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Abstract

Multi-source unsupervised domain adaptation (MSDA)

aims at adapting models trained on multiple labeled source

domains to an unlabeled target domain. In this paper, we

propose a novel multi-source domain adaptation framework

based on collaborative learning for semantic segmentation.

Firstly, a simple image translation method is introduced

to align the pixel value distribution to reduce the gap

between source domains and target domain to some extent.

Then, to fully exploit the essential semantic information

across source domains, we propose a collaborative learning

method for domain adaptation without seeing any data

from target domain. In addition, similar to the setting of

unsupervised domain adaptation, unlabeled target domain

data is leveraged to further improve the performance of

domain adaptation. This is achieved by additionally con-

straining the outputs of multiple adaptation models with

pseudo labels online generated by an ensembled model.

Extensive experiments and ablation studies are conducted

on the widely-used domain adaptation benchmark datasets

in semantic segmentation. Our proposed method achieves

59.0% mIoU on the validation set of Cityscapes by training

on the labeled Synscapes and GTA5 datasets and unlabeled

training set of Cityscapes. It significantly outperforms all

previous state-of-the-arts single-source and multi-source

unsupervised domain adaptation methods.

1. Introduction

Semantic segmentation as one of the core tasks in com-

puter vision community, aims to assign semantic label to

each pixel of images, e.g., person, car, road and etc.. With

the development of convolutional neural networks (CNNs),

semantic segmentation has made great progress recent-

ly. For example, recent deep methods [2, 5, 7, 11, 41],

have achieved superior performance on almost all public
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Figure 1. Multi-source domain adaptation for semantic segmenta-

tion. The left shows synthetic images and corresponding labels

generated from different simulators, which suffer domain shift

between each other but share similar semantic contexts. The right

part shows unlabeled target images sampled from real scenes.

benchmarks. However, their success is based on the large

numbers of densely annotated images which used to train

the networks. Dense pixel-level annotation for semantic

segmentation is very laborious and expensive, e.g., anno-

tating one image in the Cityscapes dataset [4] takes about

90 minutes, which makes it difficult and sometimes even

impossible to collect large amounts of densely annotated

images for semantic segmentation. Thanks to the recent

progress in graphics and simulation infrastructure, simula-

tors can generate lots of images with dense annotation for

semantic segmentation, such as recent proposed large-scale

dense labeled datasets SYNTHIA [28], GTA5 [27] and

Synscapes [36]. Although the huge amounts of annotated

synthesized images are very close to the real scene, there is

still great domain gap between synthetic datasets and real

scene datasets. The domain gap causes another problem

that networks trained on synthetic datasets often perform

poorly on real target scenes. To handle this issue, many un-

/semi-supervised domain adaptation (UDA) approaches are

proposed, like [13, 21, 29, 31, 32, 35, 37] and etc., with the

purpose of mitigating the gap between synthetic source and
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real target domain. Over the past years, UDA has made a

great progress.

Although existing works have greatly boosted the per-

formance of UDA for semantic segmentation, most of them

focus on single source. Seldom works consider a more prac-

tical setting where labeled datasets from multiple sources

with different distributions are available, e.g., SYNTHIA

and GTA5. Training with multiple sources can further

alleviate the problem on lack of annotated data. Moreover,

multiple sources sampled from different distribution can

also encourage networks to learn more essential knowledge

for semantic segmentation. A straightforward approach is

to simply combine all source domains into a single one,

and then trains a UDA model on the combined sources and

target domain dataset. This simple method can indeed boost

the performance, but it does not fully exploit the abundant

information across multiple source domains. Domain shift

across multiple sources restricts the power within them in

learning a more powerful domain adaptation model.

There are several multi-source deep UDA methods are

proposed recently to exploit multiple source domains for

better adaptation. They align different domains by trans-

lating images from source domains to the target style via

generative adversarial networks (GAN). However, most of

them [23, 30, 15] work on image classification task except

for MADAN [43] which works on semantic segmentation,

a pixel-wise prediction task. In this paper, we propose

an approach based on collaborative learning and image

translation to address multi-source domain adaptation for

semantic segmentation.

Our observation shows that appearance discrepancy e-

specially color discrepancy between source domains and

target domain has a great impact on the performance of

adaptation. Existing works [34, 12, 38, 10] demonstrate

that style transfer could reduce this discrepancy in some

extent. However, most of them are complicated to plug in

networks during training process. Therefore, we propose a

simple image translation method to first mitigate domain

gap between sources and target. Unlike MADAN [43],

FDA [37] and GAN-based translation methods, we propose

to translate source domain images to the target style by

aligning different distributions to the target domain in LAB

color space. In addition, we observe that apart from

discrepancy in appearance, images from different domains

do still share much similarity in semantic contexts as shown

in Fig 1. The shape of instances (person, car, bike and

etc.) and spatial layout of different instances (cars always

on the road, sidewalk adjacent to the road, sky on the

top and etc.) are almost the same in all domains. Two

collaborative learning strategies are proposed to explore

essential and domain-invariant semantic contexts across

different domains. First we propose a collaborative learning

between source domains to investigate the case of domain

adaptation without seeing any data from target domain,

which is also called domain generalization in previous

works [6, 22, 40]. For each source domain, we have a

semantic segmentation network supervised by annotation

maps, and an additional soft supervision coming from other

models trained on a different source domain. In addition,

similar to previous UDA methods [43, 37], we also consider

making full use of the unlabeled data of the target domain

to further boost the performance. A collaborative learning

based on target domain is proposed, in which an ensemble

of models trained on source domains is used to produce

pseudo labels for data from target domain in an online

fashion. In turn, each model can be additionally supervised

by the generated pseudo labels. Such two collaborations

help constantly improve each model’s adaptation capability

to target domain during the training process.

The performance of our method significantly outper-

forms other state-of-the-art single-source and multi-source

UDA methods. This success of proposed method is mainly

attributed to the effective image translation and domain-

invariant feature learning. Note that, our method can be

trained in both end-to-end and stage-wise.

2. Related works

In this section, we briefly review some related works in

the literature, i.e., semantic segmentation, domain general-

ization and unsupervised domain adaptation.

2.1. Semantic Segmentation

Semantic segmentation plays a vital role in computer

vision community and is beneficial to many practical ap-

plications, such as autonomous driving, virtual reality and

medical imaging and etc.. It has developed several decade

years and is well researched. Since Long et al. [16] propose

to transform the classification CNNs to fully convolutional

network for semantic segmentation, large numbers of deep

learning based methods have been proposed and greatly

boost the advances of this task. For example, Chen et

al.propose the DeepLab series [1, 2] approaches which

utilize átrous spatial pyramid pooling (ASPP) to capture

different scale of context information. Fu et al. [5] involve

non-local attention block into the CNNs architecture to

exploit the global context of image and relation of objects.

Hou et al. [9] propose a new effective strip pooling to

model long-range dependencies. However, the advanced

performance of these semantic segmentation methods often

build on the large amounts of densely annotated images

which are usually hard and sometimes impossible to collect.

2.2. Domain Generalization

Domain generalization is a particular case of transfer

learning. It’s purpose is to enhance the generalization

ability of models on new domains that have not been
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Figure 2. The overall framework of proposed approach consists of three components, including that image-to-image translation based on

LAB color space, collaborative learning between source domains and collaborative learning on target domain. The solid arrows represent

the forward data flow and different colors indicate different source domains or target domain data flow. The dash arrows represent the

supervision to the network outputs. For illustration, we just show the case of two source domains as an example to explain our method.

seen during the training process. Currently, most of the

domain generalization methods can be categorized to three

parts: data-based, feature-based and meta-learning based.

Most data-based methods employ GANs, Variational Au-

toencoder (VAE) or other image edit methods to generate

new data for network training to enhance robustness and

generalization of the models, e.g., Dlow [6] and STRG [39].

Then, the feature-based methods mainly aim to learn rep-

resentations invariant to different domains by adversarial

learning to align features or employing normalization to

eliminate the style information, like CADAG [25] and IBN-

Net [22]. Meta-learning based methods aim to enhance the

generalization ability by using meta learning, such as Zhang

et al. [40] deal with the domain generalization from the

training scheme perspective and develop a target-specific

normalization method to further boost the generalization

ability in unseen target domain. Domain generalization do

not access the data in target domain which may not learn

the optimal feature for target domain.

2.3. Unsupervised Domain Adaptation

In contrast to domain generalization, unsupervised do-

main adaptation involves in unlabeled data of target domain

during training process to learn knowledge of it. UDA

has developed many years and large numbers of methods

have been proposed. From the perspective of the number

of source domains, domain adaptation methods can be split

into two categories: single-source and multi-source.

Single-source domain adaptation focuses on single-

source-single-target setting. Most of existing UDA works

are for classification, like MMD [17, 18], ADDA [33] and

et al.. With the synthetic dataset GTA5, SYNTHIA and

Synscapes proposed , UDA for semantic segmentation

has also achieved great advances in recent. For example,

Tsai et al. [32] propose AdaptSeg that based on adversarial

learning to aligns scene layout and local context of images

between source and target domain. Yang et al. [37] draw

on the image-to-image translation and propose to using

Fourier Transform to translate images in source domain to

the style of target domain. While Li et al. [13] propose a

bidirectional framework for domain adaptation and learn a

image translation model with perceptual loss to translate

images to target style. These methods have significantly

boost the performance of UDA in semantic segmentation.

However, they do not take the existing multiple different

source domains into account which is a great waste of

labeled resources.

Multi-source domain adaptation aims to make full use of

existing labeled source for adaptation. Compared to single-

source UDA, it is relatively more challenging because of

the shift between source domains. There are also some

multi-source UDA works but most of them focus on image

classification. Directly extending these methods for seman-

tic segmentation may not work. Zhao et al. [43] propose

MADAN for semantic segmentation. They first learns a

cycle GAN [44] for each source domain to translate images

to target, and then combine different adapted sources with

specific weights. Finally, training a adaptation network on
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Source Image Trans. on RGB Trans. on LAB Target Image

Figure 3. The qualitative comparison of image translation on

different color space.

the combined data in a way similar to single-source UDA.

In contrast to [43], we not only draw on the style-transfer

for image-to-image translation, also aim to learn the shared

semantic information of source domains and explore the

knowledge of unlabeled target data.

3. Proposed Approaches

3.1. LAB­based Image Translation

We observe that the domain discrepancy between do-

mains mainly lies in appearance of images, i.e., color

and texture. For example, the appearance discrepancy be-

tween source domains (GTA5 and SYNTHIA), and between

source domains and target domain (GTA5 and Cityscapes)

as demonstrated in Fig. 1. This discrepancy would further

increase the difficulty of multi-source domain adaptation.

An effective style transfer could reduce this discrepancy to

some extent. For simplicity and efficiency, we proposed an

image translation method that translates the style of images

in source domains to the style of target domain by aligning

the distribution of pixel values, like [26]. Specifically, due

to the gamut of LAB color space is larger than RGB color

space, and the style of images translated on LAB color

space are closer to the style of images in target domain than

directly operated on RGB color space as shown in Fig. 3,

we involve the image translation based on LAB color space

to achieve the target of reducing domain discrepancy.

Specifically, for a RGB imageXRGB
S in source domains,

it is firstly converted to LAB color space to generate LAB

image XLAB
S = rgb2lab(XRGB

S ). Then, we calculate

the mean µS and standard deviation values σS of each

channel of the generated LAB image XLAB
S . At the same

time, an image from target domain is randomly selected

and converted to LAB color space in same way as image

from source. After that, we also calculate the mean µT and

standard deviation values σT of this converted target image.

Finally, we translate the converted LAB image from source

domains to the style of target by shifting the distribution of

pixel values to the image of target domain, ie.,

X̂LAB
S =

(XLAB
S − µS)

σS

∗ σT + µT . (1)

After aligning distribution in LAB color space, we then con-

vert the translated LAB image X̂LAB
S from source domains

back to the RGB color space X̂RGB
S = lab2rgb(X̂LAB

S ),
for the subsequent training. The rgb2lab and lab2rgb are

the library conversion function in python, and also easy to

implement it with CUDA to accelerate computation. Fig 3

shows the qualitative comparison between RGB- and LAB-

based translation. We can see that the images are close

to the style of target domain after translation, and the gap

between domains is reduced to some extent. Moreover, the

LAB-based translated images are closer to the style of target

images.

3.2. Collaborative Learning between Labeled
Source Domains

As shown in Fig. 1, although the images of different

source domains are sampled from different simulators, i.e.,

from different i.i.d distributions, they are highly structured

and share many similarities, e.g., the spatial layout of dif-

ferent categories and local context of objects. Based on this

observation and to encourage models learn these essential

similar properties for semantic segmentation, we propose

a collaborative learning (Co-Learning) method which fully

takes advantage of the capacity of different models learned

on different source domains. This approach utilizes a

model learn from one source domain to teach the model

trained on another one, which allows that model to learn

the knowledge from current source domain.

Assume that there are N different labeled source do-

mains S = {S1, S2, · · · , SN} which are sampled from N

different i.i.d distributions, and N deep neural networks

M = {MS1
,MS2

, · · · ,MSN
} of the same architecture

but different weights learned on these source domains.

Then, for an model MSi
, the learning process of model

MSi
is supervised by segmentation loss on labeled data

from source Si and collaborative loss on output from source

Sk,k 6=i. That is, for modelMSi
, the object function is

Li = L
seg
Si

(FSi

Si
,YSi

) + λcol
S L

col
S ({(FSk

Si
,FSk

Sk
)k 6=i}), (2)

where the loss Lseg is the cross entropy loss, i.e.,

Lseg
S (FS ,YS) = −

1

|XS |

∑

h,w

∑

c∈C

Y
(h,w,c)
S log(σ(F

(h,w,c)
S )),

(3)

and the loss Lcol is the average of Kullback-Leibler (KL)

divergence loss, i.e.,

Lcol
S ({(FSk

Si
,FSk

Sk
)k 6=i}) =

1

N − 1

∑

k,k 6=i

Lkl
k→i(F

Sk

Sk
‖FSk

Si
),

(4)

Lkl
k→i(F

Sk

Sk
‖FSk

Si
) = −

1

|XSk
|

∑
σ(FSk

Sk
) log(

σ(FSk

Si
)

σ(FSk

Sk
)
).

(5)

X ,F ,Y are the input image, outputs of networks and the

corresponding ground truth respectively. For FSk

Si
, the
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subscript indicates that F is generated by MSi
while the

superscript indicates F is the feature computed for images

from domain Sk, i.e., FSk

Si
= MSi

(XSk
). C is the

number of categories to be segmented, σ(·) indicates the

softmax function, |X | represents the number of pixels in

image X . Collaborative learning can allow the model

MSi
learn the knowledge of other modelsMSk,k 6=i

learned

from corresponding source Sk. Thus, rather than stuck

in the source domain Si, model MSi
also tries to learn

essential properties between all the source domains for

better generalization and segmentation on target domain.

Difference with existing works: In the co-training

of CLAN [19] and CT [24], two diversified classifier-

s are produced to make predictions and their ensemble

with either summation or multiplication is taken as the

final prediction; however, in the collaborative learning

framework, two segmentation models trained based on

each source domain teach each other to extract essential

semantic information across domains. CrDoCo [3] uses

bi-directional KL divergence to encourage segmentation

consistency between images in unlabeled target domain and

their source-style transformed correspondences. However,

in our work, images from both source domains are first

transformed to the same style, i.e., target domain style.

Then an arbitrary image is sent to two models that are

trained for source 1 and source 2 respectively. The predic-

tion of the model trained for the source domain that image

comes from works as teacher to supervise the other model’s

prediction on the same image.

3.3. Collaborative Learning on Unlabeled Target
Domain

In practice, unlabeled data is often relatively easy and

cheap to collect. Moreover, models trained on the data of

target domain can learn better features and perform well

on target domain. Therefore, we propose a collaborative

learning method to fully take advantage of the unlabeled

images in target domain, and further boost the performance

of models on target domain.

Denote target domain as T which has collected large

amounts of unlabeled images {X j
T }

NT

j=1. For an image

XT in the target domain T , we first feed it to all the N

models M = {MSi
, i = 1, 2, · · · , N} and compute the

corresponding outputs of modelsMSi
for the input image

XT as FT
Si

, i.e., FT
Si

= MSi
(XT ). Outputs of these

networks are ensembled and a softmax function σ(·) is used

to compute the probability map, i.e.,

P̂ = σ(
1

N

∑

i

FT
Si
). (6)

Finally, we generate one-hot pseudo labels Ŷ for the target

image XT by utilizing the probability map in a way similar

to [13, 45], and the detail process is described in the

Algorithm 1: Pseudo Labels Generation

Data: The probability map P̂ ∈ RC×H×W , keep

proportion α, maximum thresh τ , the ignore

label lig

Result: one-hot hard pseudo labels Ŷ
1 Ŷ ← argmax(P̂ , dim = 0), Ŷ ∈ RH×W

2 for c← 0 to C − 1 do

3 P̂c ← sort(P̂{c,·,·}, order = Descending);
4 get the number of pixels nc which are predicted to

category c: nc ← sum(Ŷ == c);
5 get the threshold t that used to filter the prediction:

t← min(P̂c[nc × α], τ);
6 mask1← Ŷ == c;

7 mask2← P̂{c,·,·} <= t;

8 Ŷ[mask1 & mask2]← lig .

9 end

Algorithm 1. After then, we can train models MSi
with

both source domains and target domain. Thus, the object

function for modelMSi
becomes

Li = L
seg
Si

(FSi

Si
,YSi

)+
cur it

max its
λ
seg
T L

seg
T (FT

Si
, ŶT ), (7)

where cross entropy loss is employed to compute the loss

Lseg
T and is same as Equ. 3, the only difference is that

the target labels are generated pseudo labels. Here the the

weight term cur it
max its

is designed to prevent poor predictions

of the target image in early training process collapsing the

network training, cur it and max its represent current and

maximum iterations of training process.

3.4. Network Architecture and Training

The overall architecture of proposed approach are shown

in Fig. 2. In summary, it consists of three parts, i.e., image-

to-image translation based on LAB color space, collab-

orative learning between labeled source domains and on

unlabeled target domain. Firstly, images of source domains

are translated to the style of target domain as described in

Sec. 3.1 during training process. Note that for simplicity,

we just showcase the collaborative learning approach for

multi-source domain adaptation with two source domains.

As shown in Fig. 2, we train a segmentation network,

e.g., DeepLab v2 [1], for each source domain. These

networks can be trained end-to-end which initialized from

ImageNet pretrained model, or trained with stage-wise

which initialized from source fine-tuned model. For each

network, the final overall object function is as follows,

L = Lseg
S + λcol

S L
col
S +

cur it

max its
λ
seg
T L

seg
T . (8)

The loss Lseg
S ensures the correct functionality of networks

for segmentation, while the loss Lcol
S allows the network

11012



Table 1. Validity of the proposed image translation method.

The performance comparison with the recent single-source UDA

methods trained on images that before and after translation.

GTA5→Cityscapes

Methods Before +Trans Diff.

Direct Transfer 39.53 43.36 ↑ 3.83

AdaptSeg [32] 41.32 43.66 ↑ 2.43

AdaptSeg-LS [32] 43.11 45.95 ↑ 2.84

Advent [35] 44.30 45.96 ↑ 1.66

to learn the similarities that shared by source domains. In

addition, the lossLseg
T allows the network learn the property

of target data. When network training get converged, we

have two strategies to obtain the final model. One is to

choose the model which achieves the best performance

on target domain. The other is to keep all models, and

ensemble their outputs when inference. Unless otherwise

specified, all refer to the last case. The following section

tests the validity of proposed approach.

4. Experiments

4.1. Datasets

In this subsection, we briefly introduce the datasets

used to validate our adaptation method, i.e., the widely

used dataset Cityscapes [4], and recent proposed synthetic

datasets GTA5 [27], SYNTHIA [28], and Synscapes [36].

Cityscapes [4] consists of 5,000 real-world urban traffic

scene images with 2048×1024 resolution and dense-pixel

annotation. This dataset is split to 2,975 for training, 500

for validation and 1,525 for testing. Cityscapes annotates 33

categories of which 19 are used for training and evaluation.

The train set without ground truth is used for training

adaptation models and validation set for evaluation.

GTA5 [27] includes 24,966 dense annotated images

synthesized from a game engine with the resolution of

1914×1052, and the annotation are consistent with C-

ityscapes [4]. In a way similar to previous works [13, 35],

common categories between GTA5 and Cityscapes are used

in all experiments.

SYNTHIA [28] is a large synthetic dataset that

consists of photo-realistic frames rendered from a virtual

city. In experiments, we use the SYNTHIA-RAND-

CITYSCAPES [28] set for adaptation. It contains 9,400

images with a resolution of 1280×760 which are annotated

into 16 categories. Similar to GTA5, its annotations are also

automatically produced and compatible with Cityscapes.

Following previous works [37, 32, 35], we evaluate

performance on 16 and 13 common categories between

Cityscapes and SYNTHIA when SYNTHIA is used.

Synscapes [36] is a synthetic dataset created by photo-

realistic rendering techniques. It consists of 25,000 images

at 1440×720 resolution with 33 categories dense annotation

and only 19 of them are used. Similarly, its annotations

Table 2. The validity of model selection and the proposed

collaborative learning on the GTA5 + Synscapes to Cityscapes.

(a) shows the performance of each single model and the final

ensemble, (b) shows the comparison of proposed collaborative

learning between source domains (Co-Learning-Src) with baseline

and MLDG [40]. E: End-to-End, S: Stage-Wise.

(a)

Model E S

MSGTA5
56.90 57.72

MSSyns
56.65 57.81

MEnsemble 58.55 59.04

(b)

Methods mIoU Diff.

Data Combination 51.56 –

MLDG+TN [40] 52.73 ↑ 1.17

Co-Learning-Src 55.79 ↑ 4.23

are compatible with Cityscapes. The style of Syncscapes is

closer to Cityscapes than GTA5 and SYNTHIA.

4.2. Implementation Details

We both implement our proposed approach with Py-

Torch∗ and Mindspore†, and conduct experiments by adopt-

ing DeepLab-v2 [1] with ResNet-101 [8] as backbone.

The performance of initialization from both ImageNet pre-

trained model and source pretrained model are reported,

which denote as end-to-end and stage-wise training strat-

gies respectively. Following prior works [35, 32], all the

networks are trained with stochastic gradient descent (SGD)

optimizer. The initial learning rate and momentum are set

to 2.5 × e−4 and 0.9, respectively, and the polynomial

decay policy with power of 0.9 is adopted to adjust the

learning rate. We set the batch size to 1 for all datasets

during training because of memory limitation. The hyper-

parameters in collaborative learning on target domain, α

and τ are set to 50% and 0.9, respectively. It indicates

that we keep pixels that prediction probability within the

top 50% or higher than 0.9 as true labels, and reminder

are ignored. The weights λcol
S and λ

seg
T for collaborative

learning losses are set to 0.5, 0.1 for end-to-end training and

9.5, 0.1 for stage-wise training. Following Advent [35], we

set the number of maximum iterations to 250,000 but early

stop at 120,000 iterations. Same as previous works [37, 35,

32, 21], the metric mean intersection-over-union (mIoU) is

used to evaluate the performance of our adaptation method.

4.3. Ablation Study

In this subsection, extensive experiments on different

adaptation settings are conducted to study the effectiveness

of each component in the proposed approach.

Firstly, LAB-based image translation is applied to the

state-of-the-art UDA methods in semantic segmentation,

i.e., AdaptSeg [32] and Advent [35], to investigate the

effectiveness of proposed image translation method. Table 1

is the performance comparison of previous UDA methods

training on original and translated images. From the results,

∗https://www.pytorch.org/
†https://www.mindspore.cn/
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Table 3. Ablation studies of proposed methods. Note that, the

performances are achieved by end-to-end training strategy for

comparison with simple combination of sources.

GTA5 + Synscapes→ Cityscapes

LAB-based Data Co-Learning Co-Learning
mIoU

Trans. Comb. between Src. on Target

X 51.59

X X 54.38

X X 54.03

X X 56.03

X X 57.27

X X X 58.55

we can see that LAB-based image translation can greatly

boost the performance of UDA methods for semantic seg-

mentation. For example, LAB-based translation advances

the performance of direct transfer from 39.38% to 43.36%,

which improves about 3.83%. The performance of Adapt-

Seg and Advent are also significantly boosted, i.e., 2.43%,

2.84% and 1.66% for AdaptSeg, AdaptSeg-LS and Advent

respectively. These results demonstrate that the proposed

simple image translation method based on LAB color space

is effective for UDA in semantic segmentation. It is easy

to implement, with only a little additional computation and

without any extra hyper parameter. Note that, all results are

reproduced with the code provided by the authors.

Because our method can be trained in different strategies

and there are N models in the framework, we then test the

performance of each single model and the final ensemble

one with different training strategies. All these results are

based on the setting that adapting from GTA5+Synscapes

to Cityscapes. As shown in Table 2 (a), the performance

of all models are significantly improved and the ensembled

model achieves the best performance. Therefore, we only

report the ensembled model’s performance later. The

collaborative learning between source domains does not

access to the unlabeled target data and therefore can be used

to address the task of domain generalization. Table 2 (b)

shows the performance comparison with the recent multi-

source domain generalization method MLDG [40] and a

baseline based on simple data combination. We can see

that collaborative learning achieves better generalization

performance. For example, MLDG only marginally out-

performs the simple baseline about 1.17%, while collabo-

rative learning boosts the performance about 4.23%. Note

that, collaborative learning here is only applied to source

domains without image translation for fair comparison.

Table 3 shows different contribution of each compo-

nent to performance of our proposed approach. As the

results shown, training on combination of source domains

can improve the performance on target domain to some

extent, which achieves 51.59% and 54.38% respectively.

Collaborative learning between different source domains

Image GT Baseline MADAN Ours

Figure 4. Visual Comparison with baseline and other methods.

Left to right: input image from Cityscapes, corresponding ground-

truth, segmentation results of baseline that simple combination of

source domains, MADAN [43] and our proposed method. Note

that, all these results are adapting from GTA5+Synscapes.

further boosts the performance to 56.03%. Collaborative

learning on target domain also boosts the performance on

target which achieves 54.03%. This result shows that

collaborative learning between source domains brings more

improvements than on target domain. Moreover, ful-

l version of our approach achieves the best performance,

achieving 58.55% on target domain. Thus, we can conclude

that the proposed approach is effective for unsupervised

domain adaptation in semantic segmentation.

4.4. Comparison with SOTA

In this subsection, our proposed approach is compared

to the recent state-of-the-art single-source and multi-source

UDA methods on the GTA5+Synscapes to Cityscapes,

including a baseline of source-only direct transfer (DT),

single-source UDA methods [32, 21, 35, 14, 13, 37, 20],

the multi-source baseline that simple combination of source

domains and multi-source UDA methods [42, 43]. We

further validate the effectiveness of our proposed method by

conducting experiments based on adapting different number

of source domains to target domain.

Table 4 shows the results comparison with other meth-

ods and Fig. 4 demonstrates the visual comparison with

baseline and MADAN [43]. From the results of Table 4,

we can see that simply combining the images of source

domains for networks training can already greatly boost

the generalization performance on target domain, which

advances from the 44.1% of GTA5→Cityscapes and 45.3%

of Synscapes→Cityscapes to 51.6%. Simply adapting

UDA methods to train on combination of source domains

does not bring much improvements, such as AdaptSeg

has only 1% improvement and Advent only 0.5%. By

employing adaptation strategy, multi-source UDA further

boost the performance, i.e., MDAN [42] achieves 55.2%

and MADAN [43] achieves 55.7%. By further integrating

collaborative learning on the source domains and target

domain, we achieve 58.6% mIoU with the end-to-end
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Table 4. The quantitative comparison with the state-of-the-art methods. DT is the abbreviation of direct transfer. G, S and A indicate GTA5,

Synscapes and All respectively. Adv, CL, ST and RL indicate Adversarial learning, Curriculum Learning, Self Training and Reconstruction

Learning respectively. Ours-E and Ours-S represent end-to-end training and stage-wise training of our proposed method respectively.
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DT [32] –

S

81.8 40.6 76.1 23.3 16.8 36.9 36.8 40.1 83.0 34.8 84.9 59.9 37.7 78.5 20.4 20.5 7.8 27.3 52.5 45.3

AdaptSeg [32] Adv 94.2 60.9 85.1 29.1 25.2 38.6 43.9 40.8 85.2 29.7 88.2 64.4 40.6 85.8 31.5 43.0 28.3 30.5 56.7 52.7

FDA [37] ST 93.6 58.1 84.0 30.4 29.2 39.0 43.1 51.7 85.9 28.8 86.9 64.0 45.7 84.7 30.4 36.5 28.5 34.4 62.4 53.5

Advent [35] Adv 92.2 51.3 85.0 40.8 31.2 39.0 42.5 42.5 86.5 46.1 84.8 65.2 39.0 87.0 32.6 49.0 29.5 28.6 50.0 53.8

UIA [21] Adv 94.0 60.0 84.9 29.5 26.2 38.5 41.6 43.7 85.3 31.7 88.2 66.3 44.7 85.7 30.7 53.0 29.5 36.5 60.2 54.2

DT [32] –

G

75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSeg [32] Adv 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

Advent [35] Adv 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

UIA [21] Adv 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 46.3

PyCDA [14] CL 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

BDL [13] ST 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

FDA [37] ST 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

PIT [20] RL 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

Data Comb. –

A

85.1 36.9 84.1 39.0 33.3 38.7 43.1 40.2 84.8 37.1 82.4 65.2 37.8 69.4 43.4 38.8 34.6 33.2 53.1 51.6

AdaptSeg [32] Adv 89.3 47.3 83.6 40.3 27.8 39.0 44.2 42.5 86.7 45.5 84.5 63.1 38.0 79.4 34.9 48.3 42.1 30.7 52.3 53.7

Advent [35] Adv 91.8 49.0 84.6 39.4 31.5 39.9 42.9 43.5 86.3 45.1 84.6 65.3 41.0 87.1 37.9 49.2 31.0 30.3 48.8 54.2

MDAN [42] Adv 92.4 56.1 86.8 42.7 32.9 39.3 48.0 40.3 87.2 47.2 90.5 64.1 35.9 87.8 33.8 48.6 39.0 27.6 49.2 55.2

MADAN [43] Adv 94.1 61.0 86.4 43.3 32.1 40.6 49.0 44.4 87.3 47.7 89.4 61.7 36.3 87.5 35.5 45.8 31.0 33.5 52.1 55.7

Ours-E – 94.2 61.8 86.7 47.7 34.1 39.3 44.6 34.2 87.2 49.6 89.7 65.6 38.1 88.2 48.1 63.0 41.9 39.2 59.2 58.6

Ours-S – 93.6 59.6 87.1 44.9 36.7 42.1 49.9 42.5 87.7 47.6 89.9 63.5 40.3 88.2 41.0 58.3 53.1 37.9 57.7 59.0

Table 5. The performance of our proposed method that uses

different source domains for adaptation. G: GTA5, S:

Synscapes, Y: SYNTHIA. mIoU19, mIoU16 and mIoU13

indicate performance on different number of categories.

sources mIoU19 mIoU16 mIoU13

Source-Only

G 39.53 43.28 48.25

S 44.43 48.74 54.09

Y – 32.31 37.41

Multi-Sources

G+S 59.04 61.25 65.87

G+Y – 54.03 59.42

S+Y – 58.19 63.18

G+S+Y – 62.24 67.15

training strategy and 59.0% mIoU with stage-wise training

strategy, which greatly outperforms all the previous meth-

ods. When compared to single-source UDA, we observed

that our approach achieves more significant improvement

on categories such as train, truck, bus and et al.. These

objects have rigid body and share much similarity in shape

among different source domains. These results also validate

the effectiveness of our proposed method. It is noteworthy

that our approach does not employ any adversarial learn-

ing or any other sophisticated tricks, such as curriculum

learning or self-training. More experiments are shown in

supplementary.

Table 5 shows the performance comparison that adapting

different source domains to Cityscapes. As the results

shown, our approach can make full use of the labeled

source domains and significantly improve the performance

on target domain. We can see that adapting from GTA5

and Synscapes achieves 59.04% mIoU on 19 categories and

61.25% mIoU on 16 categories, which brings about 15%

and 13% improvements w.r.t to the best model training on

single-source. When adapting from all the three labeled

source domains, our method further improve the perfor-

mance (mIoU on 16 categories) from 61.25% to 62.24%.

These results further illustrates the effectiveness of our

method.

5. Conclusion

In this paper, we present an effective multi-source

domain adaptation framework for semantic segmentation

based on collaborative learning. A simple image translation

method is proposed to reduce the gap between domains.

A collaborative learning method based on both labeled

source domains and unlabeled target domain is proposed to

fully explore essential semantic contexts across domains.

Extensive experiments and ablation studies show that the

proposed framework is able to significantly outperform all

previous state-of-the-arts single-source and multi-source

unsupervised domain adaptation methods, by effectively

taking advantage of labeled data from multiple source

domains and unlabeled data from target domain.
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