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Figure 1: Given a single input image (a), our method estimates an image-aligned motion field (b), and uses it to create a looping video (c).

Abstract

In this paper, we demonstrate a fully automatic method

for converting a still image into a realistic animated loop-

ing video. We target scenes with continuous fluid motion,

such as flowing water and billowing smoke. Our method re-

lies on the observation that this type of natural motion can

be convincingly reproduced from a static Eulerian motion

description, i.e. a single, temporally constant flow field that

defines the immediate motion of a particle at a given 2D

location. We use an image-to-image translation network to

encode motion priors of natural scenes collected from on-

line videos, so that for a new photo, we can synthesize a

corresponding motion field. The image is then animated

using the generated motion through a deep warping tech-

nique: pixels are encoded as deep features, those features

are warped via Eulerian motion, and the resulting warped

feature maps are decoded as images. In order to produce

continuous, seamlessly looping video textures, we propose

a novel video looping technique that flows features both for-

ward and backward in time and then blends the results. We

demonstrate the effectiveness and robustness of our method

by applying it to a large collection of examples including

beaches, waterfalls, and flowing rivers.

1. Introduction

For humans, a picture often contains much more than a

collection of pixels. Drawing from our previous observa-

tions of the world, we can recognize objects, structure, and

even imagine how the scene was moving when the picture

was taken. Using these priors, we can often envision the

image as if it were animated, with smoke billowing out of

a chimney, or waves rippling across a lake. In this paper,

we propose a system that learns these same motion priors

from videos of real scenes, enabling the synthesis of plau-

sible motions for a novel static image and allowing us to

render an animated video of the scene.

General scene motion is highly complex, involving per-

spective effects, occlusions, and transience. For the pur-

poses of this paper, we restrict our attention to fluid motions,

such as smoke, water, and clouds, which are well approx-

imated by Eulerian motion, in particular, particle motion

through a static velocity field.

Our proposed method takes as input a single static im-

age and produces a looping video texture. We begin by us-

ing an image-to-image translation network [29] to synthe-

size an Eulerian motion field. This network is trained using

pairs of images and motion fields, which are extracted from

a large collection of online stock footage videos of natural

scenes. Through Euler integration, this motion field defines

each source pixel’s trajectory through the output video se-

quence. Given the source pixel positions in a future frame,

we render the corresponding frame using a deep warping

technique: we use an encoder network to transform the in-

put image into a deep feature map, warp those features using

a novel temporally symmetric splatting technique, and use a

decoder network to recover the corresponding warped color

image. Lastly, in order to ensure our output video loops

seamlessly, we apply a novel video looping technique that

operates in deep feature space.
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Our contributions include (1) a novel motion represen-

tation for single-frame textural animation that uses Euler

integration to simulate motion, (2) a novel symmetric deep

splatting technique for synthesizing realistic warped frames,

and (3) a novel technique for seamless video looping of tex-

tural motion.

2. Previous Work

2.1. Video Textures

There is a large body of work aimed at producing looping

videos, known variously as video textures, cinemagraphs,

or live photos. These techniques typically take as input a

longer video sequence and, through some analysis of the

motion, produce a single seamlessly looping video, or an

infinite (yet not obviously looping) video [21]. The term

cinemagraph often refers to selective animation of loop-

ing clips, where only certain parts of the frame, as chosen

by the user, are animated (or de-animated) [2]. Newer ap-

proaches [26, 34, 13, 12, 17] perform this task fully auto-

matically, determining which regions are easily looped, and

which regions contain motions that are large in magnitude

or otherwise unsuitable for looping. These approaches have

also been extended to operate on specific domains, such as

videos of faces [2], urban environments [33], panoramas

[1], and continuous particle effects [3, 14]. All these meth-

ods, however, require a video as input.

2.2. Singleimage animation

There are also a number of methods aimed at animating

still images. Recently, these techniques have gained popu-

larity through commercial applications such as Plotagraph1

and Pixaloop2, which allow users to manually “paint” mo-

tion onto an image. In the following, we focus on ap-

proaches to perform some of this annotation automatically.

Physical simulation. Instead of manually annotating the

direction and magnitude of motion, the motion of certain

objects, such as boats rocking on the water, can be physi-

cally simulated, as long as each object’s identity is known

and its extent is precisely defined [5], or automatically iden-

tified through class-specific heuristics [9]. Since each object

category is modeled independently, these methods do not

easily extend to more general scene animation.

Using videos as guidance. Alternatively, motion or ap-

pearance information can be transferred from a user-

provided reference video, containing either similar scene

composition [20], aligned information from a different do-

main, such as semantic labels [28], or unaligned samples

from the same domain [24, 4]. Instead of a single user-

provided video, a database of homogeneous videos can be

1https://app.plotaverse.com
2https://www.pixaloopapp.com

used to inherit nearest-neighbor textural motion, assuming

a segmentation of the dynamic region is provided [18].

Transformations in latent space. Recent advances in

deep learning have enabled realistic, high-resolution image

synthesis using generative adverserial networks (GANs).

Many of these systems operate by representing images or

scenes as a latent feature vector, which is decoded into a

synthesized image. By perturbing the latent vector, or per-

forming a randomized walk in the latent feature space, the

resulting decoded images remain plausible, while also vary-

ing temporally [23, 8, 10]. These animations can visualize

the space of possible appearances, but do not necessarily

animate plausible motion.

Instead of a random walk, one can also directly control

movement by applying spatial warps to latent features [15].

Still, deciding how to warp the image is non-trivial — to

produce a realistic video, the applied transformations must

correspond with feasible motion in the scene.

Using learned motion or appearance priors. Deep

learning also enables motion synthesis from single-frame

inputs [7, 27]. Similarly, video prediction methods [35, 32,

11, 31, 19] can predict future video frames from a single

image, even modelling the inherent multi-modality of pre-

dicting the future. These techniques typically predict a set

of future frames at once, and thus are limited to either low

spatial resolution or few predicted frames.

Most similar to our work, Endo et al. [6] demonstrate

high-quality motion and appearance synthesis for animat-

ing timelapses from static landscape imagery. In our evalu-

ations, we provide comparisons to this technique, showing

that our method more reliably estimates motion for scenes

with fluids and animates videos with fewer visible artifacts.

3. Overview

Given a single static image I0, we generate a loop-

ing video of length N + 1, consisting of frames It with

t ∈ [0, N ]. Our pipeline begins by using an image-to-image

translation network to estimate a corresponding motion field

M (Section 4), which is used to define the position of each

pixel in all future frames. We use this information to an-

imate the image through a deep warping technique (Sec-

tion 5). Finally, in order to produce seamlessly looping

videos, we introduce a technique to ensure that our videos

always start and end with the same frame (Section 5.2). Our

approach is summarized in Figure 2.

4. Motion estimation

We begin by describing the motion model and the mo-

tion estimation network. Given an image as input, we

wish to synthesize plausible motion for the observed scene.

Prior work accomplishes this task through recurrent predic-

tion of incremental flow fields [6], theoretically enabling
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Figure 2: Overview: Given an input image I0, our motion estimation network predicts a motion field M . Through Euler integration, M

is used to generate future and past displacement fields F0→t and F0→t−N , which define the source pixel locations in all other frames t.

To animate the input image using our estimated motion, we first use a feature encoder network to encode the image as a feature map D0.

This feature map is warped by the displacement fields (using a novel symmetric splatting technique) to produce the corresponding warped

feature map Dt. The warped features are provided to the decoder network to create the output video frame It.

generation of an infinite number of future frames at high-

resolution. In practice, however, recurrent estimation often

results in long-term distortion, since predicted motions are

dependent on previously generated frames. In contrast, our

motion field is only predicted once, given the input image,

and thus does not degrade over time. Even though we use a

single static motion field to represent the motion of an en-

tire video, we can still model complex motion paths. This is

because our motion field M is a static Eulerian flow field,

i.e., a 2D map of motion vectors where each pixel’s value

defines its immediate velocity, which does not change over

time. We use M to simulate the motion of a point (particle)

from one frame to the next via Euler integration:

x̂t+1 = x̂t +M(x̂t), (1)

where x̂t is the point’s (x, y) coordinate in frame t. In other

words, treating each pixel as a particle, this motion field is

the flow between each frame and its adjacent future frame:

M(x̂t) = Ft→t+1(x̂t) (2)

To synthesize this motion field, we train an image-to-

image translation network [29] on color-motion pairs, such

that when provided with a new color image I0, it estimates

a plausible motion field M . Given an image, M is only esti-

mated once through an inference call to the network. Once

estimated, it can be used to define the source pixel positions

in all future frames t by recursively applying:

F0→t(x̂0) = F0→t−1(x̂0) +M(x̂0 + F0→t−1(x̂0)) (3)

This results in displacement fields F0→t, which define the

trajectory of each source pixel in I0 across future frames

It. These displacement fields are then used for warping the

input image, as further described in Section 5. Computing

F0→t does not incur additional calls to the network — it

only uses information from the already-estimated M .

Note that unlike Endo et al. [6], who predict backward

flow fields for warping (i.e., using bilinear backward sam-

pling), we predict the forward motion field, i.e., aligned

with the input image. In our evaluations, we show that pre-

dicting forward motion results in more reliable motion pre-

diction and sharper motion estimates at object boundaries.

As a result, this enables more realistic animation of scenes

with partial occlusions, since regions that are moving are

more precisely delineated from those that are not.

5. Animation

Once we have estimated the displacement fields F0→t

from the input image to all future frames, we use this infor-

mation to animate the image. Typically, forward warping,

i.e., warping an image with a pixel-aligned displacement

field, is accomplished through a process known as splat-

ting. This process involves sampling each pixel in the in-

put image, computing its destination coordinate as its initial

position plus displacement, and finally assigning the source

pixel’s value to the destination coordinate. Warping an im-

age with splatting unfortunately suffers from two significant

artifacts: (1) the output is seldom dense — it usually con-

tains holes, which are regions to which no source pixel is

displaced, and (2) multiple source pixels may map to the

same destination pixel, resulting in loss of detail or aliasing.

Additionally, the predicted motion fields may be imperfect,

and naively warping the input image can result in bound-

ary artifacts. In the following section, we introduce a deep

image warping approach to resolve these issues.
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Figure 3: Deep warping: Above: Naı̈ve splatting of RGB pixels

results in increasingly large unknown regions over time, shown in

magenta. Below: For the same frames, our deep warping approach

synthesizes realistic texture in these unknown regions.

5.1. Deep image warping

Given an image I0 and a displacement field F0→t, we

adopt a deep warping technique to realistically warp the in-

put frame and fill unknown regions. Our method consists of

three steps: (1) use an encoder network to encode the input

image I0 as a deep feature map D0, (2) use the estimated

displacement field F0→t to splat those features to a future

frame, producing Dt, and (3) use a decoder network to con-

vert the warped features to an output color image It. For

our encoder and decoder networks, we use variants of the

architectures proposed in SynSin [30]. More implementa-

tion details are provided in Section 6.

As mentioned in the previous section, unlike backward

warping, splatting may result in multiple source pixels map-

ping to the same destination coordinate. In these cases, it is

necessary to decide which value will occupy the pixel in

the destination image. For this, we adopt softmax splatting

[16], which assigns a per-pixel weighting metric Z to the

source image, and uses a softmax to determine the contri-

butions of colliding source pixels in the destination frame:

Dt(x̂
′) =

∑

x̂∈X
D0(x̂) · exp(Z(x̂))

∑

x̂∈X
exp(Z(x̂))

(4)

where X is the set of pixels which map to destination pixel

x̂
′. Our method infers Z automatically as an additional

channel of the encoded feature map. The learned metric

allows the network to assign importance to certain features

over others, and the softmax exponentiation avoids uniform

blending, resulting in sharper synthesized frames.

Symmetric Splatting. As feature pixels are warped

through repeated integration of our motion field M , we

typically observe increasingly large unknown regions (Fig-

ure 3), occurring when pixels vacate their original locations

and are not replaced by others. This effect is especially

prominent at motion “sources”, such as the top of a wa-

terfall, where all predicted motion is outgoing. Although

our decoder network is intended to fill these holes, it is still

desirable to limit the complexity of the spatio-temporal in-

painting task, as asking the network to animate an entire

waterfall from a small set of distant features is unlikely to

produce a compelling and temporally stable video.

Our solution to this problem leverages the fact that our

motion is textural and fluid, and thus much of the miss-

ing textural information in unknown regions can be feasibly

borrowed from other parts of the frame that lie along the

same motion path. With this intuition in mind, we describe

a symmetric splatting technique which uses reversed mo-

tion to provide valid textural information for regions which

would otherwise be unknown.

So far, the process we have described to generate an ani-

mated video involves warping the encoded feature map D0

by F0→t to produce future feature maps Vf = {D0...DN},

which are decoded to produce the output video frames.

However, since our motion map M defines the motion be-

tween adjacent frames, we could just as easily animate the

image by generating a video of the past, i.e., instead of

warping D0 into the future, use −M to compute F0→−t,

resulting in warped feature maps Vp = {D−N ...D0}. De-

coding this feature video produces an equally plausible an-

imation of the frame, with the main difference being that

the large unknown regions in Vp occur at the start of the

sequence, as opposed to at the end of the sequence in Vf .

In fact, because the direction of motion has been re-

versed, the motion sources have been replaced with motion

“sinks” and vice versa (Figure 4). This means that the lo-

cations of the unknown regions in Vp are also largely com-

plementary to those found in Vf . For instance, if our input

image contains a waterfall, Vf will begin with the input fea-

ture map D0, and pixels will gradually flow down the wa-

terfall, eventually accumulating at the bottom, and leaving a

large unoccupied region at the top. Conversely, Vp will be-

gin with pixels accumulated at the top of the waterfall, and a

large hole at the bottom, and will end with D0. We leverage

this complementarity by compositing pairs of feature maps

(one in the past, one in the future) to produce a feature map

which is typically fully dense.

We perform this composition through joint splatting: we

splat each pixel of D0 twice to the same destination frame,

once using F0→t and once using F0→t−N . Note that F0→t

does not necessarily equal −F0→−t, rather F0→−t is the

result of applying −M recursively through Eq. 3. As be-

fore, we use the softmax splatting approach with a network-

predicted per-pixel weighting metric to resolve conflicts.

This process results in a composite feature map that seldom

contains significant holes, enabling generation of longer

videos with larger magnitude motion.
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Figure 4: Seamless looping: An illustrated example of how seam-

less loops are created. Two feature videos are created by warping

D0. The first, Vf , contains the result of integrating the motion field

M , resulting in a video starting with the input image and animat-

ing into the future. The second, Vp, instead uses −M , resulting

in a video starting in the past and ending with the input frame.

These two videos typically contain complementary unknown re-

gions (shown in magenta). Before decoding, we combine the two

feature maps via joint splatting. We modulate the contribution of

each using splatting weights αt, such that in the blended com-

posite, the first and last frames are guaranteed to equal D0, thus

ensuring a seamless loop. Note that RGB images are shown for

visualization, but these are both deep feature videos.

5.2. Looping

In this section, we focus on ensuring that our output

videos loop seamlessly. To this end, we first describe a mod-

ification to the splatting weights that guarantees that the first

and last output video frames will be identical. Then, we de-

scribe an approach that enables end-to-end training without

requiring a dataset of looping videos.

Prior work [6] produces looping videos through cross-

fading: an animated, but non-looping, video is generated

first, and a crossfade is applied across the two ends of the

video to smooth out any jarring frame transitions. This ap-

proach can be quite effective in certain cases, but often pro-

duces artifacts in the form of double edges and ghosting.

Instead of directly crossfading the animated video, our ap-

proach performs the transition in deep feature space, and

provides the smoothly transitioning feature maps to the de-

coder. This allows us to enforce smooth transitions, while

still producing images that contain realistic texture, avoid-

ing many of the artifacts of direct crossfading.

Looping weights. Our looping technique relies on the ob-

servation that our two warped sequences Vp and Vf each

have the input feature map D0 on opposite ends of the se-

quence, as illustrated in Figure 4. With this in mind, if we

are able to smoothly control the contribution of each, such

that the first frame contains only the values in Vf and the

last frame contains only the values in Vp, our feature maps

(and our decoded images) on opposite ends of the video are

guaranteed to be identical, and thus, our video is guaranteed

to loop seamlessly. As such, we modulate the contribution

of each feature map by introducing a temporal scaling coef-

ficient to Eq. (4):

Dt(x̂
′) =

∑

x̂∈X
αt(x̂) ·D0(x̂) · exp(Z(x̂))

∑

x̂∈X
αt(x̂) · exp(Z(x̂))

(5)

where X is the set of pixels which map to destination pixel

x̂
′, either by warping forward or backward in time. For a

given frame t, we set:

αt(x̂) =

{

t
N

x̂ ∈ Vp

1− t
N

x̂ ∈ Vf

(6)

Although the scaling coefficient αt is linearly interpolated,

the resulting composited feature video is not a linear inter-

polation of Vp and Vf , since coinciding splatted features

from each are typically not from the same input locations,

and thus have different values of Z. Since the value of Z is

unconstrained and exponentiated, the overall magnitude of

our weighting function (αt(x̂) · exp(Z(x̂))) can vary signif-

icantly, and thus our composited feature map seldom con-

tains equally blended features. The added coefficient αt

serves as a forcing function to ensure that the composited

feature maps Dt are equal to D0 at t = 0 and t = N , but

composited features will transition from Vf to Vp at differ-

ent rates per-pixel, depending on the relative magnitudes of

the splatted Z values.

Training on regular videos. Training our deep warping

component (i.e., our encoder and decoder networks) to pro-

duce looping videos introduces an additional challenge: our

training dataset consists of natural non-looping videos. In

other words, the looping video we are tasking our networks

with generating does not exist, even for our training exam-

ples, and thus, it’s non-trivial to formulate a reconstruction

loss for supervision. Therefore, as illustrated in Figure 5,

we modify the task for training: instead of warping one

frame in two directions, we use two different frames, one

from the start of the video clip IGT
0 , and one from the end

IGT
N , encoded separately as feature maps. We additionally

predict a motion field M from IGT
0 , which is integrated to

produce displacement fields F0→t and F0→t−N . The two

feature maps, D0 and DN , are respectively warped by F0→t

and F0→t−N to an intermediate frame t, using our joint

splatting technique with the weights defined in Eq. 5. Fi-

nally, the composited feature map Dt is decoded to an im-

age It, and a loss is computed against the real intermediate

frame IGT
t . At testing time, we perform the same process,

except that instead of two input images, we use only one im-

age, warped in both directions. This process is effectively

training the network to perform video interpolation, and at

inference time, using the network to interpolate between a

frame and itself, while strictly enforcing the desired motion

by warping the feature maps.
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Figure 5: Training: As described in Section 5.1, each frame in our

generated looping video is composed of textures from two warped

frames. To supervise this process during training, i.e., to have a

real frame to compare against, we perform our symmetric splatting

using the features from two different frames, I0 and IN (instead of

I0 twice, as in inference). We enforce the motion field M to match

the motion estimated from the ground truth video MGT , and the

output frame It to match the real video frame IGT
t . For both, we

use a combination of photometric and discriminative losses.

6. Implementation Details

In this section, we provide more details about the im-

plementation of our method. First, we provide a summary

of the network architectures used for the motion estimation

and warping networks. Then, we provide details about our

training and inference pipelines.

Network architecture. For the feature encoder and de-

coder networks, we use the architectures proposed in

SynSin [30], which have shown compelling results for

single-image novel-view synthesis. Since our aim is not to

generate new viewpoints, but rather to animate the scene,

we replace the reprojection component with the softmax

splatting technique proposed in Niklaus et al. [16]. Ad-

ditionally, we replace the noise-injected batch normaliza-

tion layer from SynSin with the modulated convolution ap-

proach proposed in Karras et al. [10] (to which we also

provide a latent noise vector). This modification greatly

helps reduce visual artifacts and enables stable discrimina-

tor training with smaller batch sizes (a necessity for limited

GPU memory). For our motion estimation network, we use

the architecture proposed in Pix2PixHD [29].

Training. We focus on natural scenes with fluid textures

such as waterfalls, turbulent streams, and flowing waves.

For our training data, we collected and processed a set of

1196 unique videos of textural motion from an online stock

footage website3. We use 1096 for training, 50 for valida-

tion, and 50 for testing. To generate ground-truth motion

fields, we use a pre-trained optical flow estimator [25] to

compute the average optical flow between adjacent frames

over a 2-second window. This effectively filters most mo-

tion which is cyclic, since pixels with cyclic motion will

3www.storyblocks.com

usually have been observed moving in opposing directions.

We use only training videos from stationary cameras.

The motion estimation network is trained using 5 image-

motion pairs from each of our 1096 training videos (a total

of 5480 pairs) for 35 epochs, using the default parameters

from Pix2PixHD [29]. Prior to training, we resize all our

images to a standard size of 1280× 720.

The warping component is trained on 5 short video clips

from each of our 1096 training videos. A training triplet

(start frame, middle frame, end frame) is selected from each

video clip at random during training, further increasing the

effective dataset size. We also apply random augmenta-

tion to our training examples, including horizontal flips and

cropping. We train the network on batches of 8 images

of size 256 × 256 for 200 epochs, using a discriminator

learning rate of 3.5 × 10−3 and generator learning rate of

3.5×10−5. We use the same losses and loss balancing coef-

ficients shown in SynSin [30]. More details on the training

schedule are provided in the supplementary material.

Inference. Our looping output videos have length N =
200 with a framerate of 30 frames per second. Each se-

quence is processed in 40 seconds on a Titan Xp GPU.

7. Results & Evaluation

We first present a quantitative analysis of our method,

and show comparisons with the state-of-the-art in still-

image animation [6] (Section 7.1), as well as ablated vari-

ations of our method. Then, we show qualitative results of

our method on a diverse collection of input images (Sec-

tion 7.2). We refer readers to our supplementary video for a

full collection of visual results.

7.1. Quantitative evaluation

In this section, we present our experiments evaluating the

different components of our method, i.e., (1) a novel motion

representation, (2) a novel symmetric splatting technique,

and (3) a novel looping technique.

Motion representation. We evaluate the effectiveness of

our proposed motion representation (integrated Eulerian

flow) by comparing our predicted motion to ground truth

pixel positions in future frames of the video. We establish

ground truth motion by densely tracking all pixels through

a sequence of 60 frames, using an off-the-shelf optical

flow estimator [25]. We report the average Euclidean er-

ror between the ground truth positions and those estimated

through our synthesized motion field, i.e., the endpoint er-

ror. We compare our proposed method to the following vari-

ants: (1) the per-frame recurrent estimation from Endo et

al. [6], (2) directly predicting F0→N and linearly interpolat-

ing intermediate motion F0→t as t
N
F0→N , and (3) training

our motion network to predict the backward flow field, i.e.,

M = F1→0 (and thus all splatting is replaced by backward
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Figure 6: Examples of the input images (top), alongside their corresponding synthesized motion fields (bottom). Full resolution images,

along with their corresponding animated videos, can be found in the supplementary video.

Figure 7: Quantitative evaluation, motion prediction: We eval-

uate the quality of the predicted motion by comparing the pixel

positions in 60 future frames to those in the ground-truth video.

We compare our proposed motion representation to three alterna-

tive methods, described in Section 7.1. The shaded region shows

the range of predictions produced by Endo et al. [6]. We find that

our proposed motion representation is able to most reliably repro-

duce the true motion information for scenes with fluid motion. All

comparisons are performed on images of size 1280× 720.

warping). The results of this experiment can be found in

Figure 7. We see that our method is able to most faithfully

reproduce the ground-truth motion for our scenes. Empir-

ically, we observe that the methods employing backward

warping produce a majority of errors at motion boundaries,

such as occlusions. We hypothesize that these differences

are because the network is more easily able to predict an

output that is spatially aligned with the input image.

Since images may often have many plausible motion di-

rections, we ensure that the comparisons performed in this

experiment are on video examples that contain unambigu-

ous motion, eg. waterfalls and rivers. In order to iden-

tify these samples, we asked 5 users to manually annotate

the likely motion direction in 50 different images, and re-

tained for quantitative comparison only the scenes in which

↑ PSNR ↑ SSIM ↓ LPIPS

Naı̈ve color splatting 7.90 0.313 0.595

Backward Warping 10.29 0.409 0.483

Ours - Z(x̂) = 1 13.88 0.541 0.344

Ours - No Symmetric Splatting 12.19 0.493 0.418

Ours - Full 14.63 0.619 0.313

Table 1: Quantitative evaluation, video synthesis: We evaluate

the quality of future frame predictions by comparing 60 synthe-

sized frames with corresponding frames in the ground truth video.

We compare our method to four alternatives, described in Sec-

tion 7.1. All variant use our proposed motion estimation network.

all the annotations were within 30 degrees of the median

ground truth motion direction. This results in a total of 32

clips, which we use for calculation of the motion and syn-

thesis quantitative scores. Additionally, since we prefer the

motion comparison to be agnostic to animation speed, i.e.,

animating the scene realistically but in slow-motion is ac-

ceptable, we solve for a per-sequence time-scaling constant

that best aligns the motion magnitudes of the predicted and

ground-truth displacement fields. This constant is computed

for all methods and is used in all our comparisons.

The motion estimation network from Endo et al. [6] uses

a latent code as input to the network, and different latent

codes produce different predicted motions. To consider

all possible outcomes of their method, we randomly sam-

ple 100 latent codes from the training codebook and report

statistics on the resulting synthesized motions.

Video synthesis. Second, we evaluate the choice of warp-

ing technique. Given the same flow values for a set of test-

ing (unseen) video clips, we evaluate five future frame syn-

thesis techniques: (1) naı̈ve color splatting, where the fea-

ture encoder and decoder are not used, and instead the color

values are warped, (2) backward warping, where the for-

ward displacement field is inverted [22], and then backward

warping is applied, such that no holes occur during warp-

ing, (3) our method without the network inferred weights,
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S ≥ 1 S ≥ 2 S = 3
Endo et al. [6] 348 101 9

Ours - No αt 173 183 0

Ours - Crossfade 470 418 43

Ours - Full 500 472 448

Table 2: User study: We perform a user study to compare four

techniques for producing looping videos. We collected 5 unique

annotations for each of 100 samples. We direct users to judge

the visual quality and realism of each looping video and rank the

videos with unique scores S = [0, 3], where 3 is best. We report

the cumulative number of annotations above a certain ranking. On

average, users rank our method higher than the alternatives.

i.e., Z(x̂) = 1 for all pixels, (4) our method without sym-

metric splatting, and (5) our full method. We again use

temporally-scaled sequences with unambiguous motion to

compare each method’s synthesized frames with the ground

truth future video frames. We perform this comparison us-

ing PSNR, SSIM, and LPIPS [36]. Table 1 shows a quan-

titative comparison of these techniques, demonstrating that

our proposed approach outperforms the alternatives at syn-

thesizing future frames when the same motion is provided.

Additionally, in the supplementary video, we show a qual-

itative comparison of these techniques. Compared to our

approach, we observe that standard color splatting results

in significant sparsity, i.e. many holes with unknown color.

Backward warping instead fills these holes with interpo-

lated (stretched) texture, which in most cases is equally jar-

ring. Feature warping without inferred Z(x̂) values results

in blurred details, since features are more often evenly com-

bined. Removing symmetric splatting results in large un-

known regions, which are filled in by the decoder network

with blurry and often unrealistic texture.

Looping. Finally, we evaluate the choice of our looping

technique. We compare four approaches: (1) our synthesis

technique followed by the crossfading from Endo et al. [6],

(2) the end-to-end pipeline described in Endo et al. [6], (3)

our approach without the scaling coefficient αt introduced

in Eq. 5 and (4) our proposed approach. Since we do not

have a ground truth looping video for comparison, we in-

stead perform a user study, in which MTurk users are asked

to rank the four variants by visual quality. This comparison

is performed on 100 samples, consisting of two images sam-

pled uniformly from each of the 50 testing sequences. Ta-

ble 2 shows the results of the user study, which demonstrate

that our proposed approach compares favorably against the

alternatives. In the supplementary video, we show a visual

comparison of these approaches. For our comparison to

Endo et al. [6], we use the authors’ implementation, trained

on our dataset for the recommended 5000 epochs. Note that

we do not use their appearance modulation component, as

our scenes are not timelapses, and therefore do not have as

significant changes in overall appearance.

7.2. Qualitative evaluation

For evaluation purposes, we demonstrate our system on

a large collection of still images. A subset of these images,

along with their synthesized motions, can be seen in Figure

6. The dataset contains a variety of natural scenes, includ-

ing waterfalls, oceans, beaches, rivers, smoke, and clouds.

In the supplementary video, we provide a larger set of input

images and final rendered animations, as well as intermedi-

ate outputs such as synthesized motion fields.

In the results, we can see that the network learns impor-

tant motion cues, such as perspective (i.e. motion is larger

for objects closer to the camera), water turbulence, and de-

tailed flow direction from surface ripples. By comparison,

we find that the generated videos using the method in Endo

et al. [6] more often produces videos with unrealistic mo-

tion or incorrect motion boundaries. Additionally, since our

method performs warping in the deep feature domain, in-

stead of explicitly warping RGB pixels, our results do not

contain many of the same characteristic artifacts of warp-

ing, such as shearing or rubber-sheeting. Finally, we ob-

serve that our results loop more seamlessly, without obvious

crossfading or ghosting.

Limitations. As mentioned in the introduction, our mo-

tion model targets fluid motion, and is therefore unsuitable

for most cyclic motion, e.g. shaking trees. Additionally,

our animations occasionally contain the following artifacts:

(1) our motion estimation can fail to isolate thin occluding

structures, and will animate them with their surroundings;

(2) regions can be incorrectly identified as static, result-

ing in unnaturally frozen texture; (3) our warping technique

does not model transparency — warping transparent sur-

faces results in animation of the refracted object; (4) classes

of objects not seen in training are sometimes animated if

they share similar textural properties to fluids. We provide

examples of these failures in the supplementary video.

8. Conclusion

In this paper, we have presented a method that can syn-

thesize realistic motion from single photographs to produce

animated looping videos. We introduced a novel motion

representation for single-image textural animation that uses

Euler integration. This motion is used to animate the in-

put image through a novel symmetric splatting technique, in

which we combine texture from the future and past. Finally,

we introduced a novel video looping technique for single-

frame textural animation, allowing for seamless loops of our

animated videos.

We demonstrated our method on a wide collection of im-

ages with fluid motion, and showed that our method is able

to produce plausible motion and realistic animations.
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