
LPSNet: A lightweight solution for fast panoptic segmentation

Weixiang Hong, Qingpei Guo, Wei Zhang, Jingdong Chen, Wei Chu

Ant Financial Services Group

{hwx229374, qingpei.gqp, ivy.zw, jingdongchen.cjd, weichu.cw}@antgroup.com

Abstract

Panoptic segmentation is a challenging task aiming to

simultaneously segment objects (things) at instance level

and background contents (stuff) at semantic level. Exist-

ing methods mostly utilize a two-stage detection network to

attain instance segmentation results, and a fully convolu-

tional network to produce a semantic segmentation predic-

tion. Post-processing or additional modules are required to

handle the conflicts between the outputs from these two nets,

which makes such methods suffer from low efficiency, heavy

memory consumption and complicated implementation. To

simplify the pipeline and decrease computation/memory

cost, we propose an one-stage approach called Lightweight

Panoptic Segmentation Network (LPSNet), which does not

involve a proposal, anchor or mask head. Instead, we pre-

dict a bounding box and semantic category at each pixel

upon the feature map produced by an augmented feature

pyramid, and design a parameter-free head to merge the

per-pixel bounding box and semantic prediction into panop-

tic segmentation output. Our LPSNet is not only efficient

in computation and memory, but also accurate in panop-

tic segmentation. Comprehensive experiments on COCO,

Cityscapes and Mapillary Vistas datasets demonstrate the

promising effectiveness and efficiency of the proposed LP-

SNet.

1. Introduction

Panoptic Segmentation (PS) is a challenging task aim-

ing to assign each pixel a semantic category and segment

each object in the input image [11]. Specifically, the goal

of PS is to segment countable objects (things) at instance

level and parse amorphous image regions (stuff) at seman-

tic level. Therefore, compared with semantic segmentation

or instance segmentation, PS provides more comprehensive

scene information and can be broadly used in autonomous

driving and scene parsing.

A straightforward solution to tackle PS is to merge the

instance segmentation and semantic segmentation predic-

tions, as is done by most existing methods [11, 3, 10, 35,

(a) Input image. (b) Object detection.

(c) Semantic segmentation. (d) Panoptic segmentation.

Figure 1. (Better viewed in color). Lightweight Panoptic Segmen-

tation Network (LPSNet) predicts bounding boxes and semantic

segmentation, and merge them into panoptic segmentation output

with a parameter-free panoptic head.

34]. To achieve good panoptic quality, these methods are of-

ten built upon large networks and complex pipelines, with-

out concerning efficiency and computational resources. For

example, Mask RCNN [7] has been widely used or in-

tegrated to attain promising accuracy, despite that Mask

RCNN is heavy in resources consumption and slow in in-

ference. Moreover, the utilization of Mask RCNN naturally

introduces conflicts with the output from semantic segmen-

tation branch, hence heuristic or complex post-processing

like the pixel rank module [20] are required to deal with the

outputs of both branches and obtain unified panoptic seg-

mentation results. Nevertheless, we argue that an efficient

solution for PS is not only desired for practical usage like

autonomous driving, but also of great importance for poten-

tial performance gain by saving memory for larger image

and batch size.

In this paper, we propose Lightweight Panoptic Segmen-

tation Network (LPSNet) to tackle the drawback mentioned

above. By introducing a parameter-free panoptic head, our

LPSNet decomposes panoptic segmentation into two inde-
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pendent sub-tasks, i.e., object detection and semantic seg-

mentation, as shown in Figure 1. Thanks to fully convo-

lutional network [22] and the recent one-stage anchor-free

detector [13, 12, 31], both sub-tasks can be solved in one

pass, in a fully-convolutional style. Therefore, compared

with existing two-stage PS methods like UPSNet[34] and

AUNet [16], our LPSNet can be around two times faster

with less memory consumption. Moreover, by slightly in-

creasing train/test image size, our LPSNet achieves superior

accuracy while still maintaining the advantages in memory

and computation.

Comprehensive experiments on benchmarks

COCO [19], Cityscapes [2] and Mapillary Vistas [24]

datasets evidently demonstrate that LPSNet achieves

competitive performances with excellent efficiency. We

summarize our main contributions as follows:

• We present a novel panoptic segmentation approach

LPSNet, which is different from existing methods and

produces panoptic segmentation in one pass. Our LP-

SNet does not involve anchor, proposal or mask head,

thus is efficient in computation, memory and hyper-

parameters usage. For examples, anchor settings such

as scale, aspect ratio are sensitive to different applica-

tions and datasets. The parameters of proposal ground

truth generation, extraction and selecting strategy re-

quires sophistical tuning. For the mask head, the

weight of the loss function is subject to careful trial

and error. In contrast, our LPSNet is easy to train and

more generic to different scenarios.

• We decompose the PS task as object detection and se-

mantic segmentation with a parameter-free PS head.

The head takes detection boxes, object center off-

set prediction and semantic segmentation as inputs to

obtain PS results, while existing approaches usually

work on instance segmentation and semantic segmen-

tation results. Our panoptic head is portable to other

networks with detection and semantic segmentation

branches.

• Additionally, overlapping or deformable objects often

cause severe false positive in most one-stage detection

methods like FCOS [31]. In our approach, we har-

ness mask information to determine whether a pixel is

positive and central or not, thus provide more accurate

learning targets and boost the final performances.

2. Related Work

Object Detection Existing object detectors can be roughly

grouped into two categories: two-stage framework which

includes a region proposal processing step and one-stage

framework which is proposal-free. With the emergence of

powerful one-stage detectors [18, 31], the traditional view

that two-stage is superior to one-stage on accuracy may be

inaccurate. Focal loss [18] solves the problem of imbalance

between positive and negative examples and also between

hard and easy examples, which significantly promote one-

stage detector performance. From the perspective of anchor,

object detectors can also be categorized into anchor-based

methods [28, 7] or anchor-free ones [13, 31]. Most existing

object detectors are based on pre-defined anchors, which are

considered to be essential for accuracy. However, there are

several drawbacks for anchor-based methods. For example,

hyper-parameters of anchor settings need carefully tuned.

The computation and storage costs related to anchor boxes

are also heavy [31]. Recently anchor-free methods attracts

a lot of interest, of which FCOS achieves state-of-the-art

performance among one-stage detectors.

Panoptic Segmentation Panoptic Segmentation is a joint

task to segment both thing and stuff, which is known as

scene understanding or image parsing in earlier work. The

task was reformulated in [11] as a well defined PS task with

panoptic quality (PQ) metric. Typically, PS is solved by se-

mantic segmentation [9] and instance segmentation [7] by

two separate networks [11, 3] or one network [10] with dif-

ferent heads to each sub-task. The results of semantic seg-

mentation and instance segmentation are then fused using

heuristics or specially designed head.

The baseline of PS proposed in [11] using Mask R-CNN

to get instance segmentation and PSPNet to get semantic re-

sults. The works [10] propose a single network with Mask

R-CNN [7] style instance segmentation head and seman-

tic segmentation head, followed by heuristics to merge two

kinds of outputs. There are two kinds of conflicts when con-

ducting merge, i.e., one pixel belonging to multiple instance

masks or belonging to a instance mask and stuff segmenta-

tion result simultaneously. TASCNet [14] constructs a bi-

nary mask predicting things i.e., stuff for each pixel to get

consistent results of instance segmentation and stuff seg-

mentation. For overlapping instances generated by MASK

R-CNN, the strategy of high confidence and small object

first is always used to conduct heuristic fusion. OANet [20]

proposes spatial ranking module to deal with the occlu-

sion problem between predicted instances. UPSNet [34]

proposes a lightweight and parameter-free panoptic head

which predicts the final results via pixel-wise classification

to solve the conflicts and facilitate end-to-end training.All

these methods are based on two-stage detector integrated

with a Mask R-CNN like mask-head to get instance masks,

which cost computational and memory resources heavily

and are inefficient.

Deeperlab [35] and AdaptIS [29] tackles PS in one stage

by generating class-agnostic instance masks based on key

points. Specifically, Deeperlab utilizes several key point

heatmaps to predict instances. AdaptIS harnesses an addi-

tional process to train high quality points. Perhaps [4] and
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Figure 2. Details of the proposed Single-Stage Panoptic Segmentation approach. The input image is feed to a modified FPN network for

computing the feature map. In detail, we increase the empirical receptive field of FPN by adding a Pyramid Pooling Module (PPM), and

extend the pyramid of typical FPN by 2 more levels using 2-stride convolution. Our box head takes P3-P7 feature as input, and predict

5 values for each point in feature map, i.e., box and border-ness score. Our Semantic Segmentation (SS) Head take P2-P5 as input and

predict per-pixel semantic logit.

[23] are the closest work to ours. [4] uses attention module

to assist instance segmentation. [23] uses anchors and cen-

ters for obtaining high quality detection boxes. Compared

to them, our method is simple in pipeline without involv-

ing attention, anchors or centers, while achieving superior

performances in public benchmarks.

3. Method

In order to produce panoptic segmentation in one pass,

without involving proposal, anchor or mask head, we first

introduce a non-parametric panoptic head to decompose

panoptic segmentation into semantic segmentation and ob-

ject detection. Given the fact that semantic segmentation

has been tackled in one pass by fully convolutional network

(FCN) [22], we propose to formulate object detection in a

per-pixel prediction fashion as in semantic segmentation. In

detail, our model consists of a shared convolutional feature

extraction backbone and three heads on top of it. The three

heads are designed for different purposes, but they are either

fully-convolutional or non-parametric. The overall model

architecture is shown in Figure 2. In this section, we start

with explaining the backbone of our lightweight panoptic

segmentation network. Then, the detailed architecture of

each component is elaborated.

3.1. Backbone

We build our model based on a deep residual network

(ResNet) [8] with feature pyramid [17]. To better exploit

global context information, we use a Pyramid Pooling Mod-

ule (PPM) over the feature map of the last layer in the 5-th

stage of ResNet (‘res5’), reduce its dimension to 256 and

add back to FPN before producing P5 feature map. PPM is

originally proposed in [36] and proven to be highly compat-

ible with FPN in [33]. Similar to [31], we downsample P5

twice to produce P6 and P7 by two convolution layers with

stride 2.

3.2. Box Head

A shared box head is applied to different feature levels,

since shared box heads lead to efficient parameterization

and improved performance [31]. As shown in Figure 2, the

input and output shape of each box head are H×W × 256
and H × W × 5 respectively, where H and W vary with

the level of the feature. We utilize a 4-layer sub-network to

process the input feature map. A point is considered as a

positive sample if it is part of ground-truth mask of things.

For each positive sample, we regress a 5-dimensional vector

[l, t, r, b, p], where l, t, r, b are the distances from the loca-

tion to left, top, right and bottom of the bounding box. Note

16748



(a) FCOS [31]. (b) Ours.

Figure 3. Definitions of positive samples. (a). Each point within

the bounding box is considered as positive sample in FCOS [31],

therefore, the background on the top-right area, as well as the pix-

els from the chair, will cause false positive and degrade detection

performance. (b). Our definition of positive sample utilizes the

information from the mask and effectively filters out the false pos-

itive pixels.

that our definition of positive sample is different from [31],

where every point within any ground-truth box is treated as

a positive sample. As illustrated in Figure 3, our definition

can significantly reduce false positive samples, which ben-

efits the detection performances.

The 5-th dimension p to regress is called border-ness,

which is introduced to surpress low-quality detected bound-

ing boxes without introducing any hyper-parameters. Let

l∗, t∗, r∗, b∗ be the distance to the four border of mask as

shown in Figure 4, the border-ness target is defined as:

border-ness∗ =

√

min(l∗, r∗)

max(l∗, r∗)
×

min(t∗, b∗)

max(t∗, b∗)
(1)

The border-ness ranges from 0 to 1 and is thus trained

with binary cross entropy (BCE) loss. We employ sqrt to

slow down the decay of the border-ness. In inference stage,

we multiply the predicted border-ness with the confidence

score of the detected bounding boxes so as to depress the

bounding boxes far from the center of an object. We expect

the following non-maximum suppression (NMS) can filter

out these low-quality bounding boxes, and boost the final

performances.

3.3. Semantic Segmentation Head

The goal of the semantic segmentation head is to

parse all semantic classes without discriminating instances.

There are plenty of works on designing high-performance

segmentation head based on powerful backbone such as

ResNet-101 [37], HRNet [30], but rare studies have been

done based on FPN. Inspired by the recent work [33, 34],

we build our semantic head as a deformable convolution

based subnetwork. We feed the 256-channel P2, P3, P4 and

P5 feature maps of FPN to our semantic segmentation head.

These feature maps are first processed by our deformable

convolution network independently, then upsampled to 1/4

(a) Center-ness [31]. (b) Border-ness.

Figure 4. Center-ness v.s. border-ness. Our proposed border-ness

assigns more weights to the pixels on object, while center-ness

[31] may mistakenly concentrates on the area outside the object.

Our border-ness demonstrates improved performance than center-

ness in Section 4.4.

scale of the input image by bilinear interpolation. Finally,

we concatenate them and apply 1×1 convolutions with soft-

max to predict the semantic class. The architecture is shown

in bottom right of Figure 2. We use the pixel-wise cross en-

tropy loss to supervise our semantic segmentation head.

3.4. Panoptic Head

The goal of the panoptic head is to produce panoptic seg-

mentation based on bounding boxes and per-pixel seman-

tic segmentation. We design it as a non-parametric module

so it is portable to other networks, we note that there are

also panoptic head with learned parameters [20]. In details,

we iteratively “paste” each box to the semantic segmenta-

tion prediction by confidence from high to low, so that the

highly confident box may “occupy” the pixels and hide false

positive area from low-confident predictions. For a given

bounding box of class C, the pixels within it are either of

class C or not, and we consider those pixels of class C as

the mask of this box. If the intersection between the current

mask and those already existing is larger than a threshold

(0.3 in our experiments), we discard this mask. Otherwise

we keep the non-intersecting part.

A special case is that two (or more) boxes of the same

class are overlapping, and some pixels in the overlapping

area also have the same class. In this case, we compute the

border-ness of those pixels to all competing boxes, and as-

sign the pixel to the box whose computed border-ness is the

closest to the predicted border-ness. The accurate assign-

ment of these pixels is beneficial to better visualization, but

we found in experimentation that it does not matter a lot to

performances.
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Table 1. Panoptic segmentation results on COCO val. The number in bracket stands for the length of shorter size of our train/test images.

Other methods are trained/tested with images with shorter size length as 800. Superscripts Th and St stand for thing and stuff. ‘-’ means

inapplicable. We note that the running time includes the post-processing.

Models PQ SQ RQ PQTh PQSt box mAP mask mAP mIoU time memory FLOPS

JSIS-Net [3] 26.9 72.4 35.7 29.3 23.3 - - - - - -

Panoptic FPN [10] 33.3 - - 45.9 28.7 - - 41.0 - - -

OANet [20] 39.0 77.1 - 43.5 24.9 - - - - - -

SSAP [6] 36.5 80.7 44.8 40.1 32.0 - - - - - -

Axial-DeepLab-L [32] 43.9 - - 48.6 36.8 - - - - - -

UPSNet [34] 42.3 78.0 52.4 48.5 33.4 37.8 34.3 54.3 202 10.4G 259G

LPSNet (800) 39.1 75.2 51.2 43.9 30.1 39.2 26.8 54.5 108 4.4G 139G

LPSNet (882) 41.9 77.2 51.5 46.3 32.5 39.4 29.6 56.1 127 4.9G 153G

LPSNet (964) 42.4 79.2 52.7 48.0 35.8 39.5 31.5 59.8 146 5.5G 167G

3.5. Implementation Details

We implement our model using PyTorch [26].

Training: We train our model using 8 GPUs, with 2 im-

ages per GPU for each mini-batch. We use ground-truth

per-pixel labels to construct the targets of bounding boxes

and border-ness. Our LPSNet contains 3 sub-tasks in total:

bounding box localization, border-ness regression and se-

mantic segmentation. Different weighting schemes on these

multi-task loss functions could lead to very different train-

ing results. We empirically found the loss balance strategy,

i.e., assuring the scales of all losses are roughly on the same

order of magnitude, works well in practice.

Inference: In inference stage, we firstly feed the input

image through the network to obtain the predicted bound-

ing boxes and per-pixel semantic prediction. The class of

each predicted bounding box is inferred with the output of

semantic segmentation head following FCOS [31] . Un-

less specified, our post-processing procedure on bounding

boxes is also the same with [31]. We hypothesize that the

performance of our box head may be improved further if we

carefully tune the hyper-parameters. The predicted bound-

ing boxes and semantic segmentation are fed to panoptic

head for obtaining the final panoptic segmentation outputs.

4. Experiments

In this section, we present the experimental results on

COCO [19], Cityscapes [2] and Mapillary Vistas [25]

datasets.

COCO [19] is the most suitable and challenging one for

the new panoptic segmentation task, for the detailed anno-

tations and high data complexity. It consists of 115k images

for training and 5k images for validation, as well as 20k im-

ages for test-dev and 20k images for test-challenge. MS-

COCO panoptic annotations includes 80 thing categories

and 53 stuff categories. We train our models on train set

with no extra data and reports results on val set and test-dev

set for comparison.

Cityscapes [2] dataset contains 2975 images for train-

ing, 500 images for validation and 1525 images for testing

with fine annotations. It has another 20k coarse annotations

for training, which are not used in our experiment. We re-

port our results on val set with 19 semantic label and 8 an-

notated instance categories.

Mapillary Vistas [24] is adopted to further illustrate the

effectiveness of the proposed method. In details, Mapillary

Vistas is one of the richest, publicly available street-level

image datasets today, with 18k/2k/5k images for training,

validation and test, respectively. Following the setting of

[29], We scale the images by largest side varied from 500

to 2200 pixels and then perform random crop of size 400×
800.

Experimental Setup For all three datasets, we report re-

sults on the validation set. To evaluate the performance, we

adopt panoptic quality (PQ), recognition quality (RQ) and

semantic quality (SQ) [11] as the metrics. For the auxil-

iary tasks of panoptic segmentation, i.e., object detection,

instance segmentation and semantic segmentation, we mea-

sure their performances by bounding box mAP, mask mAP

and mean IoU. We also report inference FLOPS, inference

time and memory consumption. At last, we conduct abla-

tion studies to investigate the effectiveness of different com-

ponents of proposed method.

We train our network with stochastic gradient descent

(SGD). For COCO, we set the initial learning rate as 0.01
and batch size as 16. The total number of iterations is 90K,

and the learning rate is reduced by a factor of 10 at iteration

60K and 80K, respectively. Weight decay and momentum

are set as 0.0001 and 0.9, respectively. We initialize our

backbone networks with the weights pre-trained on Ima-

geNet [5]. For the newly added layers, we initialize them

as in [18]. For Cityscapes, we train our method for 12K
iterations in total, with the learning rate decayed at 9K it-

erations. Loss weights of semantic head are 0.7 and 1.0 on

COCO and Cityscapes respectively. For Mapillary Vistas,

we train for a total of 192k iterations, decreasing the learn-
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Table 2. Panoptic segmentation results on COCO test-dev. The top 3 rows contain results of top 3 models taken from the official

leadboard.

Models backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Megvii ensemble model 54.7 83.6 64.3 64.6 86.2 74.6 39.8 79.7 48.8

Innovation ensemble model 53.5 83.3 63.3 61.8 84.9 72.4 41.0 80.9 49.6

Megvii (Face++) ensemble model 53.2 83.2 62.9 62.2 85.5 72.5 39.5 79.7 48.5

JSIS-Net [3] ResNet-50 27.2 71.9 35.9 29.6 71.6 39.4 23.4 72.3 30.6

AUNet [16] ResNeXt-152 46.5 81.0 56.1 55.9 83.7 66.3 32.5 77.0 40.7

UPSNet [34] ResNet-101-DCN 46.6 80.5 56.9 53.2 81.5 64.6 36.7 78.9 45.3

LPSNet (736) ResNet-101 44.2 78.3 54.2 47.7 76.2 57.8 35.4 77.3 41.8

LPSNet (818) ResNet-101 45.6 79.4 55.1 49.3 77.9 58.9 36.9 78.1 45.3

LPSNet (900) ResNet-101 46.3 80.2 57.0 50.5 78.7 62.8 38.6 79.2 46.9

Table 3. Panoptic segmentation results on Cityscapes val. Su-

perscripts Th and St stand for thing and stuff. ‘-’ means inapplica-

ble.
Models PQ SQ RQ PQTh PQSt box mAP mask mAP mIoU

Li et al. [15] 53.8 - - 42.5 62.1 - 28.6 71.6

Panoptic FPN [10] 58.0 79.2 71.8 52.3 62.2 - 32.8 75.2

TASCNet [14] 55.9 - - 50.5 59.8 - - -

SSAP [6] 58.4 - - 50.6 - - 34.4 -

UPSNet [34] 59.3 79.7 73.0 54.6 62.7 36.8 33.3 75.2

LPSNet (1024) 59.7 79.9 73.6 54.0 63.9 38.4 32.8 78.1

LPSNet (1200) 60.4 80.3 74.0 54.2 64.5 38.5 33.0 78.6

Multi-scale PQ SQ RQ PQTh PQSt box mAP mask mAP mIoU

Panoptic FPN [10] 61.2 80.9 74.4 54.0 66.4 - 36.4 80.9

UPSNet [34] 60.1 80.3 73.5 55.0 63.7 37.1 33.3 76.8

LPSNet (1024) 60.5 80.7 73.5 53.7 64.8 38.8 33.2 80.8

LPSNet (1200) 61.3 81.2 74.8 54.5 65.6 38.9 33.6 81.4

ing rate after 144k and 176k iterations.

4.1. COCO

We compare our method with JSIS-Net [3], Panoptic

FPN [10], OANet [20], AUNet [16], SSAP [6], Axial-

DeepLab-L [32] and UPSNet [34]. For fairness of com-

paring with other methods, we conduct experiments on the

COCO dataset with ResNet-50 as backbone, except that

Axial-DeepLab-L [32] developed an improved backbone

Axial-ResNet-50 based on ResNet-50. The results under

different metrics are shown in Table 1. The mIoU metric

is computed over the 133 classes of stuff and thing in the

COCO 2018 panoptic segmentation task, which is different

from previous 172 classes of COCO-Stuff. Compared with

the main competitor UPSNet [34], the PQ of our LPSNet is

lower than UPSNet by 3 with the same image size (shorter

side as 800), while our method is around 2 times faster

than UPSNet with less memory consumption. By slightly

increasing train/test image size, our method surpasses UP-

SNet in PQ while still maintains the advantages in speed and

memory. Specifically, with train/test image size as 964, our

LPSNet outperforms UPSNet [34] in all metrics except the

PQTh and mask mAP. Note that UPSNet [34] is expected to

achieve better PQ by increasing train/test image size, how-

ever, when it comes to a larger backbone like ResNet-101-
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Figure 5. Panoptic quality v.s. inference time. The results are

obtained on Cityscapes dataset with various image sizes. The three

variants of DeeperLab at 1024 × 2048 are from three different

backbones [35]. Compared with FPSNet and UPSNet, our LPSNet

achieves promising balance between efficiency and accuracy.

DCN in Table 2, a single image of 768 size with UPSNet

will cost around 16G memory, which is close to the largest

capacity of most existing GPUs like TESLA V100. In con-

trast, our method is still scalable with ResNet-101 as back-

bone, as shown next.

We add the comparisons on the test-dev of MS-COCO

2018 in Table 2. Although we just use ResNet-101 as the

backbone, we achieve comparable results compared to the

recent AUNet [16] that uses ResNeXt-152. We also list the

top three results on the leaderboard which uses ensemble

and other tricks. It is clear from the table that we are on par

with the third best model without bells and wistles.

We show visual examples of panoptic segmentation on

this dataset in Figure 6. From the 1-st row of the figure, we

observe that our LPSNet achieves better semantic segmen-

tation performance than UPSNet [34], probably due to the

utilization of PPM [33]. In the 2-nd row, a bag is missed

by UPSNet but detected by our method. Also, our LPSNet

excels in handling occlusion in row 3.
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Figure 6. Visual examples of panoptic segmentation on COCO dataset. From left to right are input image, UPSNet output, LPSNet

output, ground-truth.

4.2. Cityscapes

We compare our method with Li et al. [15], Panop-

tic FPN [10], TASCNet [14], FPSNet [4], DeeperLab [35],

SSAP [6] and UPSNet [34]. Note that the method in [15]

uses a ResNet-101 as the backbone, whereas all other re-

ported methods use ResNet-50. Most existing works re-

ported the panoptic quality on CityScapes val set, thus it is

convenient and fair to compare on val set.

The results are reported in Table 3. Even with the same

train/test image size as 1024, our method achieves compet-

itive PQ at 59.7. This may possibly be caused by the fact

that the stuff area in Cityscapes are usually larger than that

of COCO. Although multi-scale testing significantly im-

proves both Panoptic FPN [11] and our LPSNet, ours is

still slightly better with train/test image size as 1200. As

illustrated in Figure 5, our method achieves promising bal-

ance between panoptic quality and inference time. In case

of train/test image size as 1024×2048 and 1200×2400, our

method achieves the best PQ among all compared method.

Compared with FPSNet [4], our method is higher in PQ by

around 10, at the cost of around 20ms slower in inference.

4.3. Mapillary Vistas

We compare our method with TASCNet [14], Seam-

lessSeg [27], AdaptIS [29] and Axial-DeepLab-L [32] on

Mapillary Vistas dataset. With ResNet-50 as backbone, all

methods are compared in Table 4. We obtain +0.3% and

Table 4. Panoptic segmentation results on Mapillary Vistas val.

Superscripts Th and St stand for thing and stuff. ‘-’ means inap-

plicable.
Methods Backbone PQ PQTh PQSt mIoU

TASCNet [14]

ResNet-50

32.6 31.1 34.4 -

AdaptIS [29] 32.0 26.6 39.1 -

DeeperLab [35] 32.0 - - 55.3

SeamlessSeg [27] 36.2 33.6 40.0 45.8

Axial-DeepLab-L [32] Axial-ResNet-50 41.1 33.4 51.3 58.4

LPSNet ResNet-50 36.5 33.2 41.0 48.8

+4.5% PQ score over SeamlessSeg [27] and AdaptIS [29] ,

respectively. The consistent advantages on state-of-the-art

methods validate the merits of our LPSNet.

4.4. Ablation Study

We investigate the effectiveness of different components

of the proposed LPSNet. The performance achieved by dif-

ferent variants and settings are reported in the following.

The effectiveness of PPM To verify the importance of

Pyramid Pooling Module (PPM) in enhancing the feature

maps of FPN, we compare it with a simple baseline “Global

Average Pooling” proposed in [34]. We also try to train our

network without the PPM. We note that this degrades our

backbone similar to Panoptic FPN [10].

Since the effect of PPM to box mAP is experimentally

observed to be minor, here we only report mIoU and PQ

of different variants in Table 5 left. The PPM outperforms

“Global Average Pooling” by more than 3% in mean IoU.

When the PPM is removed, the IoU significantly drops
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Table 5. Ablation studies on PPM and conflicted pixels assign-

ment. The experiments are conducted on COCO val set with

ResNet-50 as backbone.
Models mIoU PQ Strategies PQ PQTh PQSt

Global Average Pooling 51.2 36.5 Smallest Area 38.9 43.5 30.0

Without PPM 50.9 35.7 Highest Confidence 39.0 43.6 30.0

With PPM 54.5 39.1 Closest Border-ness 39.1 43.9 30.1

around 4%. These observations validate that PPM can ef-

fectively enhance the feature map of FPN to boost semantic

segmentation.

Closest Border-ness Assignment In our proposed net-

work, the closest border-ness rule is mainly designed to im-

prove id assignment of intra-class overlaps, for the purpose

of better visualization. Here we give quantitative evalua-

tions of how the closest border-ness assignment affects the

final PQ on COCO val set. As shown in Table 5 right, we

adopt three different strategies for handling the intra-class

conflicts. In detail, the conflicted area will be assigned to

the box with smallest area or highest confidence for “Small-

est Area” and “Highest Confidence”, respectively. Though

“Smallest Area” and “Highest Confidence” show minor PQ

differences with “Closest Border-ness” [23], they may pro-

duce straight contours with rigid corners originating from

the bounding boxes. To alleviate these bad visualizations,

“Closest Border-ness” allows sophisticated assignment of

each pixel in the conflicted area, hence enables smooth con-

tours in visualizations as shown in Figure 6.

Mask head matters From Table 1, 2 and 3, we observe

an interesting phenomenon that the box mAP of our method

is usually higher than that of Panoptic FPN and UPSNet,

while the mask mAP is relatively lower. Given that our

method excels in semantic segmentation, we conjecture that

the mask head significantly boosts the mask mAP for those

Mask RCNN based method. To verify our conjecture, we

replace the semantic segmentation with groundtruth labels,

which will eliminate the contribution of mask head to the

final panoptic segmentation output.

The experimental results are shown in Table 6. It can be

seen that the groundtruth semantic segmentation can signif-

icantly boost the performance of UPSNet and our method,

which is consistent with the observations in [34]. Also,

we note that UPSNet achieves higher PQ than our method

without groundtruth semantic segmentation, while ours sur-

passes it if groundtruth semantic segmentation is utilized,

due to our higher detection mAP. This demonstrates that

the mask head plays a key role for achieving promising PQ.

The ablations of using ground-truth bounding boxes are also

presented, the gains of our method is less than that of UP-

SNet, which is as expected.

Why increasing image size helps? In light of the good

performances achieved by increasing train/test image sizes,

a natural question to ask is: what is the rationale behind in-

creasing image size. As presented in Table 2 of [1], large

Table 6. With/without groundtruth semantic segmentation (SS)

and bound boxes. The experiments are conducted on COCO val

set with ResNet-50 as backbone.
box mAP segmentation IoU mask mAP PQ

UPSNet 37.8 54.3 34.3 42.5

UPSNet + SS 37.8 - 46.1 72.0

UPSNet + Box - 54.5 51.0 60.8

Ours 39.2 54.5 26.8 39.1

Ours + SS 39.2 - 47.0 74.1

Ours + Box - 54.5 51.8 53.0
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Figure 7. The experiments are conducted on COCO datset with

ResNet-50 backbone. (a). Our border-ness demonstrates advan-

tages to center-ness on various train/test image size. (b). Our def-

inition of positive samples leads to improved performances than

that of FCOS [31].

input size is usually beneficial for semantic segmentation.

Since our LPSNet generates the instance mask based on se-

mantic segmentation and bounding box prediction, the im-

proved segmentation accuracy can lead to better mask mAP.

Some researchers even compromise model size to increase

image resolution [21].

How much does border-ness and mask-based posi-

tive sample contribute? We conduct controlled experi-

ments to verify the effectiveness of our proposed border-

ness (Figure 4) and mask-based positive sample (Figure 3).

As shown in Figure 7, the border-ness and mask-based pos-

itive sample can boost the PQ of the proposed methods. In

particular, the gain of border-ness can be around 2 PQ with

image shorter size as 800.

5. Conclusion

To efficiently and effectively tackle panoptic segmen-

tation, we have proposed one-stage, anchor-free and

proposal-free network called LPSNet. By introducing a

non-parametric panoptic head, we decompose panoptic seg-

mentation into two sub-tasks object detection and semantic

segmentation, both of which can be solved in fully convolu-

tional per-pixel prediction style. As shown in experiments,

LPSNet compares favourably against the popular two-stage

approaches like UPSNet and Panoptic FPN in terms of both

accuracy and efficiency. Given its effectiveness and effi-

ciency, we hope that LPSNet can serve as a strong and

simple alternative of current mainstream anchor-based ap-

proaches. In the future, we plan to further improve LPSNet

by borrowing merits from the mask head, as well as accel-

erating it towards real-time inference.
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