trajectories and long term memory. This problem

is traditionally solved by constructing graph from multiple

frames, and then deriving the best association based on the

optimal solution of this min-cost flow problem [72].

All these existing works focus on finding the best match-

ing across frames, but ignoring the context within the frame.

In this paper, we argue that the relationship between the ver-

tices within the same frame is also crucial for some chal-

lenging cases in MOT. For example, we can match an oc-

cluded object to the correct tracklet solely by the past re-

lationships with neighborhood objects. Fig. 1 just shows

such an example. Interestingly, these pairwise relationships

within the same frame can be represented as edges in a

general graph. To this end, the popular bipartite match-

ing across frames can be updated to general graph matching

between them. To further integrate this novel assignment

formulation with powerful feature learning, we first relax

the original formulation of graph matching [30, 26] to a

quadratic programming, and then derive a differentiable QP

layer based on the KKT conditions and the implicit function

theorem for the graph matching problem, inspired by the

OptNet [2]. Finally, the assignment problem can be learned

in synergy with the features.

Overall, our work has the following contributions:

• Instead of only focusing on the association across

frames, we emphasize the importance of intra-frame

relationships. Particularly, we propose to represent the

relationships as a general graph, and formulate the as-

sociation problem as general graph matching.

• To solve this challenging assignment problem, and

further incorporate it with deep feature learning, we

derive a differentiable quadratic programming layer

based on the continuous relaxation of the problem, and

utilize implicit function theorem and KKT conditions

to derive the gradient w.r.t the input features during

back-propagation.

• We evaluate our proposed GMTracker on the large

scale open benchmark. Our method could remarkably

advance the state-of-the-art performance in terms of

association metric such as IDF1.

2. Related Work

Data association in MOT. The data association step in

tracking-by-detection paradigm is generally solved by prob-

abilistic filter or combinatorial optimization techniques.

Classical probabilistic approach includes JPDA [3] and

MHT [48]. The advantage of this approach is to keep all the

possible candidates for association, and remain the chance

to recover from failures. Nevertheless, their costs are pro-

hibitive if no approximation is applied [14, 24]. For combi-

natorial optimization, traditional approach include bipartite

matching [7], dynamic programming [13], min-cost flow

[72, 5] and conditional random field [66]. Follow-up works

tried to adopt more complex optimization methods [70, 55],

reduce the computational cost [47, 56] or promote an online

setting from them [9, 59].

Deep learning in MOT. Early works of deep learning in

MOT such as [64, 31, 51, 34] mostly focus on learning a

better appearance model for each object. Then by the ad-

vance of object detection and multi-task learning, several

works [6, 40, 76, 73] combine detection and tracking in

the same framework. More recently, several works tried to

bridge the graph optimization and end-to-end deep learn-

ing [21, 8, 65, 34, 18]. [21] adopts Graph Neural Net-

work (GNN) to learn an affinity matrix in a data-driven

way. MPNTrack [8] introduces a message passing network

to learn high-order information between vertices from dif-

ferent frames. [34] constructs two graph networks to model

appearance and motion features, respectively. LifT [18]

proposes a lifted disjoint path formulation for MOT, which

introduces lifted edges to capture long term temporal inter-

actions.

Neighborhood and context information in MOT. Pedes-

trians usually walk in a group, so the motion of them are

highly clustered. Modeling neighborhood and context re-

lationships may provide important clues for the MOT task.

Several early works [50, 19] consider the group model as

a prior in motion model for the crowd scenes. [68] con-

siders the distance between detections as the neighborhood

relationship during the data association. However, these

hand-crafted priors can be quite limited in complicated

scenes. Recently, many methods [36, 46, 39, 29] learn ap-

pearance and geometric information by passing messages

among neighbors. However, their goal is still to enhance the

appearance features. They do not consider them explicitly

in the association across frames. In this work, we propose to

explicitly consider the neighborhood context in data associ-

ation via differentiable graph matching and use it to guide

the feature learning in an end-to-end manner.

Graph matching and Combinatorial Optimization. Pair-

wise graph matching, or more generally Quadratic Assign-

ment Problem (QAP), has wide applications in various com-

puter vision tasks [58]. Compared with the linear assign-

ment problem that only considers vertex-to-vertex relation-

5300

ship, pairwise graph matching also considers the second-

order edge-to-edge relationship in graphs. The second-

order relationship makes matching more robust. How-

ever, as shown in [15], this problem is an NP-hard prob-

lem. There is no polynomial solver like Hungarian al-

gorithm [27] for the linear assignment problem. In the

past decades, many works focus on making the problem

tractable by relaxing the original QAP problem [32, 52,

57]. Lagrangian decomposition [54] and factorized graph

matching [75] are two representative ones.

In MOT task, the application of graph matching is very

limited. To the best of our knowledge, [20] is the first to for-

mulate the MOT task as a graph matching problem and use

dual L1-normalized tensor power iteration method to solve

it. Different from [20] that directly extracts the features

from an off-the-shelf neural network, we propose to guide

the feature learning by the optimization problem, which can

both enjoy the power of deep feature learning and combina-

torial optimization. This joint training manner of represen-

tation and optimization problem also eliminate the incon-

sistencies between the training and inference.

To incorporate graph matching into deep learning, one

stream of work is to treat the assignment problem as a su-

pervised learning problem directly, and use the data fitting

power of deep learning to learn the projection from input

graphs to output assignment directly [61, 69]. Another

more theoretically rigorous is to relax the problem to a con-

vex optimization problem first, and then utilize the KKT

condition and implicit function theorem to derive the gra-

dients w.r.t all variables at the optimal solution [4]. As

shown in [2], the universality and transferability of the lat-

ter approach are much better than the first one. Thus, in this

paper, we derive a graph matching layer based on this spirit

to solve the challenging graph matching problem in MOT.

3. Graph Matching Formulation for MOT

In this section, we will formulate the multiple object

tracking problem as a graph matching problem. Instead of

solving the original Quadratic Assignment Problem (QAP),

we relax the graph matching formulation as a convex

quadratic programming (QP) and extend the formulation

from the edge weights to the edge features. The relax-

ation facilitates the differentiable and joint learning of fea-

ture representation and combinatorial optimization.

3.1. Detection and Tracklet Graphs Construction

As an online tracker, we track objects frame by frame. In

frame t, we define Dt = {Dt
1, D

t
2, · · · , D

t
nd
} as the set of

detections in current frame and T t = {T t
1 , T

t
2 , · · · , T

t
nt
} as

the set of tracklets obtained from past frames. nd and nt de-

note the number of detected objects and tracklet candidates.

A detection is represented by a triple Dt
p = (Itp,g

t
p, t),

where Itp contains the image pixels in the detected area,

gt
p = (xt

p, y
t
p, w

t
p, h

t
p) is a geometric vector including the

central location and size of the detection bounding box.

Each tracklet contains a series of detected objects with the

same tracklet id. With a bit abuse of notations, the gener-

ation of T t
id can be represented as T t

id ← T t−1
id ∪ {Dt−1

(id)},

which means we add Dt−1
(id) to the tracklet T t−1

id .

Then we define the detection graph in frame t as GtD =
(Vt

D, EtD) and the tracklet graph up to the frame t as GtT =
(Vt

T , E
t
T). Each vertex i ∈ Vt

D and vertex j ∈ Vt
T represents

the detection Dt
i and the tracklet T t

j , respectively. The eu =
(i, i′) is the edge in EtD and ev = (j, j′) is the edge in EtT .

Both of these two graphs are complete graphs. Then the

data association in frame t can be formulated as a graph

matching problem between GtD and GtT . For simplicity, we

will ignore t in the following sections.

3.2. Basic Formulation of Graph Matching

Given the detection graph GD and the tracklet graph GT ,

the graph matching problem is to maximize the similari-

ties between the matched vertices and corresponding edges

connected by these vertices. In the following derivation, we

use the general notation G1 and G2 to obtain a general graph

matching formulation.

As defined in [30], the graph matching problem is a

Quadratic Assignment Problem (QAP) . A practical mathe-

matical form is named Koopmans-Beckmann’s QAP [26]:

maximize
Π

J (Π) = tr(A1ΠA2Π
⊤) + tr(B⊤Π),

s.t. Π1n = 1n,Π
⊤1n = 1n,

(1)

where Π ∈ {0, 1}n×n is a permutation matrix that de-

notes the matching between the vertices of two graphs,

A1 ∈ R
n×n, A2 ∈ R

n×n are the weighted adjacency ma-

trices of graph G1 and G2 respectively, and B ∈ R
n×n is

the vertex affinity matrix between G1 and G2. 1n denotes an

n-dimensional vector with all values to be 1.

3.3. Reformulation and Convex Relaxation

For Koopmans-Beckmann’s QAP, as Π is a permutation

matrix, i.e., Π⊤Π = ΠΠ⊤ = I. Following [75], Eq. 1 can

be rewritten as

Π∗ = argmin
Π

1

2
||A1Π−ΠA2||

2
F − tr(B⊤Π). (2)

This formulation is more intuitive than that in Eq. 1. For

two vertices i, i′ ∈ G1 and their corresponding vertices

j, j′ ∈ G2, the first term in Eq. 2 denotes the difference

of the weight of edge (i, i′) and (j, j′), and the second term

denotes the vertex affinities between i and j. Then the goal

of the optimization is to maximize the vertex affinities be-

tween all matched vertices, and minimize the difference of

edge weights between all matched edges.

5301

It can be proven that the convex hull of the permutation

matrix lies in the space of the doubly-stochastic matrix. So,

as shown in [1], the QAP (Eq. 2) can be relaxed to its tight-

est convex relaxation by only constraining the permutation

matrix Π to be a double stochastic matrix X, formed as the

following QP problem:

X∗ = argmin
X∈D

1

2
||A1X−XA2||

2
F − tr(B⊤X), (3)

where D = {X : X1n = 1n,X
⊤1n = 1n,X ≥ 0}.

3.4. From Edge Weights to Edge Features

In the formulation of graph matching above, the element

ai,i′ in the weighted adjacency matrix A ∈ R
n×n is a scalar

denoting the weight on the edge (i, i′). To facilitate the

application in our MOT problem, we expand the relaxed

QP formulation by using an l2-normalized edge feature

hi,i′ ∈ R
d instead of the scalar-formed edge weight ai,i′

in A. We build a weighted adjacency tensor H ∈ R
d×n×n

where H·,i,i′ = hi,i′ , i.e., we consider the each dimension of

hi,i′ as the element ai,i′ in A and concatenate them along

channel dimension. The H1 and H2 are the weighted ad-

jacency tensors for G1 and G2, respectively. Then the opti-

mization objective in Eq. 2 can be further expanded to con-

sider the l2 distance between two corresponding n-d edge

features other than the scalar differences:

Π∗ = argmin
Π

d
∑

c=1

1

2
||Hc

1Π−ΠHc
2||

2
F − tr(B⊤Π)

= argmin
Π

n
∑

i=1

n
∑

i′=1

n
∑

j=1

n
∑

j′=1

1

2
||hii′πij − hjj′πi′j′ ||

2
2

− tr(B⊤Π)

= argmin
Π

n
∑

i=1

n
∑

i′=1

n
∑

j=1

n
∑

j′=1

1

2
(π2

ij − 2πijπi′j′h
⊤
ii′hjj′

+ π2
i′j′)− tr(B⊤Π),

(4)

where n is the number of vertices in graph G1 and G2, the

subscript i and i′ are the vertices in graph G1 and j and j′

are in graph G2. We reformulate Eq. 4 as:

π
∗ = argmin

π

π
⊤((n− 1)2I−M)π − b⊤

π, (5)

where π = vec(Π), b = vec(B) and M ∈ R
n2×n2

is the

symmetric quadratic affinity matrix between all the possible

edges in two graphs.

Following the relaxation in Section 3.3, the formulation

Eq. 5 using edge features can be relaxed to a QP:

x∗ = argmin
x∈D′

x⊤((n− 1)2I−M)x− b⊤x, (6)

A
B

C

a

b

0.65

0.40

0.50

0.80

0.50

0.45

0.40

0.65

0.80

0.50

0.45

0.50

0

0

1

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

A

B

C

AB BC CA BA CB AC

AB BC CA BA CB AC

A

B

C

0

1

1

0

ab ba

1

0

0

1

ab ba

a

b

a

b

AB BC CA BA CB AC

ab

ba

0.50

0

0.40

0

0

0

0

0.45

0

0.65

0

0

0.80

0

0

0

0.65

0

0

0.50

0

0

0

0.40

0

0

0.50

0

0.45

0

0

0

0

0.80

0

0.50

0.50

0

0.40

0

0

0

0

0.45

0

0.65

0

0

0.80

0

0

0

0.65

0

0

0.50

0

0

0

0.40

0

0

0.50

0

0.45

0

0

0

0

0.80

0

0.50

Figure 2: An example of the derivation from edge affinity

matrix Me to quadratic affinity matrix M.

where D
′

= {x : Rx = 1,Ux ≤ 1,x ≥ 0,R = 1⊤
n2
⊗

In1
,U = I⊤n2

⊗ 1n1
}, ⊗ denotes Kronecker product.

In the implementation, we first compute the cosine simi-

larity between the edges in GD and GT to construct the ma-

trix Me ∈ R
|ED|×|ET |. The element of the matrix Me is

the cosine similarity between edge features hi,i′ and hj,j′

in two graphs:

Mu,v
e = h⊤

i,i′hj,j′ , (7)

where eu = (i, i′) is the edge in GD and ev = (j, j′) is the

edge in GT .

And following [71], we map each element of matrix Me

to the symmetric quadratic affinity matrix M:

M = (SD ⊗ ST)diag(vec(Me))(TD ⊗TT)
⊤, (8)

where diag(·) means constructing a diagonal matrix by

the given vector, SD ∈ {0, 1}|VD|×|ED| and ST ∈
{0, 1}|VT |×|ET |, whose elements are an indicator function:

Is(i, u) :=

{

1 if i is the start vertex of edge eu,

0 if i is not the start vertex of edge eu,
(9)

TD ∈ {0, 1}
|VD|×|ED| and TT ∈ {0, 1}

|VT |×|ET |, whose

elements are another indicator function:

It(i
′, u) :=

{

1 if i′ is the end vertex of edge eu,

0 if i′ is not the end vertex of edge eu.

(10)

An example of the derivation from Me to M is illustrated

in Fig. 2.

Besides, each element in the vertex affinity matrix B is

the cosine similarities between feature hi on vertex i ∈ VD
and feature hj on vertex j ∈ VT :

Bi,j = h⊤
i hj (11)

5302

Feature
Extractor

Feature
Extractor

Detection Graph

Detection Graph Construction

Tracklet Graph

Tracklet Graph Construction

Cross-graph GCN Module Graph Matching Layer

Detection Graph

Tracklet Graph

Feature
Extractor

Mean

MeanFeature
Extractor

Matching
Score Map

Solve
QP

Gradients

Figure 3: Overview of our method. We first extract features from detections and construct the detection graph using these

features. The tracklet graph construction step is similar to the detection graph, but we average the features in a tracklet.

Then the cross-graph GCN is adopted to enhance the features. The weight wi,j is from the feature similarity and geometric

information. The core of our method is the differentiable graph matching layer built as a QP layer from the formulation in

Eq. 6. The Me and B in the graph matching layer denote the edge affinity matrix from Eq. 7 and the vertex affinity matrix

from Eq. 11 respectively.

4. Graph Matching Network and GMTracker

In this section, we will describe the details of our Graph

Matching Network and our GMTracker. As shown in Fig. 3,

the pipeline of our Graph Matching Network consists of

three parts: (1) feature encoding in detection and track-

let graphs; (2) feature enhancement by cross-graph Graph

Convolutional Network (GCN) and (3) differentiable graph

matching layer. We will describe these three parts step by

step and show how we integrate them into a tracker (GM-

Tracker) in the following.

4.1. Feature Encoding in Two Graphs

We utilize a pre-trained ReIDentification (ReID) net-

work followed by a multi-layer perceptron (MLP) to gen-

erate the appearance feature aiD for each detection Di. The

appearance feature a
j
T of the tracklet Tj is obtained by av-

eraging all the appearance features of detections before.

4.2. Cross­Graph GCN

Similar to [8, 42, 63], we only adopt a GCN module be-

tween the graph GD and graph GT to enhance the feature,

and thus it is called Cross-Graph GCN.

The initial vertex features on detection graph and track-

let graph are the appearance features on the vertices, i.e., let

h
(0)
i = aiD and h

(0)
j = a

j
T . Let h

(l)
i and h

(l)
j be the feature

of vertex i ∈ GD and vertex j ∈ GT in the l-th propagation,

respectively. We define the aggregation weight coefficient

w
(l)
i,j in GCN as the appearance and geometric similarity be-

tween vertex i and vertex j:

w
(l)
i,j = cos(h

(l)
i ,h

(l)
j) + IoU(gi,gj) (12)

where cos(·, ·) means the cosine similarity between input

features and IoU(·, ·) denotes the Intersection over Union of

two bounding boxes. For a detection vertex i, gi is the cor-

responding detection bounding box defined in Section 3.1.

As for a tracklet vertex j, we estimate the bounding box

gj in current frame t by Kalman Filter [22] motion model

with a constant velocity. Note that we only consider the

appearance feature similarity in weight wi,j when the cam-

era moves, since the motion model cannot predict reliable

future positions in these complicated scenes.

We use summation as the aggregation function, i.e.,

m
(l)
i =

∑

j∈GT
w

(l)
i,jh

(l)
j and the vertex features are updated

by:

h
(l+1)
i = MLP(h

(l)
i +

‖h
(l)
i ‖2m

(l)
i

‖m
(l)
i ‖2

), (13)

where we adopt message normalization proposed in [33] to

stabilize the training.

We apply l2 normalization to the final features after

cross-graph GCN and denote it as hi. Then we use hi as

5303

the feature of vertex i in graph GD, and construct the edge

feature for edge (i, i′) with hi,i′ = l2([hi,hi′]), where [·]
denotes concatenation operation. The similar operation is

also applied to the tracklet graph GT . In our implementa-

tion, we only apply GCN once.

4.3. Differentiable Graph Matching Layer

After enhancing the vertex features and constructing the

edge features on graph GD and GT , we meet the core com-

ponent of our method: the differentiable graph matching

layer. By optimizing the QP in Eq. 6 from quadratic affinity

matrix M and vertex affinity matrix B, we can derive the

optimal matching score vector x and reshape it back to the

shape nd × nt to get the matching score map X.

Since we finally formulate the graph matching problem

as a QP, we can construct the graph matching module as a

differentiable QP layer in our neural network. Since KKT

conditions are the necessary and sufficient conditions for

the optimal solution x∗ and its dual variables, we could de-

rive the gradient in backward pass of our graph matching

layer based on the KKT conditions and implicit function

theorem, which is inspired by OptNet [2]. Please refer to

the appendix for the detailed derivation of the gradients in

graph matching layer. In our implementation, we adopt the

qpth library [2] to build the graph matching module. In the

inference stage, to reduce the computational cost and ac-

celerate the algorithm, we solve the QP using the CVXPY

library [11] only for forward operation.

For training, we use weighted binary cross entropy Loss:

L =
−1

ndnt

nd
∑

i=1

nt
∑

j=1

kyi,j log(ŷi,j) + (1− yi,j) log(1− ŷi,j),

(14)

where ŷi,j denotes the matching score between detection

Di and tracklet Tj , and yi,j is the ground truth indicating

whether the object belongs to the tracklet. k = (nt − 1) is

the weight to balance the loss between positive and nega-

tive samples. Besides, due to our QP formulation of graph

matching, the distribution of matching score map X is rela-

tively smooth. We adopt softmax function with temperature

τ to sharpen the distribution of scores before calculating the

loss:

ŷi,j = Softmax(xi,j , τ) =
exi,j/τ

∑nt

j=1 e
xi,j/τ

, (15)

where xi,j is the original matching score in score map X.

4.4. Inference Details

Due to the continuous relaxation, the output of the QP

layer may not be binary. To get a valid assignment, we use

the greedy rounding strategy to generate the final permu-

tation matrix from the predicted matching score map, i.e.,

we match the detection with the tracklet with the maximum

score. After matching, like DeepSORT [64], we need to

handle the born and death of tracklets. We filter out the de-

tection if it meets one of the three criteria: 1) All the appear-

ance similarities between a detection and existing tracklets

are below a threshold σ. 2) It is far away from all tracklets.

We set a threshold κ as the Mahalanobis distance between

the predicted distribution of the tracklet bounding box by

the motion model and the detection bounding box in pixels,

called motion gate. 3) The detection bounding box has no

overlap with any tracklets. Here, besides the Kalman Filter

adopted to estimate the geometric information in Section

4.2, we apply an Enhanced Correlation Coefficient (ECC)

[12] in our motion model additionally to compensate the

camera motion. Besides, we apply the IoU association be-

tween the filtered detections and the unmatched tracklets by

Hungarian algorithm to compensate some incorrect filter-

ing. Then the remaining detections are considered as a new

tracklet. We delete a tracklet if it has not been updated since

δ frames ago, called max age.

5. Experiments

5.1. Datasets

We carry out all experiments on MOT16 [43] and

MOT17 [43] benchmark. The videos in this benchmark

were taken under various scenes, light conditions and frame

rates. Occlusion, motion blur, camera motion and distant

pedestrians are also crucial problems in this benchmark.

Among all the evaluation metrics, Multiple Object Track-

ing Accuracy (MOTA) [23] and ID F1 Score (IDF1) [49]

are the most general metrics in the MOT task. Since MOTA

is mostly dominated by the detection metrics false posi-

tive and false negative, and our graphing matching method

mainly tries to tackle the associations between detected ob-

jects, we pay more attention to IDF1 than the MOTA metric.

5.2. Implementation Details

Training. Following other MOT methods [8, 18], we adopt

Tracktor [6] to refine the public detections. For the ReID

network used for feature extraction, we use a ResNet50

[16] backbone followed by a global average pooling layer

and a fully connected layer with 512 channels. We fur-

ther normalize the output feature with the l2 normaliza-

tion. We pre-train the ReID network on Market1501 [74],

DukeMTMC [49] and CUHK03 [35] datasets jointly, fol-

lowing the setting of [8]. The parameters of the ReID net-

work will be frozen after pre-training. Then we add two

trainable fully connected layers with 512 channels to get

appearance features. Our implementation is based on Py-

Torch [45] framework. We train our model on an NVIDIA

RTX 2080Ti GPU. Adam [25] optimizer is applied with

β1 = 0.9 and β2 = 0.999. The learning rate is 5×10−5

and weight decay is 10−5. The temperature τ in Eq. 15 is

5304

GM App. Enc. GCN Geo Inter. IDF1 ↑ MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

68.1 62.1 556 371 1923 124480 1135

X 70.0 62.3 555 374 1735 124292 1128

X X 70.2 62.2 555 374 1744 124301 1140

X X 70.4 62.3 554 375 1741 124298 1058

X X X 70.6 62.2 556 374 1748 124305 1399

X X X X 71.5 62.3 555 375 1741 124298 1017

X 68.9 62.9 678 361 11440 112853 723

X X 71.6 64.0 669 365 7095 113392 659

X X X 71.7 64.0 666 364 6816 113778 724

X X X 72.0 64.2 671 368 7701 112370 627

X X X X 72.1 63.3 676 364 10888 111869 716

X X X X X 73.0 63.8 672 361 9579 111683 570

Table 1: Ablation studies on different proposed components on MOT17 val set.

Train w/ GM Inference w/ GM IDF1 MOTA

69.5 62.1

X 70.2 62.3

X X 71.5 62.3

Table 2: Ablation study on the graph matching layer.

10−3.

Inference. Our inference pipeline mostly follows Deep-

SORT [64], except that we use general graphing matching

instead of bipartite matching for association. As in Deep-

SORT, we set the motion gate κ as 9.4877, which is at the

0.95 confidence of the inverse χ2 distribution. The feature

similarity threshold σ is set to 0.6 in the videos taken by the

moving camera, and 0.7 when we use geometric informa-

tion in the cross-graph GCN module for videos taken by the

static camera. The max age δ is 100 frames.

Post-Processing. To compare with other state-of-the-art

offline methods, we perform a linear interpolation within

the tracklet as post-processing to compensate the missing

detections, following [8, 18]. This effectively reduces the

false negatives introduced by upstream object detection al-

gorithm.

5.3. Ablation Study

We conduct ablation studies of the proposed components

in our method on the MOT17 dataset. Following [8], we

divide the training set into three parts for three-fold cross-

validation, called MOT17 val set, and we conduct the ex-

periments under this setting both in the ablation study sec-

tion and the discussions section. We ablate each component

we propose: (i) graph matching module built as a QP layer

(GM); (ii) MLP trained on MOT dataset to refine the ap-

pearance features (App. Enc.); (iii) the cross-graph GCN

module (GCN) with and without using geometric informa-

tion (Geo); (iv) the linear interpolation method between the

same object by the time (Inter.).

As shown in Table 1, compared with the DeepSORT

baseline (the first row), which associates the detections and

the tracklets by Hungarian Algorithm, the graph matching

method gets a gain of 1.9 IDF1 without interpolation, and a

gain of 2.7 IDF1 and 1.1 MOTA with the linear interpola-

tion. The results show the effectiveness of the second-order

edge-to-edge information.

Appearance feature refinement and GCN improve about

0.6 IDF1 compared to the untrained model. Geometric

information provides about 1.0 additional gain on IDF1,

which highlights the importance of geometric information

in the MOT task. Finally, compared with the baseline, our

method achieves about 3.4 and 0.2 improvements on IDF1

metric and MOTA metric, respectively. With interpolation,

the gain becomes even larger: about 4.1 improvements on

IDF1 and 0.9 on MOTA.

As shown in Table 2, we get the gain of 1.3 and 2.0 IDF1

compared with only removing the graph matching layer in

training stage and in both training and inference stage, re-

spectively. The results demonstrate the effectiveness of our

differentiable graph matching layer and the importance of

training all components in our tracker jointly.

5.4. Discussions

In this part, we discuss two main design choices of our

method on MOT17 val set. When we construct the track-

let graph, there are some different intra-tracklet feature ag-

gregation methods. Moreover, how to create and delete a

tracklet is important for an online tracker.

Intra-tracklet feature aggregation. In the tracklet graph

GT , each vertex represents a tracklet. And the vertex fea-

ture a
j
T is the aggregation of the appearance features of all

detections in tracklet Tj . Here, we compare several aggre-

gation methods, including mean, moving average and only

5305

Methods IDF1 MOTA

Last Frame 69.1 62.3

Moving Average α = 0.5 69.9 62.3

Moving Average α = 0.8 70.1 62.3

Mean 70.0 62.3

Table 3: Ablation studies on different intra-tracklet feature

aggregation methods.

Max age (frames) 30 50 80 100 150

Hungarian Algorithm 67.2 67.9 68.1 68.1 67.3

Graph Matching 68.0 69.3 69.7 70.0 70.0

Table 4: The influence of max age δ on IDF1 .

using the last frame of the tracklet. The results are shown

in Table 3. The IDF1 is 0.9 lower when only using the last

frame of the tracklet. The results also reveal that when we

utilize all the frame information, no matter using the simple

average or the moving average, their impact is not signifi-

cant. To make our method simple and effective, we finally

use the simple average method to aggregate the appearance

features within a tracklet.

Tracklet death strategies. As for removing a trajectory

from association candidates, our basic strategy is that if the

tracklet has not been associated with any detections in δ

frames, the tracklet will be removed and not be matched any

more. Table 4 shows that larger max age δ, which means

more tracklet candidates, yields better IDF1 score. It shows

the effectiveness of our method from another aspect that

our GMTracker can successfully match the tracklets disap-

peared about five seconds ago. On the contrary, when the

max age increases to 150 frames, the IDF1 will drop 0.8 us-

ing Hungarian algorithm, which indicates our graph match-

ing can deal with long-term tracklet associations better.

5.5. Comparison with State­of­the­Art Methods

We compare our GMTracker with other state-of-the-art

methods on MOT16 and MOT17 test sets. As shown in

Table 5, when we apply Tracktor [6] to refine the pub-

lic detection, the online GMTracker achieves 63.8 IDF1

on MOT17 and 63.9 IDF1 on MOT16, outperforming the

other online trackers. To compare with CenterTrack [76],

we use the same detctions, called GMT CT, and the IDF1

is 66.9 on MOT17 and 68.6 on MOT16. With the sim-

ple linear interpolation, called GMT simInt in Table 5, we

also outperform the other offline state-of-the-art trackers on

IDF1. With exactly the same visual inter- and extrapolation

as LifT [18], called GMT VIVE in Table 5, the MOTA is

comparable with LifT. After utilizing the CenterTrack de-

tections and linear interpolation, the GMTCT simInt im-

proves the SOTA on both MOT16 and MOT17 datasets.

In appendix, we report more detailed performance on other

Methods Refined Det IDF1 ↑ MOTA ↑ FP ↓ FN ↓ IDS ↓

MOT17

GNMOT (O∗) [34] - 47.0 50.2 29316 246200 5273

FAMNet (O) [10] - 48.7 52.0 14138 253616 3072

JBNOT (O∗) [17] - 50.8 52.6 31572 232659 3050

Tracktor++ (O) [6] Tracktor 52.3 53.5 12201 248047 2072

Tracktor++v2 (O) [6] Tracktor 55.1 56.3 8866 235449 1987

GNNMatch (O) [44] Tracktor 56.1 57.0 12283 228242 1957

GSM Tracktor (O) [39] Tracktor 57.8 56.4 14379 230174 1485

CTTrackPub (O) [76] CenterTrack 59.6 61.5 14076 200672 2583

GMTracker(Ours) (O) Tracktor 63.8 56.2 8719 236541 1778

GMT CT(Ours) (O) CenterTrack 66.9 61.5 14059 200655 2415

TPM [46] - 52.6 54.2 13739 242730 1824

eTC17 [60] - 58.1 51.9 36164 232783 2288

MPNTrack [8] Tracktor 61.7 58.8 17413 213594 1185

Lif TsimInt [18] Tracktor 65.2 58.2 16850 217944 1022

LifT [18] Tracktor 65.6 60.5 14966 206619 1189

GMT simInt (Ours) Tracktor 65.9 59.0 20395 209553 1105

GMT VIVE (Ours) Tracktor 65.9 60.2 13142 209812 1675

GMTCT simInt (Ours) CenterTrack 68.7 65.0 18213 177058 2200

MOT16

Tracktor++v2 (O) [6] Tracktor 54.9 56.2 2394 76844 617

GNNMatch (O) [44] Tracktor 55.9 56.9 3235 74784 564

GSM Tracktor (O)[39] Tracktor 58.2 57.0 4332 73573 475

GMTracker(Ours) (O) Tracktor 63.9 55.9 2371 77545 531

GMT CT (Ours) (O) CenterTrack 68.6 62.6 5104 62377 787

TPM [46] - 47.9 51.3 2701 85504 569

eTC [60] - 56.1 49.2 8400 83702 606

MPNTrack [8] Tracktor 61.7 58.6 4949 70252 354

Lif TsimInt [18] Tracktor 64.1 57.5 4249 72868 335

LifT [18] Tracktor 64.7 61.3 4844 65401 389

GMT simInt (Ours) Tracktor 66.2 59.1 6021 68226 341

GMT VIVE (Ours) Tracktor 66.6 61.1 3891 66550 503

GMTCT simInt (Ours) CenterTrack 70.6 66.2 6355 54560 701

Table 5: Comparison with state-of-the-art methods on

MOT16 and MOT17 test set. (O) denotes online methods.

(O∗) denotes near-online methods.

metrics, e.g., HOTA [41].

6. Conclusion

In this paper, we propose a novel learnable graph match-

ing method for multiple object tracking task, called GM-

Tracker. Our graph matching method focuses on the re-

lationship between tracklets and detections. Taking the

second-order edge-to-edge similarity into account, our

tracker is more accurate and robust in the MOT task, espe-

cially in crowded videos. To make the graph matching mod-

ule end-to-end differentiable, we relax the QAP formulation

into a convex QP and build a differentiable graph matching

layer in our Graph Matching Network. The experiments

of ablation study and comparison with other state-of-the-art

methods both show the effectiveness of our method.

Acknowledgements

This work was supported in part by the National Key R&D

Program of China(No. 2018YFB1004602), the National

Natural Science Foundation of China (No. 61836014, No.

61773375). The authors would like to thank Roberto Hen-

schel for running their post-processing code for us.

5306

References

[1] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On

convex relaxation of graph isomorphism. Proceedings of the

National Academy of Sciences, 112(10):2942–2947, 2015. 4

[2] Brandon Amos and J. Zico Kolter. OptNet: Differentiable

optimization as a layer in neural networks. In ICML, 2017.

2, 3, 6

[3] Yaakov Bar-Shalom, Thomas E Fortmann, and Peter G Ca-

ble. Tracking and data association, 1990. 2

[4] Shane Barratt. On the differentiability of the solu-

tion to convex optimization problems. arXiv preprint

arXiv:1804.05098, 2018. 3

[5] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pas-

cal Fua. Multiple object tracking using k-shortest paths op-

timization. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 33(9):1806–1819, 2011. 1, 2

[6] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. In ICCV, 2019. 2, 6, 8

[7] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In ICIP,

2016. 1, 2

[8] Guillem Brasó and Laura Leal-Taixé. Learning a neural

solver for multiple object tracking. In CVPR, 2020. 1, 2,

5, 6, 7, 8

[9] Wongun Choi. Near-online multi-target tracking with aggre-

gated local flow descriptor. In ICCV, 2015. 2

[10] Peng Chu and Haibin Ling. FAMNet: Joint learning of fea-

ture, affinity and multi-dimensional assignment for online

multiple object tracking. In ICCV, 2019. 8

[11] Steven Diamond and Stephen Boyd. CVXPY: A python-

embedded modeling language for convex optimization. The

Journal of Machine Learning Research, 17(1):2909–2913,

2016. 6

[12] Georgios D Evangelidis and Emmanouil Z Psarakis. Para-

metric image alignment using enhanced correlation coeffi-

cient maximization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 30(10):1858–1865, 2008. 6

[13] Francois Fleuret, Jerome Berclaz, Richard Lengagne, and

Pascal Fua. Multicamera people tracking with a probabilistic

occupancy map. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(2):267–282, 2007. 2

[14] Seyed Hamid Rezatofighi, Anton Milan, Zhen Zhang, Qin-

feng Shi, Anthony Dick, and Ian Reid. Joint probabilistic

data association revisited. In ICCV, 2015. 2

[15] Juris Hartmanis. Computers and intractability: a guide to

the theory of NP-completeness. 1982. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6

[17] Roberto Henschel, Yunzhe Zou, and Bodo Rosenhahn. Mul-

tiple people tracking using body and joint detections. In

CVPR Workshops, 2019. 8

[18] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn,

and Paul Swoboda. Lifted disjoint paths with application

in multiple object tracking. In ICML, 2020. 1, 2, 6, 7, 8

[19] Min Hu, Saad Ali, and Mubarak Shah. Detecting global mo-

tion patterns in complex videos. In ICPR, 2008. 2

[20] Weiming Hu, Xinchu Shi, Zongwei Zhou, Junliang Xing,

Haibin Ling, and Stephen Maybank. Dual L1-normalized

context aware tensor power iteration and its applications to

multi-object tracking and multi-graph matching. Interna-

tional Journal of Computer Vision, 128(2):360–392, 2020.

3

[21] Xiaolong Jiang, Peizhao Li, Yanjing Li, and Xiantong

Zhen. Graph neural based end-to-end data association frame-

work for online multiple-object tracking. arXiv preprint

arXiv:1907.05315, 2019. 2

[22] Rudolph Emil Kalman. A new approach to linear filtering

and prediction problems. ASME Journal of Basic Engineer-

ing, 82(1):35–45, 1960. 5

[23] Rangachar Kasturi, Dmitry Goldgof, Padmanabhan

Soundararajan, Vasant Manohar, John Garofolo, Rachel

Bowers, Matthew Boonstra, Valentina Korzhova, and Jing

Zhang. Framework for performance evaluation of face, text,

and vehicle detection and tracking in video: Data, metrics,

and protocol. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 31(2):319–336, 2008. 6

[24] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M

Rehg. Multiple hypothesis tracking revisited. In ICCV, 2015.

2

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2014. 6

[26] Tjalling C. Koopmans and Martin Beckmann. Assignment

problems and the location of economic activities. Economet-

rica, 25(1):53–76, 1957. 2, 3

[27] Harold W Kuhn. The Hungarian method for the assignment

problem. Naval research logistics quarterly, 2(1-2):83–97,

1955. 2, 3

[28] Cheng-Hao Kuo and Ram Nevatia. How does person identity

recognition help multi-person tracking? In CVPR, 2011. 1

[29] Long Lan, Dacheng Tao, Chen Gong, Naiyang Guan, and

Zhigang Luo. Online multi-object tracking by quadratic

pseudo-boolean optimization. In IJCAI, 2016. 2

[30] Eugene L. Lawler. The quadratic assignment problem. Man-

agement Science, 9(4):586–599, 1963. 2, 3

[31] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad

Schindler. Learning by tracking: Siamese CNN for robust

target association. In CVPR Workshops, 2016. 1, 2

[32] Marius Leordeanu and Martial Hebert. A spectral technique

for correspondence problems using pairwise constraints. In

ICCV, 2005. 3

[33] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard

Ghanem. DeeperGCN: All you need to train deeper GCNs.

arXiv preprint arXiv:2006.07739, 2020. 5

[34] Jiahe Li, Xu Gao, and Tingting Jiang. Graph networks for

multiple object tracking. In WACV, pages 719–728, 2020. 2,

8

[35] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deep-

ReID: Deep filter pairing neural network for person re-

identification. In CVPR, 2014. 6

[36] Tianyi Liang, Long Lan, and Zhigang Luo. Enhancing

the association in multi-object tracking via neighbor graph.

arXiv preprint arXiv:2007.00265, 2020. 2

5307

[37] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 1

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017. 1

[39] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. GSM:

Graph similarity model for multi-object tracking. In IJCAI,

2020. 2, 8

[40] Zhichao Lu, Vivek Rathod, Ronny Votel, and Jonathan

Huang. RetinaTrack: Online single stage joint detection and

tracking. In CVPR, 2020. 2

[41] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip

H. S. Torr, Andreas Geiger, Laura Leal-Taixé, and Bastian

Leibe. HOTA: A higher order metric for evaluating multi-

object tracking. International Journal of Computer Vision,

129(2):548–578, 2021. 8

[42] Cong Ma, Yuan Li, Fan Yang, Ziwei Zhang, Yueqing

Zhuang, Huizhu Jia, and Xiaodong Xie. Deep association:

End-to-end graph-based learning for multiple object track-

ing with conv-graph neural network. In ICMR, 2019. 5

[43] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and

Konrad Schindler. MOT16: A benchmark for multi-object

tracking. arXiv preprint arXiv:1603.00831, 2016. 6

[44] Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne. GC-

NNMatch: Graph convolutional neural networks for multi-

object tracking via sinkhorn normalization. arXiv preprint

arXiv:2010.00067, 2020. 8

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 6

[46] Jinlong Peng, Tao Wang, Weiyao Lin, Jian Wang, John

See, Shilei Wen, and Erui Ding. TPM: Multiple object

tracking with tracklet-plane matching. Pattern Recognition,

107:107480, 2020. 2, 8

[47] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes.

Globally-optimal greedy algorithms for tracking a variable

number of objects. In CVPR, 2011. 2

[48] Donald Reid. An algorithm for tracking multiple targets.

IEEE Transactions on Automatic Control, 24(6):843–854,

1979. 2

[49] Ergys Ristani, Francesco Solera, Roger S. Zou, Rita Cuc-

chiara, and Carlo Tomasi. Performance measures and a data

set for multi-target, multi-camera tracking. In ECCV Work-

shops, 2016. 6

[50] Mikel Rodriguez, Saad Ali, and Takeo Kanade. Tracking in

unstructured crowded scenes. In ICCV, 2009. 2

[51] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese.

Tracking the untrackable: Learning to track multiple cues

with long-term dependencies. In ICCV, 2017. 2

[52] Christian Schellewald and Christoph Schnörr. Probabilistic

subgraph matching based on convex relaxation. In CVPR

Workshops, 2005. 3

[53] ShiJie Sun, Naveed Akhtar, HuanSheng Song, Ajmal S

Mian, and Mubarak Shah. Deep affinity network for mul-

tiple object tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 43(1):104–119, 2019. 1

[54] Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dag-

mar Kainmuller, and Bogdan Savchynskyy. A study of La-

grangean decompositions and dual ascent solvers for graph

matching. In CVPR, 2017. 3

[55] Siyu Tang, Bjoern Andres, Miykhaylo Andriluka, and Bernt

Schiele. Subgraph decomposition for multi-target tracking.

In CVPR, 2015. 2

[56] Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, and Bernt

Schiele. Multi-person tracking by multicut and deep match-

ing. In ECCV, 2016. 2

[57] Philip HS Torr. Solving markov random fields using semi

definite programming. In AISTATS, 2003. 3

[58] Mario Vento and Pasquale Foggia. Graph matching tech-

niques for computer vision. In Image Processing: Con-

cepts, Methodologies, Tools, and Applications, pages 381–

421. 2013. 2

[59] Bing Wang, Gang Wang, Kap Luk Chan, and Li Wang.

Tracklet association by online target-specific metric learning

and coherent dynamics estimation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(3):589–602,

2016. 2

[60] Gaoang Wang, Yizhou Wang, Haotian Zhang, Renshu Gu,

and Jenq-Neng Hwang. Exploit the connectivity: Multi-

object tracking with trackletnet. In ACM MM, 2019. 8

[61] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning

combinatorial embedding networks for deep graph matching.

In ICCV, 2019. 3

[62] Shaofei Wang and Charless C Fowlkes. Learning opti-

mal parameters for multi-target tracking with contextual

interactions. International Journal of Computer Vision,

122(3):484–501, 2017. 1

[63] Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris Ki-

tani. GNN3DMOT: Graph neural network for 3D multi-

object tracking with 2D-3D multi-feature learning. CVPR,

2020. 5

[64] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

In ICIP, 2017. 1, 2, 6, 7

[65] Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura

Leal-Taixé, and Xavier Alameda-Pineda. How to train your

deep multi-object tracker. In CVPR, 2020. 1, 2

[66] Bo Yang, Chang Huang, and Ram Nevatia. Learning affini-

ties and dependencies for multi-target tracking using a CRF

model. In CVPR, 2011. 2

[67] Bo Yang and Ram Nevatia. An online learned CRF model

for multi-target tracking. In CVPR, 2012. 1

[68] Ju Hong Yoon, Chang-Ryeol Lee, Ming-Hsuan Yang, and

Kuk-Jin Yoon. Online multi-object tracking via structural

constraint event aggregation. In CVPR, 2016. 2

[69] Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li.

Learning deep graph matching with channel-independent

embedding and Hungarian attention. In ICLR, 2020. 3

[70] Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah.

GMCP-Tracker: Global multi-object tracking using general-

ized minimum clique graphs. In ECCV, 2012. 2

5308

[71] Andrei Zanfir and Cristian Sminchisescu. Deep learning of

graph matching. In CVPR, 2018. 4

[72] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data as-

sociation for multi-object tracking using network flows. In

CVPR, 2008. 2

[73] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,

and Wenyu Liu. FairMOT: On the fairness of detection and

re-identification in multiple object tracking. arXiv preprint

arXiv:2004.01888, 2020. 2

[74] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-

dong Wang, and Qi Tian. Scalable person re-identification:

A benchmark. In ICCV, 2015. 6

[75] Feng Zhou and Fernando De la Torre. Factorized graph

matching. In CVPR, 2012. 3

[76] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.

Tracking objects as points. In ECCV, 2020. 2, 8

[77] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun Zhang,

and Ming-Hsuan Yang. Online multi-object tracking with

dual matching attention networks. In ECCV, 2018. 1

5309

