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Abstract

Recently, person re-identification (Re-ID) has achieved

great progress. However, current methods largely depend

on color appearance, which is not reliable when a person

changes the clothes. Cloth-changing Re-ID is challenging

since pedestrian images with clothes change exhibit large

intra-class variation and small inter-class variation. Some

significant features for identification are embedded in unob-

vious body shape differences across pedestrians. To explore

such body shape cues for cloth-changing Re-ID, we propose

a Fine-grained Shape-Appearance Mutual learning frame-

work (FSAM), a two-stream framework that learns fine-

grained discriminative body shape knowledge in a shape

stream and transfers it to an appearance stream to com-

plement the cloth-unrelated knowledge in the appearance

features. Specifically, in the shape stream, FSAM learns

fine-grained discriminative mask with the guidance of iden-

tities and extracts fine-grained body shape features by a

pose-specific multi-branch network. To complement cloth-

unrelated shape knowledge in the appearance stream, dense

interactive mutual learning is performed across low-level

and high-level features to transfer knowledge from shape

stream to appearance stream, which enables the appear-

ance stream to be deployed independently without extra

computation for mask estimation. We evaluated our method

on benchmark cloth-changing Re-ID datasets and achieved

the start-of-the-art performance.

1. Introduction

Person re-identification (Re-ID) aims at matching the

same person across different cameras. Advanced meth-

# Equal contribution. Work done during the internship at Huya Inc.

* Corresponding author.

Figure 1. Examples of images and masks in cloth-changing Re-ID.

Color appearance under cloth-changing suffers from large intra-

class variation and small inter-class variation, while body shape

contains cloth-unrelated clues.

ods have achieved high performance with deep learning

[1, 34, 42, 45, 40, 53]. However, most current works largely

rely on color appearance based on the assumption that the

same person wears the same clothes in short term. Such

limitation brings dramatic performance decrease in the sit-

uation that persons change their clothes, since different per-

sons with similar clothes may be wrongly matched. To

address this problem, we study the cloth-changing Re-ID

problem [46, 29, 48, 13].

As the color appearance becomes unreliable in cloth-

changing Re-ID, it is critical to learn cloth-unrelated fea-

tures. Under moderate clothing change, the body shape

does not change significantly for the same person and it is

an important cue for identification. As shown in Figure 1

(a), the manually labeled fine-grained masks can capture

detailed shape differences between pedestrians. In practi-

cal situations without manual label, human mask can be

estimated by pretrained human parsing models. However,
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as shown in Figure 1 (b), error of estimated masks in-

curs difficulties for exploiting accurate body shape cues.

First, the shapes of estimated coarse masks in correspond-

ing body parts of different pedestrians may be highly simi-

lar and non-discriminative, since the human parsing models

are not learned for identification (Figure 1 (b)(1)). Some-

times there are even missing parts in the mask because of

domain gap caused by scene variations (Figure 1 (b)(3)).

Second, the estimated mask of the same pedestrian suffers

from large deformations when the poses changes, which

causes large intra-class variation for utilizing body shape

(Figure 1 (b)(2)).

To solve the above problems and mine discriminative

body shape knowledge, we propose a Fine-grained Shape-

Appearance Mutual learning framework (FSAM) that con-

sists of a shape stream and an appearance stream as shown

in Figure 2.

To extract discriminative fine-grained body shape fea-

tures, in the shape stream, we learn fine-grained human

masks under the guidance of identity while also preserv-

ing the prior knowledge of human parsing. To alleviate the

impact of mask deformation brought by pose variation, we

introduce a pose-specific multi-branch feature extractor to

extract pose-specific fine-grained body shape features.

The cloth-unrelated appearance for cloth-changing Re-

ID includes body shape, face, hair style, etc. Fine-grained

body shape feature is important among the appearance

cues but is hard to be mined from color image because of

the dominant color-based appearance. In the appearance

stream, to complement discriminative body shape knowl-

edge for appearance feature learning, we propose dense in-

teractive mutual learning to transfer the fine-grained body

shape knowledge from shape stream to appearance stream

in logit level and across different intermediate layer level.

Meanwhile, mutual learning enables the appearance stream

to be deployed independently for inference without extra

computation of mask estimation and feature extraction in

the shape stream.

Current works on cloth-changing Re-ID [46, 29] typi-

cally employ human poses or contour by off-the-shelf esti-

mators, which can only capture limited discriminative shape

knowledge and requires large estimation computation of

poses or contours. Compared to them, our method instead

learns the fine-grained masks with discriminative shape de-

tails and saves the mask estimation cost in inference.

In summary, our contributions are listed as follows:

(1) We learn fine-grained body shape features for cloth-

changing Re-ID by estimating masks with discriminative

shape details and extracting pose-specific features.

(2) A dense interactive mutual learning framework is

proposed to transfer the fine-grained body shape knowl-

edge to learn robust cloth-unrelated appearance features in

an end-to-end fashion.

(3) Our Fine-grained Shape-Appearance Mutual learn-

ing framework (FSAM) achieves state-of-the-arts results on

several benchmark cloth-changing Re-ID datasets including

PRCC [46], LTCC [29] and VC-Clothes [37].

2. Related Work

Person Re-Identification. Person Re-ID has witnessed

fast development in recent years. Early works mainly fo-

cus on feature extraction [5, 20, 7, 25] or distance met-

ric learning [24, 38, 41, 28, 17]. With the development

of deep learning, current works are mainly based on con-

volutional neural networks to learn discriminative features

[1, 34, 42, 45, 40, 53, 23]. Human pose and parsing have

been used to facilitate local feature learning, align the fea-

tures in semantic level or eliminate the impact of back-

ground clutters [22, 26, 55, 31, 32, 33, 52, 9, 14, 58]. For

example, SPReid [14] utilizes human parsing to capture

local features. PGFA [26] exploits human pose to disen-

tangle the useful information from occlusion noise. MG-

CAM [32] generates contrastive attention maps under the

guidance of masks to learn body-aware and background-

aware features. P 2-Net [9] proposes dual part-aligned rep-

resentation to learn from both the human part masks and

the non-human parts. However, these works mainly focus

on short-term Re-ID based on color-appearance-based fea-

tures, which are not robust under cloth-changing.

Cloth-changing Person Re-ID. Currently, there are only a

few works on cloth-changing Re-ID [43, 37, 46, 29, 13, 48],

which mainly aim to learn cloth-unrelated features from

body shape or faces. Yang et al. [46] introduce a spatial

polar transformation on contour sketch to learn shape fea-

tures. Qian et al. [29] utilize human keypoints to eliminate

the impact of appearance. Yu et al. [48] propose a mask at-

tention to focus on face and body shape. Wan et al. [37] de-

tect the faces and extract face features. However, in existing

works, body shape features extracted from human poses or

contour estimated by off-the-shelf estimators contain lim-

ited discriminative shape knowledge due to estimation er-

ror. Moreover, extra mask, pose, or contour estimation in-

creases computation costs for these methods. In our pro-

posed FSAM, we propose to learn human masks with more

discriminative body shape details by identity guidance for

extracting fine-grained shape features and save extra com-

putation for mask or contour estimation by mutual learning.

Knowledge Distillation and Mutual Learning. Knowl-

edge distillation (KD) [11, 59, 15, 36, 49, 47] is proposed

initially for model compression, which enables knowledge

transfer from teacher network to student network. Deep

Mutual learning (DML) [51] proposes a two-way knowl-

edge transfer between two networks, which allows networks

to learn from each other. DML and KD have been applied

to Re-ID in different scenarios that require knowledge trans-
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Figure 2. Overview of our Fine-grained Shape-Appearance Mutual learning Framework. Our framework consists of two streams: an

appearance stream and a shape stream. In the shape stream, the parsing net estimates fine-grained masks from input color images, and then

the masks are fed into the shape feature extraction network to extract fine-grained body shape features. Then, dense interactive mutual

learning transfers knowledge between appearance stream and shape stream to complement fine-grained body shape feature in appearance

feature. During inference, only the appearance stream is required, which saves computation cost of mask estimation.

fer, including noisy labels refinement [6, 50, 54, 44], tem-

poral knowledge transfer [8, 27] and scalable system learn-

ing [39]. Current works that use KD or DML for Re-ID

ignore the knowledge embedded in intermediate layer. In

contrast, our proposed dense interactive mutual learning al-

lows dense knowledge interaction across features in differ-

ent layers, which enables more effective knowledge trans-

fer.

3. Fine-Grained Body Shape Features

In this work, we address the cloth-changing Re-ID prob-

lem, in which the same pedestrian wears different clothes.

Knowledge embedded in body shape is essential as it is

more robust against cloth changes than color appearance.

Thus we aim to learn fine-grained masks and mine discrim-

inative shape features by a parsing net and a shape feature

extraction network, as shown in the lower part of Figure 2.

3.1. Identity­guided Fine­grained Mask Learning

Identity-guided Discriminative Mask Learning. To rep-

resent body shape of a pedestrian, we utilize the mask ob-

tained by human parsing. Given an image I, we feed it

into a human parsing network Fm and obtain the human

mask M = Fm(I;Θm), where Θm denotes the parame-

ters of the network. We initialize Fm by training SCHP

[18] on PASCAL-Person-Part [2]. As discussed in Section

1 and shown in Figure 1(b), such coarse estimated human

masks are not accurate enough to tell the differences be-

tween cloth-changing pedestrians.

To solve these problems, we propose to use identity to

guide the learning of human masks from coarse-grained

level to fine-grained level. Specifically, the masks generated

from human parsing network are fed into a shape feature

extraction network Fs parameterized by Θs to extract the

shape features xs = Fs(M;Θs). Then, a fully-connected

layer is applied for the features xs for identity classification.

To guide the learning of both the parsing network Fm

and the shape feature extraction network Fs for joint fine-

grained mask estimation and body shape feature extraction,

we introduce an identity guidance loss as follow:

LG(Θm,Θs) = Ls
C + Ls

T , (1)

where Ls
C denotes the cross entropy loss and Ls

T denotes

the triplet loss, which are commonly used for discriminative

feature learning in Re-ID [58, 53, 45, 1]. The cross entropy

loss is formulated as

Ls
C(Θm,Θs) = −

N∑

i=1

yilogp
s
i , (2)

where psi is the probability of the i-th class for feature xs

and yi is the one-hot identity label. N is the class number.

Triplet loss can be written as

Ls
T (Θm,Θs) = [dap − dan +m]

+
, (3)

where [·]
+
= max(·, 0) and m denotes the margin. dap de-

notes the Euclidean distance between the anchor and pos-

itive sample in a triplet, and dan denotes the distance be-

tween the anchor and negative sample.

Parsing Knowledge Preservation. With the identity guid-

ance, the estimated coarse masks become more discrimi-

native. However, pretrained parsing model contains prior

parsing knowledge, which is of benefit to learn shape fea-

tures but can be lost under identity guidance. As shown in

Figure 3 (c), in the masks learned only by identity guidance

loss LG, there are some missing parts and shape-unrelated

10515



Figure 3. Visualization of coarse masks generated by off-the-shelf

human parsing model and fine-grained masks estimated by our

parsing net Fm learned by identity guidance. “PKP” denotes pars-

ing knowledge preservation.

textures (e.g. texture of clothes). To solve the problem, we

preserve the parsing knowledge in the pretrained parsing

model. To achieve this, we force the mask estimated by

Fm to be close to the initially estimated coarse mask with a

parsing knowledge preservation loss LR:

LR(Θm) =
1

P
‖M− M̂‖2F , (4)

where M and M̂ denote fine-grained mask and the initial

coarse mask, respectively. ‖ · ‖2F denotes the Frobenius

norm, and P is the number of pixels in the mask image.

Objective Function. The objective function LM for joint

fine-grained mask estimation and feature extraction is for-

mulated as:

LM (Θm,Θs) = LG + λRLR, (5)

where λR denotes the weight of mask parsing knowledge

preservation loss LR for regularization. The parsing net Fp

and the shape feature extractor Fm are end-to-end trained

by minimizing LM , so as to jointly estimate fine-grained

masks and extract fine-grained body shape features.

Visualization of Masks. To visually understand the ef-

fect of identity-guided fine-grained mask learning, we show

some examples of estimated masks in Figure 3.

The guidance of identity can benefit the human masks in

the following ways. First, human masks are encouraged to

improve its ability to distinguish different persons. Some

ID-related details of shape can be mined to refine the coarse

masks to become fine-grained, as we compare the masks

estimated by pretrained parsing model (Figure 3(b)) with

those estimated by our model (Figure 3(d)). Second, the ef-

fect of domain gap between Re-ID data and training data for

parsing is reduced under identity guidance, and thus some

missing body part and prediction errors can be corrected.

Figure 4. Poses are clustered into three groups. We show the clus-

tering centers on PRCC [46]. We find the clustering centers are

representative for poses of different views.

To show the effect of parsing knowledge preservation,

we compare the cases without and with parsing knowledge

preservation in Figure 3 (c) and (d). When only identity

guidance is used for mask learning, there are missing parts

and shape-unrelated textures in (c). With parsing knowl-

edge preservation, these flaws are alleviated to obtain high-

quality fine-grained masks in (d).

As a result, with fine-grained masks for more effective

body shape representation, the shape feature extraction net-

work Fs can learn more discriminative features.

3.2. Pose­Specific Fine­Grained Feature Extractor

As shown in Figure 1, estimated masks suffer from the

problem of pose variation that the same pedestrian may

have highly dissimilar shapes of the same body part, which

leads to large intra-class variation for identification. In other

words, the discriminative patterns of masks are not shared

across different poses. To tackle this issue, we develop a

pose-specific multi-branch network to extract fine-grained

shape features under pose variations.

We first use AlphaPose [4] to extract human keypoints.

Then, K-means clustering algorithm [21] is applied on the

keypoint coordinates to cluster the images into three groups,

as shown in Figure 4. Each mask is assigned with the cor-

responding pose clustering label. As shown in Figure 2,

the 4th convolution block of shape feature extraction net-

work is divided into three branches with specific parame-

ters, which are denoted as {F i
s,4(xs,3)}

b
i=1. b denotes the

branch number and xs,3 denotes the features of the 3rd con-

volution block. During training, the shape feature extrac-

tion network selects the corresponding branch according to

the pose pseudo labels of the masks, while the other two

branches are neglected. The mask feature xs extracted by

the pose-specific multi-branch network network is

xs =

b∑

i=1

✶iF
i
s,4(xs,3), (6)

where the value of ✶i is one when the pose pseudo label

of input mask is i, and it is zero otherwise. With specific

feature extractor for specific pose, the body shape features

are more fine-grained and robust to pose change.
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4. Fine-Grained Shape-Appearance Mutual

Learning Framework

The fine-grained body shape feature extracted in Section

3 is a significant appearance feature for cloth-changing Re-

ID. Besides body shape, the pedestrian appearance also con-

tains other cloth-unrelated information that is robust against

cloth changes, such as face and hair styles, which are com-

plementary to body shape. Mask image is suitable for body

shape feature extraction, but it does not contain rich enough

information of face and hair styles. In color image, the

face and hair styles are more easily to be extracted, but the

dominant color-based appearance makes it hard to focus on

learning body shape. Therefore, we expect to extract com-

prehensive cloth-unrelated appearance features from both

mask images and color images. We achieve this goal by in-

troducing a two-stream framework that consists of a shape

stream as introduced in Section 3 and an appearance stream.

4.1. Appearance Feature Learning

Similar to the feature extraction in the shape stream, a

deep appearance network, Fa parameterized by Θa, takes

color image as input to extract the appearance feature, as

shown in the upper part of Figure 2. For training, cross en-

tropy loss and triplet loss are applied to form the appearance

feature learning loss LA as

LA(Θa) = La
C + La

T , (7)

where La
C is the cross entropy loss and La

T is the triplet

loss. Note that we do not apply pose-specific multi-branch

structure to appearance stream, in order to save the extra

cost for keypoints estimation during inference.

4.2. Dense Interactive Mutual Learning

To learn comprehensive cloth-unrelated appearance fea-

tures from color images, we take advantage of the cloth-

unrelated knowledge in both the shape stream and the ap-

pearance stream. To fuse the complementary appearance

knowledge, we transfer the shape knowledge learned by the

shape stream to complement the appearance stream.

To this end, we propose dense interactive mutual learn-

ing to transfer knowledge between the two streams in both

intermediate layer level and logit level, which allows them

to be trained collaboratively by mutual teaching.

Intermediate Layer Level Interaction. Intermediate lay-

ers learn multi-level knowledge for identification. On the

one hand, low-level feature maps contain texture informa-

tion such as corners or edges, which can enrich the semantic

knowledge at high-level intermediate layers. On the other

hand, semantic knowledge in high-level feature maps can

guide the low-level intermediate layers to extract more dis-

criminative texture features. Therefore, we propose a dense

similarity loss for densely interactive knowledge transfer

across low-level and high-level layers between appearance

stream and shape stream, as shown in Figure 2.

As Re-ID is intrinsically a retrieval task, similarity be-

tween different persons represents the their relationship in

the embedding space. So, we employ the feature similarity

matrix of pedestrians in a batch to represent the knowledge

of each layer. Take the feature maps of the d-th convolution

block xs,d of the shape stream as example, the similarity

between the i-th and j-th sample is computed as

Ss
d(i, j) = φ(xi

s,d)
Tφ(xj

s,d), (8)

where φ denotes the operation of global average pooling

and ℓ2 normalization. Then the feature map similarity ma-

trix of the d-th convolution block within a batch can be de-

noted as Ss
d for shape stream and Sa

d for appearance stream.

Based on this, we introduce our dense similarity loss to per-

form densely knowledge transfer between shape and ap-

pearance stream. Specifically, we minimize the distance

between similarity matrices across different layers between

two streams. As shown in Figure 2, the dense similarity loss

can be formulated as

LSI(Θa,Θm,Θs) =

l∑

i=1

l∑

j=1

‖Sa
i − Ss

j‖F , (9)

where ‖ · ‖2F denotes the Frobenius norm and l = 4 denotes

the number of blocks used for mutual learning. By optimiz-

ing the dense similarity loss, low- and high-level features

are encouraged to enhance each other across two streams,

which enables more efficient knowledge fusion.

Logit Level Interaction. In logit level, each stream learns

from both the ground truth labels and soft labels which

are provided by the output class probabilities of the other

stream. To utilize soft labels for knowledge transfer, we use

Kullback Leibler (KL) Divergence as in deep mutual learn-

ing (DML) [51], which can be formulated as

DKL(p
a‖ps) =

N∑

i=1

pai log
pai
psi

, (10)

where ps denotes output class probabilities of shape stream

and pa denotes the output class probability of the appear-

ance stream. As KL Divergence is asymmetric, we also

compute DKL(p
s‖pa) and the KL Divergence loss for ap-

pearance and shape stream is computed as

LKL(Θa,Θm,Θs) = DKL(p
a‖ps) +DKL(p

s‖pa).
(11)

4.3. Overview of the Mutual Learning Framework

By mutual learning with dense similarity loss LSI and

KL divergence loss LKL, the fine-grained body shape

knowledge from the shape stream is complemented to
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Table 1. Comparison on cloth-changing datasets. “Cloth-changing” and “Standard” denote two evaluation protocols illustrated in Section

5.1. “R-k” denotes rank-k accuracy (%). “mAP” denotes mean average precision (%). “-” denotes not reported.

Methods

LTCC PRCC VC-Clothes

Cloth-changing Standard Cloth-changing Standard Cloth-changing Standard

R-1 mAP R-1 mAP R-1 R-10 R-1 R-10 R-1 mAP R-1 mAP

LOMO [20] + KISSME [17] 10.75 5.25 26.57 9.11 18.55 49.81 47.40 81.42 - - - -

LOMO [20] + XQDA [20] 10.95 6.29 25.35 9.54 14.53 43.63 29.41 67.24 34.5 30.9 86.2 83.3

PCB [34] 23.52 10.03 61.86 27.52 22.86 61.24 86.88 98.79 62.0 62.2 94.7 94.3

HACNN [19] 21.59 9.25 60.24 26.71 21.81 59.47 82.45 98.12 - - - -

RGA-SC [53] 31.4 14.0 65.0 27.5 42.3 79.4 98.4 100 71.1 67.4 95.4 94.8

ISP [58] 27.8 11.9 66.3 29.6 36.6 66.5 92.8 98.4 72.0 72.1 94.5 94.7

Yang et al. [46] - - - - 34.38 77.3 64.2 92.62 - - - -

Qian et al. [29] 25.15 12.4 71.39 34.41 - - - - - - - -

baseline (ResNet50) 29.8 11.8 65.5 29.3 43.7 73.7 98.3 100 68.4 68.5 94.3 94.6

FSAM (ours) 38.5 16.2 73.2 35.4 54.5 86.4 98.8 100 78.6 78.9 94.7 94.8

the appearance stream to learn more comprehensive cloth-

unrelated appearance features. Besides, appearance stream

also provides complementary features for shape feature ex-

traction in the shape stream.

Loss Function. We illustrate the loss function of our full

framework. In shape stream, we generate fine-grained mask

and learn pose-specific shape features by minimizing LM .

To utilize fine-grained body shape to assist appearance fea-

ture learning, we densely and mutually transfer knowledge

between two stream with LSI and LKL. The two streams

are trained in an end-to-end manner by optimizing

L = LM + LA + λSILSI + λKLLKL, (12)

where λSI and λKL denote the weights of dense similarity

loss LSI and KL Divergence loss LKL, respectively.

Inference. For inference, we only use the appearance

stream and the shape stream is discarded, so that the com-

putation costs of estimation of masks and keypoints in the

shape stream can be saved for fast inference.

5. Experiments

5.1. Datasets and Evaluation Protocols

Datasets. We mainly evaluated our method on three cloth-

changing Re-ID datasets: PRCC [46], LTCC [29] and VC-

Clothes [37]. PRCC is a large indoor cloth-changing Re-ID

dataset, which contains totally 33,698 images of 221 identi-

ties captured from 3 cameras. LTCC is another indoor cloth-

changing Re-ID dataset, which has 17,138 images of 152

identities with 478 different outfits captured from 12 camera

views. LTCC is challenging as it contains various illumina-

tion, diverse human poses and occlusion. VC-Clothes is

a synthetic dataset rendered by GTA5 game engine, which

contains 19,060 images of 512 identities captured from 4

cameras. We also additionally evaluated our method on

DukeMTMC [30] and Market-1501 [56], which are bench-

mark datasets for standard Re-ID without cloth changing.

Evaluation Protocols. For evaluation, we adopted the

mean average precision (mAP) and rank-k accuracy.

For cloth-changing datasets PRCC [46], LTCC [29] and

VC-Clothes [37], we followed their evaluation protocols

and evaluated the performance in both cloth-changing set-

ting and standard setting. For PRCC, we used single-

shot matching by randomly choosing one image of each

identity as gallery, which was repeated 10 times. The

cloth-changing setting in PRCC means there are all cloth-

changing samples in test set, while in the standard setting,

there are all cloth-consistent samples in test set. As for

LTCC, we used multi-shot matching by choosing all the

images of each identity as gallery. The cloth-changing set-

ting is the same as that of PRCC. Unlike PRCC, in standard

setting, there are both cloth-consistent and cloth-changing

samples in test set. For VC-Clothes, we also used multi-

shot matching and the cloth-changing and standard setting

are the same as that of PRCC. For standard Re-ID datasets

Market-1501 [56] and DukeMTMC [30], we followed their

standard evaluation protocols.

5.2. Implementation Details

We adopted ResNet50 [10] initialized by ImageNet [3]

as backbone for both shape stream and appearance stream.

The input images were resized to 256×128. For data aug-

mentation, we adopted horizontal flipping and random eras-

ing [57]. We used Adam optimizer [16] with the warm-

up strategy that linearly increased the learning rate from

3 × 10−5 to 3 × 10−4 in the first 10 epochs. We then de-

creased the learning rate by a factor of 10 at epoch 40 and

70, and the training was stopped at epoch 150. Each batch

contained 64 images of 16 identities. For PRCC [46], we

set λKL = 5 and λSI = 5. For LTCC[29], we set λKL = 1
and λSI = 0.5. For VC-Clothes[37], we set λKL = 1 and

λSI = 1. We set m = 0.3 for margin in the triplet loss

and λR = 10 to control the regularization effect of parsing

knowledge preservation. The values of λKL, λSI and λR

were determined by cross validation.

5.3. Comparison with the State­of­the­Art Methods

We compared our method with the state-of-the-art meth-

ods on cloth-changing Re-ID datasets in Table 1. We

can see that our method outperformed all compared meth-

ods by a large margin on cloth-changing datasets, with

13.2%/7.1% absolute improvement in rank-1 accuracy on
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Table 2. Ablation study in cloth-changing setting.“POSE” denotes

pose-specific multi-branch structure. “3B” denotes a plain multi-

branch structure without specific handing for poses. The 1st row

represents the result of baseline using only appearance stream. The

last row represents the result of our final framework FSAM. For all

experiments, we report the results of the appearance stream.

Methods LKL LSI LR 3B POSE
LTCC PRCC

R-1 mAP R-1 R-5

1 (baseline) - - - - - 29.8 11.8 43.7 63.3

2 X - - - - 31.6 13.6 47.6 68.5

3 X X - - - 34.4 14.9 51.3 74.0

4 X X X - - 35.5 15.8 53.1 73.9

5 X X X X - 33.9 14.6 52.3 75.2

6 (full) X X X - X 38.5 16.2 54.5 77.6

PRCC [46]/LTCC [29] in cloth-changing setting, when

compared with current state-of-the-art method RGA-SC

[53]. As for VC-Clothes [37], we outperformed the state-

of-the-art method ISP [58] by 6.6% in rank-1 accuracy.

Among the compared methods, Yang et al. [46] and

Qian et al. [29] are also designed for cloth-changing Re-

ID. Yang et al. [46] utilize contour sketch to capture shape

features while Qian et al. [29] utilize human pose to dis-

till the shape knowledge. In contrast to these works that

model shape knowledge from relatively coarse estimations

by pretrained contour or keypoints extractor, we learn fine-

grained mask with identity guidance, which enables the

model to learn detailed shape differences. Moreover, as our

shape-appearance mutual learning complements the appear-

ance features with body shape knowledge from fine-grained

masks, we achieved better performance using only the ap-

pearance stream without extra computation for extracting

poses or contour in inference as compared with them.

We also compared our method with current state-of-art

standard Re-ID methods. Our method significantly outper-

formed them, because these methods assume that pedestri-

ans wear the same clothes so that they do not consider learn-

ing fine-grained cloth-unrelated features.

5.4. Ablation Study

In this section, we study the effectiveness of key com-

ponents of our proposed method. As shown in Table 2,

our proposed FSAM significantly outperformed the base-

line model by 10.8% and 8.7% on PRCC [46] and LTCC

[29] respectively in cloth-changing setting on R1-accuracy.

Analysis of Shape Stream and Appearance Stream. We

first evaluated the performance of shape stream and appear-

ance stream. The details of notations can be referred in the

caption of Table 3. We observe that although shape stream

S achieves relatively low performance compared with ap-

pearance stream A, the concatenating of the features of the

two streams A + S still obtain improvement, which shows

that shape features can complement to appearance features

and therefore validates the potential of knowledge fusion.

Identity Guidance. We evaluated the effectiveness of iden-

tity guidance in the shape stream. As shown in Table 4,

Table 3. Analysis of the performance of each stream with and with-

out our dense interactive mutual learning. “A” denotes the appear-

ance stream trained only by color images. “S” denotes the shape

stream trained by the updating fine-grained masks under identity

guidance. “A+S” denotes concatenating features of two streams.

“MU” denotes the results with dense interactive mutual learning.

“A (MU)” is the results of our final framework.

Methods
LTCC PRCC

R-1 mAP R-1 R-5

A 29.8 11.8 43.7 63.3

S 16.3 6.8 40.1 65.6

A + S 30.9 12.1 50.3 71.5

A (MU) 38.5 16.2 54.5 77.6

S (MU) 17.6 7.9 43.1 67.5

A + S (MU) 35.7 15.2 52.3 77.8

Table 4. Effectiveness of the identity guidance. “S∗” denotes

the shape stream trained only with the initial masks estimated by

off-the-shelf parsing model. “↔” denotes two-way knowledge

transfer. The other notations can be referred in Table 3. FSAM

(A↔ S) is our final framework.

Methods
LTCC PRCC

R-1 mAP R-1 R-5

S∗ 9.7 3.9 31.2 56.8

S 16.3 6.8 40.1 65.6

FSAM (A↔ S∗) 33.9 14.7 48.3 73.3

FSAM (A↔ S) 38.5 16.2 54.5 77.6

compared S∗ to S, we observe that identity guidance brings

significant improvement of performance of shape stream.

We also evaluated its effectiveness within our full frame-

work by changing the input of shape stream from the updat-

ing fine-grained masks to the initial estimated masks. The

results of FSAM (A↔ S) and FSAM (A↔ S∗) in Table 4

indicate that, for our framework, the performance drops sig-

nificantly by 6.2%/4.6% on PRCC [46]/LTCC [29] in rank-

1 accuracy without identity guidance.

With identity guidance, we also successfully learned the

masks from coarse-grained to fine-grained level, which can

be seen by comparing Figure 3(b) and Figure 3(d). The

performance improvement and visualization validated the

effectiveness of identity guidance.

Dense Interactive Mutual Learning. Aiming for mutual

knowledge transfer, the dense interactive mutual learning

consists of KL divergence loss LKL and dense similarity

loss LSI . As we can see in Table 2, rank-1 accuracy is im-

proved with KL Divergence loss by 3.9% and 1.8% and can

be further boosted with dense similarity loss by 3.7% and

2.8% on PRCC [46] and LTCC [29] respectively, verifying

the effectiveness of our dense interactive mutual learning.

As shown in Table 3, we observe that performance of

both two streams can be improved with the dense interactive

mutual learning by comparing A/S with A (MU)/ S (MU),

as they provide complementary features to each other.

Parsing Knowledge Preservation. In Table 2, the results

show that parsing knowledge preservation (LR) improves

rank-1 accuracy by 1.8%/1.1% on PRCC [46]/LTCC [29],

as it keeps the prior shape knowledge from human pars-

10519



Table 5. Comparison between two-way and one-way knowledge

transfer and analysis on changes of input modalities. “DML” de-

notes Deep Mutual Learning [51]. “↔” denotes two-way knowl-

edge transfer while “←” denotes one-way knowledge transfer

from shape stream to appearance stream. The other notations can

be referred in the caption of Table 3. FSAM (A↔ S) denotes our

final framework.

Methods
LTCC PRCC

R-1 mAP R-1 R-5

DML [51] (A↔ A) 30.9 12.6 46.5 66.8

DML [51] (A↔ S) 31.6 13.6 47.6 68.5

FSAM (A↔ A) 33.9 14.4 51.8 75.3

FSAM (A← S) 34.4 14.8 52.0 72.3

FSAM (A↔ S) 38.5 16.2 54.5 77.6

ing. The visualization also shows that with parsing knowl-

edge preservation, parsing model avoids to generate shape-

unrelated clothes texture and cause errors of part missing,

as comparing (c) and (d) in Figure 3.

Pose-specific Feature Learning Structure. The results

are shown in Table 2. The difference between “3B” and

“POSE” is that there is only a simple multi-branch structure

without specific handing of different poses in the “3B” set-

ting, where all features in three branches are directly added

for identification. It can be observed that, the pose-specific

multi-branch structure brings improvement compared with

both single-branch in row 4 and multi-branch structure in

row 5 in Table 2, which shows that it can alleviate the effect

of pose variation on mask shape deformation.

5.5. Further Analysis

Modalities for Mutual Learning. To validate the effec-

tiveness of our shape stream, we evaluated different input

modalities in our framework. Specially, we replaced the

fine-grained masks with RGB color image, and performed

dense interactive mutual learning between appearance and

appearance, denoted as FSAM (A ↔ A) in Table 5. Com-

paring it with our full framework FSAM (A ↔ S), we

observe that with the input of masks, we can achieve a

much higher performance in cloth-changing setting, which

is mainly because we can capture the shape knowledge

much easier with mask input while it is hard to mine such

knowledge implicitly with color image input. Compari-

son with other knowledge transfer method DML [51] also

shows the effectiveness of the input masks as in Table 5.

Two-way vs. One-way Knowledge Transfer. In Table 5,

we compared two-way knowledge transfer that allows mu-

tual knowledge interaction between two streams with one-

way knowledge transfer that only allows knowledge transfer

from shape stream to appearance stream.

The results show that two-way knowledge transfer is bet-

ter than one-way knowledge transfer by comparing FSAM

(A ↔ S) and FSAM (A ← S). This is because mutual

knowledge transfer can improve both streams by enhancing

appearance stream to mine robust shape knowledge while

also providing complementary features for shape stream.

Table 6. Comparison on standard datasets without cloth-changing.

Methods
DukeMTMC Market1501

R-1 mAP R-1 mAP

PCB [34] 83.3 69.2 93.8 81.6

IANet [12] 87.1 73.4 94.9 83.1

AANet [35] 87.7 74.3 93.9 83.4

DSA-reID [52] 86.2 74.3 95.7 87.6

RGA-SC [53] - - 96.1 88.4

ISP [58] 89.6 80.0 95.3 88.6

Baseline 85.5 75.3 94.1 84.9

FSAM (ours) 86.4 75.7 94.6 85.6

Results in Standard Re-ID Setting. To show the feasi-

bility of our method for the cases without clothes change,

we additionally evaluated our method on standard bench-

mark Re-ID datasets. As shown in Table 6, the perfor-

mance of our method is comparable with the state-of-the-

art methods on datasets DukeMTMC [30] and Market-1501

[56] without cloth-changing in short term. Specifically, we

adopted the appearance stream as the baseline and find that

our FSAM still achieves improvement, which shows that

without clothes change our framework can still learn dis-

criminative features from human body shape.

6. Conclusion

We study the challenging cloth-changing Re-ID prob-

lem. Body shape contains cloth-unrelated clues while hu-

man mask estimated by off-the-shelf human parsing model

causes error, which makes it difficult to exploit accurate

body shape. Therefore we propose a novel Fine-grained

Shape-Appearance Mutual learning framework (FSAM),

which consists of two streams: an appearance stream and

a shape stream. In shape stream we learn the fine-grained

masks and extract discriminative shape features under iden-

tity guidance with parsing knowledge preservation by the

pose-specific multi-branch network. To complement body

shape features in appearance features, we propose dense in-

teractive mutual learning to transfer shape knowledge from

shape stream to appearance stream, which allows appear-

ance stream to be deployed independently in inference. The

experiments show that our method achieves the state-of-the-

art performance on cloth-changing Re-ID datasets.
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