
A Sliced Wasserstein Loss for Neural Texture Synthesis

Eric Heitz Kenneth Vanhoey Thomas Chambon Laurent Belcour

Unity Technologies

{eric,kennethv,thomas.chambon,laurent}@unity3d.com

Abstract

We address the problem of computing a textural loss

based on the statistics extracted from the feature activations

of a convolutional neural network optimized for object recog-

nition (e.g. VGG-19). The underlying mathematical problem

is the measure of the distance between two distributions

in feature space. The Gram-matrix loss is the ubiquitous

approximation for this problem but it is subject to several

shortcomings. Our goal is to promote the Sliced Wasserstein

Distance as a replacement for it. It is theoretically proven,

practical, simple to implement, and achieves results that are

visually superior for texture synthesis by optimization or

training generative neural networks.

1. Introduction

A texture is by definition a class of images that share a

set of stationary statistics. One of the key components of

texture synthesis is a textural loss that measures the differ-

ence between two images with respect to these stationary

statistics.

Gatys et al. [5] discovered that the feature activations

in pretrained Convolutional Neural Networks (CNNs) such

as VGG-19 [20] yield powerful textural statistics. Neural

texture synthesis means optimizing an image to match the

feature distributions of a target texture in each convolutional

layer, as shown in Figure 1. Gatys et al. use the L2 dis-

tance between the Gram matrices of the feature distributions

as a textural loss LGram. The simplicity and practicability

of this loss make it especially attractive and it is nowadays

ubiquitous in neural texture synthesis and style transfer meth-

ods [6, 4, 23, 14, 24, 11, 21, 19, 27, 26].

Intuitively, the Gram-matrix loss LGram, which is a

second-order descriptor like the covariance matrix, optimizes

the features to be distributed along the same major directions

but misses other (e.g. higher-order) statistics and is thus in-

sufficient to represent the precise shape of the distribution.

This results in undesired artifacts in the synthesized results

such as contrast oscillation, as shown in Figure 1-middle.

Several subsequent works hint that improved textural quality

input optim LGram optim LSW

VGG-19 VGG-19 VGG-19

Figure 1: Neural texture synthesis. We visualize a 2D slice

of the feature distributions of a convolutional layer. The

ubiquitous Gram-Matrix loss LGram captures only the major

directions of the distribution. We promote the Sliced Wasser-

stein Distance LSW that captures the full distribution and

allows for neural texture synthesis with improved quality.

can be obtained by capturing more statistics [14, 18, 15].

However, how to define a practical textural loss that captures

the complete feature distributions remains an open problem.

Our main point is that the classic color transfer algorithm

of Pitie et al. [16] provides a simple solution to this problem.

This concept is also known as the Sliced Wasserstein Dis-

tance (SWD) [17, 1]. It is a slicing algorithm that matches

arbitrary n-dimensional (nD) distributions, which is precisely

the textural loss problem that the neural texture synthesis

community tries to solve. Although it has been around and

well-studied for a long time, it surprisingly has not yet been

considered for neural texture synthesis and we wish to pro-

mote it in this context. In Section 4, we show that the SWD

can be transposed to deep feature spaces to obtain a textural

loss LSW that captures the complete feature distributions and

that is practical enough to be considered as a replacement for

LGram. Furthermore, we show in Section 5 how to account

for user-defined spatial constraints without changing LSW

and without adding further losses or fine-tuned parameters,

extending the range of applications reachable with a single

textural loss without added complexity.

9412

2. Problem Statement

Our objective is to define a textural loss that captures the

complete feature distributions of L target layers of a pre-

trained convolutional neural network. For our experiments,

we use the first L = 12 convolutional layers of a pretrained

VGG-19 with normalized weights, following Gatys et al. [5].

Notations. The convolutional layer l has Ml pixels (spatial

dimensions) and Nl features (depth dimension). We note

F l
m ∈ R

Nl the feature vector located at pixel m and F l
m[n] ∈

R its n-th component (n < Nl).

Deep feature distributions. We note pl the probability

density function of the features in layer l. Since the feature

activations are discrete in a convolutional neural network,

the density is a sum of delta Dirac distributions

pl(x) =
1

Ml

Ml
∑

m=1

δF l
m
(x) (1)

that can be visualized as a point cloud in feature space (Fig-

ure 1). These distributions are position-agnostic, they do not

depend on where the features are located in image space,

and provide a stationary statistic of the texture.

Textural loss. A textural loss between two images I and Ĩ

is a function L(I, Ĩ) ∈ R
+ that measures a distance between

the sets of distributions pl and p̃l associated with the images.

Objective. Our goal is to define a textural loss that cap-

tures full feature distributions, i.e.

L(I, Ĩ) = 0 =⇒ pl = p̃l ∀ l ∈ {1, .., L}. (2)

Furthermore, this loss should be practical enough to be used

for texture optimization or training generative networks.

3. Previous work

The Gram loss. Gatys et al. [5, 6] use the Gram matrices

of the feature distributions to define a textural loss:

LGram(I, Ĩ) =
L
∑

l=1

1

N2
l

∥

∥

∥
Gl − G̃l

∥

∥

∥

2

, (3)

where Gl (resp. G̃l) is the Gram matrix of the deep features

extracted from I (resp. Ĩ) at layer l. Gl
ij is the entry (i, j)

of the Gram matrix Gl ∈ R
Nl×Nl of layer l, defined as

the second-order cross-moment of features i and j over the

pixels:

Gl
ij = E

[

F l
m[i]F l

m[j]
]

=
1

M l

∑

m

F l
m[i]F l

m[j]. (4)

The Gram loss has become ubiquitous as a textural loss

because it is fast to compute and practical. However, it does

not capture the full distribution of features, i.e.

LGram(I, Ĩ) = 0 6=⇒ pl = p̃l ∀ l ∈ {1, .., L}. (5)

This explains the visual artifacts of Figure 1-middle.

Beyond the Gram loss. Many have noticed that LGram

does not capture every aspect of appearance, resulting in

artifacts [14, 13, 18, 21, 19, 15, 27, 26]. Some approaches

switch paradigm by training Generative Adverserial Net-

works (GANs) but this is out of the scope of the problem

defined in Section 2 that is the focus of this article.

The closest approach to ours is the one of Risser et al. [18]

who define a histogram loss LHist by adding the sum of the

1D axis-aligned histogram losses of each of the Nl features

to the Gram loss:

LHist(I, Ĩ) =

L
∑

l=1

Nl
∑

n=1

LHist1D(p
l
n, p̃

l
n) + αLGram(I, Ĩ). (6)

This loss does not capture all the stationary statistics:

LHist(I, Ĩ) = 0 6=⇒ pl = p̃l ∀ l ∈ {1, .., L}, (7)

but significantly improves the results in comparison to LGram,

hinting that capturing more statistics improves textural qual-

ity. In terms of practicability, a careful tuning of its rela-

tive weight is required. Moreover, each 1D histogram loss

LHist1D uses a histogram binning. The number of bins is yet

another sensitive parameter to tune: insufficient bins result

in poor accuracy while the opposite results in vanishing gra-

dient problems. Our Sliced Wasserstein loss also computes

1D losses but with an optimal transport formulation (imple-

mented by a sort) rather than a binning scheme and with

arbitrary rather than axis-aligned directions, which makes it

statistically complete, simpler to use, and allows to get rid

of the Gram loss and its weighting parameter.

Other approaches were designed inspired by the idea of

capturing the full distribution of features. Mechrez et al.’s

contextual loss LCX [15] estimates the difference between

two distributions and resembles Li and Malik’s implicit max-

imum likelihood estimator [10]. Unfortunately, it uses a

kernel with an extra meta-parameter h to tune and has a

quadratic complexity, severely limiting its usability. Another

recent work is Kolkin et al.’s approximate earth mover’s dis-

tance loss LREMD [8]. It requires several regularization terms

with fine-tuned weights. These losses are still not complete:

LCX(I, Ĩ) = 0 6=⇒ pl = p̃l ∀ l ∈ {1, .., L}, (8)

LREMD(I, Ĩ) = 0 6=⇒ pl = p̃l ∀ l ∈ {1, .., L}, (9)

and are not good candidates for the texture synthesis applica-

tion for which they achieve textural quality even inferior to a

9413

vanilla LGram. We further discuss the problems arising when

using LCX and LREMD for texture synthesis in Appendix A.

To our knowledge, a loss that is proven to capture the full

distribution of features and provides a practical candidate

for texture synthesis has not been proposed yet. We believe

that the Sliced Wasserstein Distance is the right candidate

for this problem.

The Sliced Wasserstein Distance. Our main source of in-

spiration is the color transfer algorithm of Pitie et al. [16].

They show that iteratively matching random 1D marginals

of an n-Dimensional distribution is a sufficient condition

to converge towards the distribution, i.e. satisfying Equa-

tion (2). This idea has been applied in the context of optimal

transport [17, 1]: distances between distributions can be

measured with the Wasserstein Distance and the expectation

over random 1D marginals provides a practical approxima-

tion that scales in O(n log n). Note that it is approximate

in the sense that the optimized transport map is not opti-

mal but the optimized distribution is proven to converge

towards the target distribution, i.e. it satisfies Equation (2).

The Sliced Wasserstein Distance allows for fast gradient de-

scent algorithms and is suitable for training generative neural

networks [9, 3, 25]. It has also been successfully used for

texture synthesis by gradient descent using wavelets as a fea-

ture extractor [22]. By using a pretrained CNN as a feature

extractor [5], we bring this proven and practical solution to

neural texture synthesis and solve the problem defined in

Section 2.

Neural texture synthesis with spatial constraints. The

problem defined in Section 2 aims at capturing the station-

ary statistics that define a texture. For some applications,

additional non-stationary spatial constraints are required.

The mainstream way to handle spatial constraints in neu-

ral texture synthesis is to combine LGram with additional

losses [2, 14, 19, 27]. For example: Liu et al. add a loss

on the power spectrum of the texture so as to preserve the

frequency information [14]; Sendik and Cohen-Or [19] add a

loss function capturing deep feature correlations with shifted

versions of themselves, which makes the optimisation at least

an order of magnitude slower. All those losses require tuning

of both inter-loss weights and inter-layer weights within each

loss. Champandard [2] proposes to concatenate user-defined

guidance maps to the deep features prior to extracting statis-

tics. Gatys et al. [7] show that this hinders textural quality

and propose a more qualitative but slower per-cluster variant,

which duplicates computation per tag, disallowing numerous

tags. Both methods have sensitive parameters to fine-tune.

In Section 5, we show how to handle user-defined spatial

constraints without modifying the Sliced Wasserstein loss

nor adding further losses or compromising complexity.

4. The Sliced Wasserstein Loss

In this section, we show how to compute a neural loss

with the Sliced Wasserstein Distance [16, 9, 3, 25] and we

note it LSW.

pV p̃V ‖sort(pV) − sort(p̃V)‖2

Figure 2: The Sliced Wasserstein loss. We project n-

dimensional features onto random directions, sort the 1D

projections, and compute the L2 difference between the

sorted lists.

Definition. We define the Sliced Wasserstein loss as the

sum over the layers:

LSW(I, Ĩ) =

L
∑

l=1

LSW(pl, p̃l). (10)

where LSW(pl, p̃l) is a Sliced Wasserstein Distance between

the distribution of features pl and p̃l of layer l. It is the expec-

tation of the 1D optimal transport distances after projecting

the feature points onto random directions V ∈ SNl on the

unit n-dimensional hypersphere of features:

LSW(pl, p̃l) = EV [LSW1D(p
l
V , p̃

l
V)], (11)

where plV = {〈F l
m, V 〉}, ∀m is the unordered scalar set of

dot products between the m feature vectors F l
m and the

direction V . LSW1D is the 1D optimal transport loss between

two unordered set of scalars. It is defined as the element-wise

L2 distance over sorted lists:

LSW1D(S, S̃) =
1

|S|

∥

∥

∥
sort(S)− sort(S̃)

∥

∥

∥

2

. (12)

We illustrate the projection, sorting and distance between plV
and p̃lV in Figure 2.

Properties. Pitie et al. [16] prove that the SWD captures

the complete target distribution, i.e.

LSW(pl, p̃l) = 0 =⇒ pl = p̃l. (13)

It follows that it satisfies the implication of Eq. (2):

LSW(I, Ĩ) = 0 =⇒ pl = p̃l ∀ l ∈ {1, .., L}, (14)

and hence solves the problem targeted in this paper (Sec. 2).

9414

Because the loss LSW captures the complete stationary

statistics of deep features, it achieves the upperbound of

what can be extracted as a stationary statistic from the layers

of a given convolutional neural network. For instance, it

encompasses LGram [5], LHist [18], LCX [15] and LREMD [8]:

LSW(I, Ĩ) = 0 =⇒ LGram(I, Ĩ) = 0, (15)

LSW(I, Ĩ) = 0 =⇒ LHist(I, Ĩ) = 0, (16)

LSW(I, Ĩ) = 0 =⇒ LCX(I, Ĩ) = 0, (17)

LSW(I, Ĩ) = 0 =⇒ LREMD(I, Ĩ) = 0 (18)

Figure 3 shows experimentally that optimizing for LSW also

optimizes for LGram while the opposite is not true.

5 10 15 20
10−4

10−3

10−2

L-BFGS-B steps

Monitoring LGram

5 10 15 20
10−3

10−2

10−1

100

L-BFGS-B steps

Monitoring LSW

Minimize LSW

Minimize LGram

Figure 3: Loss curves for the images of Figure 5. Optimiz-

ing for LGram (blue) or LSW (red). We monitor the evolution

of the values of LGram (left) and LSW (right) in either case.

LSW encompasses LGram: minimizing LSW minimizes LGram

but the opposite is not true.

Implementation. Listing 1 shows that it boils down to pro-

jecting the features on random directions (i.e. unit vectors

of dimension Nl), sort the projections and measure the L2

distance on the sorted lists. Because it computes a L2 dis-

tance on a sorted list, this loss is differentiable everywhere

and can be used for gradient retropropagation. Furthermore,

Tensorflow and Pytorch both provide an efficient GPU im-

plementation of the sort() function. To create images n

times larger than the example, we simply repeat each entry

n times in the latter’s sorted list when evaluating the loss.

slicing

Vs = random_directions()

def Slicing(F):

project each pixel feature onto directions

proj = dot(F, Vs)

flatten pixel indices to [M,N]

H, W, N = proj.shape

proj_flatten = reshape(proj,(H*W,N))

sort projections for each direction

return sort(proj_flatten, axis=0)

Sliced Wasserstein loss between two layers

def SlicedWassersteinLoss(F, F_):

diff = Slicing(F) - Slicing(F_)

return mean(square(diff))

Listing 1: Implementation of the Sliced Wasserstein loss.

The variable Vs is a matrix whose columns are normalized

random directions in feature space. Random directions are

redrawn for each batch.

Number of random directions. Iterating over random di-

rections makes LSW converge towards the target distribution

regardless of the number of directions. However, this num-

ber has an effect analogous to the batch size for stochastic

gradient descent: it influences the noise in the gradient. In

Figure 4, we compare convergence (monitored as LSW with

many directions) of optimisations that use different num-

bers of directions. A low number is faster to compute and

uses less memory but is slower to converge due to noisy

gradients. A high number requires more computation and

memory but generates less noisy gradients thus converges

faster. In practice, we use Nl random directions, i.e. as many

as there are features in layer l. In this setting, we note an

increased computational cost of ≈ 1.7− 2.8× over LGram.

2 4 6 8 10
10−2.5

10−2

10−1.5

L-BFGS-B steps

Monitoring LSW (2048 directions)

64 128 256 512
0

100

200

300

400

Texture Size

Time (seconds)

1 dir 8 dirs 16 dirs 512 dirs

Figure 4: Number of random directions. We compare

convergence (left, texture size 2562) and runtime (right,

various sizes, 10 steps) of optimizing LSW with a vary-

ing number of directions. Setting: SciPy’s L-BFGS-B

(maxfun = 64, pgtol = 0.0, factr = 0.0) in Python and

Tensorflow 2.3 on Intel Core i5 and NVidia Titan Xp.

Texture synthesis by optimization. In Figure 5, we com-

pare LSW to LGram in the scope of iterative texture opti-

mization with an L-BFGS-B optimizer. This setting is the

right unit test to validate the textural loss that drives the

optimization, avoiding issues related to training neural net-

works or meta-parameter tuning. We observe that LGram

produces artifacts such as oscillating contrasts and is incon-

sistent w.r.t. different input sizes (last row), making it less

predictable. These limitations of LGram are documented in

previous works [18, 19]. In contrast, LSW generates uni-

formly sharp textures consistent w.r.t. different input sizes.

Figure 6 confirms these observations with style transfer.

Training generative neural networks. While direct tex-

ture optimization is a good unit test for the loss, we also

validate that we can successfully use LSW for training. In

Figure 7 and 8 we use LSW for sole loss function to train a

mono-texture [23] and a multi-texture [12] generative ar-

chitecture, respectively. They are capable of producing

arbitrarily-large texture at inference time, with variation (no

verbatim copying of the exemplar) and interpolation. This

experiment validates that there are a priori no obstacles to

using LSW as a drop-in replacement for LGram for training.

9415

optim LGram
512 × 512

optim LSW
512 × 512

optim LGram
512 × 512

optim LSW
512 × 512

input
128 × 128

input
256 × 256

input
128 × 128

input
256 × 256

input
128 × 128

input
256 × 256

Figure 5: Texture synthesis by optimization. We optimize a Gaussian white noise with LGram and LSW using L-BGFS. In

the last row, the inputs are two crops of different sizes extracted from the same texture.

Content Style optim LGram optim LSW Style optim LGram optim LSW
512 × 512 128 × 128 512 × 512 512 × 512 256 × 256 512 × 512 512 × 512

Figure 6: Style transfer by optimization. We optimize the content image with LGram and LSW using L-BGFS (we do not

add a content loss with a tuneable parameter such as [6]).

example generated example generated example generated

Figure 7: Training a mono-texture generator. We use LSW to train a mono-texture generative architecture [23].

example 1 generated example 2 example 3 generated example 4

Figure 8: Training a multi-texture generator. We use LSW to train a multi-texture generative architecture that allows for

interpolation [12]. We trained the same architecture for 32 textures that includes these 4 examples.

9416

5. Spatial Constraints Via User-Defined Tags

The Sliced Wasserstein loss LSW presented in Section 4

captures all the stationary, i.e. position-agnostic, statistics.

Like the Gram loss, it means that one has no spatial control

over the synthesized textures that are optimized with this

loss. For some applications where spatial constraints are

required, previous works usually use additional losses whose

relative weighting has to be fine-tuned. In this section, we

propose a simple way to incorporate spatial constraints in

the Sliced Wasserstein loss LSW without any modification

and without adding further losses.

nD input

features distribution

optimized nD

features distribution

nD input + 1D tag

features + tag distribution

optimized (n+1)D

features + tag distribution

Figure 9: Spatial constraints via user-defined tags. The

distribution of features does not encode their spatial orga-

nization. In this example, LSW cannot reproduce a checker

pattern in image space (top). Our trick consists in adding a

spatial tag that acts like an additional dimension to the fea-

ture space. With this new dimension, the feature distribution

can represent spatial structures that are processed by LSW

like any other feature space dimension (bottom).

Non-stationary statistics. Figure 9-top illustrates the case

of feature activations that are organized like a checkerboard

in image space. Since the feature distribution is independent

of the image-space locations of the features, optimizing

the feature distribution does not preserve the checkerboard

pattern.

Spatial constraints via user-defined tags. Our idea is to

introduce spatial information in the feature distribution by

adding a new dimension to the feature space that stores

a spatial tag. In Figure 9-bottom, the 2D feature space

becomes 3D and the third dimension stores a binary tag

that encodes the checker pattern such that the only way

for the optimized feature distribution to match the input

distribution is to represent a checkerboard. This trick allows

for adding spatial constraints that can be provided by user-

defined spatial tags. Note that the spatial tags are fixed, i.e.

they cannot be optimized, and they need to have the same

distribution in the input and the output.

Homogeneity of the loss. An important point is to add the

spatial dimension without breaking the homogeneity of the

feature space loss LSW. To do this, we concatenate spatial

tags to the feature vectors
(

F l
m[1], .., F l

m[N l], tag
)

, concate-

nate 1 to the normalized projection direction in feature space

(V1, .., VN l , 1), and optimize for LSW without further modi-

fications. We use spatial tags that are strictly larger than the

other dimensions in feature space such that the sorting in

LSW groups the pixels in clusters that have the same tag. As

a result, the tags only change the sorting order and vanish

after subtraction in Equation (12). The introduction of the

spatial dimension thus does not break the homogeneity of

LSW that remains a feature-space L2 between sorted features.

No additional loss and no meta-parameter tuning is required

with this approach. Note that it is equivalent to solving sep-

arate nD histogram losses for each cluster but it is more

practical since it requires no more than a concatenation.

Results and positioning. Figures 10, 11 and 12 show tex-

tures optimized with an L-BFGS-B optimizer and with spa-

tial tags concatenated only to the first two layers of VGG-19.

Note that we do not aim at comparing the visual quality

with competitor works. Our point is to show that LSW sig-

nificantly widens the range of applications reachable with a

single textural loss and no meta-parameter tuning.

Painting by texture. Figure 10 is an example of painting

by texture where the user provides a target non-stationary

example image, a spatial tag mask associated with the exam-

ple, and a target spatial tag mask. By optimizing LSW with

the spatial tags, we obtain a new image that has the same

style as the example image but whose large-scale structure

follows the desired tag mask. Typically, methods based on

neural texture synthesis require parameter fine-tuning and/or

an evaluation of the loss term for each tag (cf. our discus-

sion in Section 3). In comparison, LSW works out of the box

without any tuning and in a single evaluation regardless of

the number of different of tags.

Pseudo-periodic patterns. Figures 11 and 12 focus on

textures with an obvious pseudo-period, which is provided

as a spatial tag mask (the tag is the pixel coordinates modulo

the period) and we optimize with LSW. The results exhibit

the structural regularity of the exemplar at that period, al-

lowing for reproduction of regular textures with stochastic

variation in all other frequencies. In Figure 12, our results

are comparable to Sendik and Cohen-Or [19] for this class of

textures. Note that their method does not require user inputs

but is significantly more elaborated and less efficient even

for this simple class of textures. It uses LGram in addition

to three other losses whose weights need to be fine-tuned.

Optimizing LSW provides a simpler and efficient solution for

this class of textures.

9417

input + tag optim with tag LSW

Figure 10: Texture synthesis with spatial constraints:

painting by texture. LSW accounts for spatial tags con-

catenated to the deep features.

input + tag

optim LSW optim with tag LSW

input + tag

optim LSW optim with tag LSW

Figure 11: Texture synthesis with spatial constraints:

pseudo-periodic patterns. LSW accounts for spatial tags

concatenated to the deep features.

Input Gatys et al. Sendik et al. Ours

LGram αLGram + βLDC+ LSW with tag

γLDiv + δLS

Figure 12: Texture synthesis with spatial constraints:

pseudo-periodic patterns. Comparison against Sendik and

Cohen-Or’s deep correlation method [19]. We extracted all

the inputs and their results from their paper. Our method

uses spatial tags that encode the obvious pseudo-period such

as in Figure 11.

9418

6. Conclusion

Our objective was to find a robust and high-quality textu-

ral loss. Several previous works show that the community

felt that capturing the full feature distribution is the right ap-

proach for this problem. However, existing approaches are

subject to different shortcomings such as quadratic complex-

ity, additional regularization terms, etc. Surprisingly, there

existed a much simpler solution from the start in the optimal

transport community. The Sliced Wasserstein Distance pro-

vides a textural loss with proven convergence, sub-quadratic

complexity, simple implementation and that achieves high-

quality without further regularization losses. It seems to

be the right tool for this problem and we are not aware of

any alternative that brings all these qualities together. We

benchmarked and validated it in a texture optimization frame-

work, which we believe is the correct way to unit test and

validate a textural loss: the results reflect the performance

and expressiveness of the loss without being hindered by a

generative architecture. Nonetheless, we have also shown

that one can successfully use it to train a generative architec-

ture. Finally, we have shown a simple way to handle spatial

constraints that widens the expressiveness of the loss without

compromising its simplicity, which is, to our knowledge, not

possible with the Gram-matrix loss and other alternatives.

With these good properties, we hope that the Sliced Wasser-

stein Distance will be considered as a serious competitor for

the Gram-matrix loss in terms of practical adoption for both

education, research and production.

A. On Texture Synthesis vs. Style Transfer

In this section, we show that style-transfer methods

should not be expected to perform well on texture synthesis

unless they are proven to do so. For instance, the textural

losses LCX by Mechrez et al. [15] and LREMD by Kolkin et

al. [8] are state-of-the-art for style transfer but, in our experi-

ence, they perform worse than a vanilla LGram when used for

pure texture synthesis. The right ablation study to evalu-

ate texture quality is texture synthesis, not style transfer

in which other effects are mixed in. To support this point,

we took the implementations of LCX and LREMD provided

by their authors and adapted them to texture synthesis.

In Figure 13, we show a texture synthesis experiment

with the implementation of LCX provided by Mechrez et

al. [15] (in which we disabled the content loss). The memory

allocator crashes beyond a resolution of 1002 due to O(n2)
complexity (they limit to 652) and the results are visually

worse than with LGram (we tried several values for their h

parameter and kept the best results).

In Figure 14, we show a texture synthesis experiment

with the implementation of LREMD provided by Kolkin et

al. [8] on a texture extracted from their paper (again, we

disabled content loss). The result is qualitatively worse

than with LGram. Furthermore, LREMD needs two additional

regularization losses (Lm and Lp) without which quality

decreases significantly.

From these experiments, we conclude that LCX and

LREMD are not good candidates for texture synthesis and

that, more generally, state-of-the-art style transfer meth-

ods are not necessarily good candidates for texture syn-

thesis.

Input LGram LCX

100× 100 100× 100 100× 100

Figure 13: Texture optimization using LCX [15]. Results

are limited to a resolution of 100×100 and are of low quality.

Input LGram
256× 256 512× 512

LREMD + Lm + Lp LREMD
512× 512 512× 512

Figure 14: Texture optimization using LREMD [8]. The

loss achieves poor textural quality by itself. The textural

quality remains inferior to LGram even when using the pro-

posed additional regularization losses Lm and Lp.

9419

References

[1] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter

Pfister. Sliced and radon wasserstein barycenters of measures.

J. Math. Imaging Vis., 51(1):22–45, 2015.

[2] Alex J. Champandard. Semantic style transfer and turning

two-bit doodles into fine artworks. CoRR, abs/1603.01768,

2016.

[3] Ishan Deshpande, Ziyu Zhang, and Alexander G. Schwing.

Generative modeling using the sliced wasserstein distance.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018.

[4] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman.

Preserving color in neural artistic style transfer. Technical

report, Bethge Lab, Jun 2016.

[5] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Texture synthesis using convolutional neural networks. In

Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’15, page

262–270, Cambridge, MA, USA, 2015. MIT Press.

[6] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks. In

The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2016.

[7] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron

Hertzmann, and Eli Shechtman. Controlling perceptual fac-

tors in neural style transfer. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

July 2017.

[8] Nicholas Kolkin, Jason Salavon, and Gregory Shakhnarovich.

Style transfer by relaxed optimal transport and self-similarity.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.

[9] Soheil Kolouri, Charles E. Martin, and Gustavo K. Rohde.

Sliced-wasserstein autoencoder: An embarrassingly simple

generative model. CoRR, abs/1804.01947, 2018.

[10] Ke Li and Jitendra Malik. Implicit maximum likelihood

estimation. ArXiv, abs/1809.09087, 2018.

[11] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M. Yang. Diver-

sified texture synthesis with feed-forward networks. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 266–274, 2017.

[12] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming Hsuan Yang. Diversified texture synthesis with feed-

forward networks. In Proceedings - 30th IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017,

pages 266–274, 2017.

[13] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In Proceedings of the 31st International Confer-

ence on Neural Information Processing Systems, NIPS’17,

page 385–395, Red Hook, NY, USA, 2017. Curran Associates

Inc.

[14] Gang Liu, Yann Gousseau, and Gui-Song Xia. Texture syn-

thesis through convolutional neural networks and spectrum

constraints. In 23rd International Conference on Pattern

Recognition, ICPR 2016, Cancún, Mexico, December 4-8,

2016, pages 3234–3239. IEEE, 2016.

[15] Roey Mechrez, Itamar Talmi, and Lihi Zelnik-Manor. The

contextual loss for image transformation with non-aligned

data. arXiv preprint arXiv:1803.02077, 2018.

[16] F. Pitie, A. C. Kokaram, and R. Dahyot. N-dimensional

probability density function transfer and its application to

color transfer. In Tenth IEEE International Conference on

Computer Vision (ICCV’05) Volume 1, volume 2, pages 1434–

1439 Vol. 2, 2005.

[17] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot.

Wasserstein barycenter and its application to texture mixing.

In Scale Space and Variational Methods in Computer Vision,

pages 435–446, 2012.

[18] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and

controllable neural texture synthesis and style transfer using

histogram losses. CoRR, abs/1701.08893, 2017.

[19] Omry Sendik and Daniel Cohen-Or. Deep correlations for

texture synthesis. ACM Trans. Graph., 36(4), July 2017.

[20] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In

International Conference on Learning Representations, 2015.

[21] Xavier Snelgrove. High-resolution multi-scale neural texture

synthesis. In SIGGRAPH Asia 2017 Technical Briefs, SA

’17, New York, NY, USA, 2017. Association for Computing

Machinery.

[22] Guillaume Tartavel, Gabriel Peyré, and Yann Gousseau.

Wasserstein loss for image synthesis and restoration. SIAM

Journal on Imaging Sciences, 9(4):1726–1755, 2016.

[23] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-

tor Lempitsky. Texture networks: Feed-forward synthesis of

textures and stylized images. In Proceedings of the 33rd Inter-

national Conference on International Conference on Machine

Learning - Volume 48, ICML’16, page 1349–1357. JMLR.org,

2016.

[24] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.

Improved texture networks: Maximizing quality and diversity

in feed-forward stylization and texture synthesis. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,

pages 4105–4113. IEEE Computer Society, 2017.

[25] Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine

Thoma, Danda Pani Paudel, and Luc Van Gool. Sliced wasser-

stein generative models. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019.

[26] Ning Yu, Connelly Barnes, Eli Shechtman, Sohrab Amirgh-

odsi, and Michal Lukac. Texture mixer: A network for control-

lable synthesis and interpolation of texture. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

June 2019.

[27] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel

Cohen-Or, and Hui Huang. Non-stationary texture synthesis

by adversarial expansion. ACM Trans. Graph., 37(4), July

2018.

9420

