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Figure 1: As shown in (a), LiDAR-based panoptic segmentation requires instance-level segmentation for things classes and

semantic-level segmentation for stuff classes. (b) shows the core operation of the proposed dynamic shifting where several

shift candidates are weighted to obtain the optimal shift target for each regressed center.

Abstract

With the rapid advances of autonomous driving, it be-

comes critical to equip its sensing system with more holistic

3D perception. However, existing works focus on parsing

either the objects (e.g. cars and pedestrians) or scenes (e.g.

trees and buildings) from the LiDAR sensor. In this work,

we address the task of LiDAR-based panoptic segmenta-

tion, which aims to parse both objects and scenes in a uni-

fied manner. As one of the first endeavors towards this new

challenging task, we propose the Dynamic Shifting Network

(DS-Net), which serves as an effective panoptic segmenta-

tion framework in the point cloud realm. In particular, DS-

Net has three appealing properties: 1) strong backbone de-

sign. DS-Net adopts the cylinder convolution that is specif-

ically designed for LiDAR point clouds. The extracted fea-

tures are shared by the semantic branch and the instance

branch which operates in a bottom-up clustering style. 2)

Dynamic Shifting for complex point distributions. We ob-

serve that commonly-used clustering algorithms like BFS or

DBSCAN are incapable of handling complex autonomous

driving scenes with non-uniform point cloud distributions

and varying instance sizes. Thus, we present an effi-

cient learnable clustering module, dynamic shifting, which

adapts kernel functions on-the-fly for different instances. 3)

Consensus-driven Fusion. Finally, consensus-driven fu-

sion is used to deal with the disagreement between seman-

tic and instance predictions. To comprehensively evalu-

ate the performance of LiDAR-based panoptic segmenta-

tion, we construct and curate benchmarks from two large-

scale autonomous driving LiDAR datasets, SemanticKITTI

and nuScenes. Extensive experiments demonstrate that our

proposed DS-Net achieves superior accuracies over current

state-of-the-art methods. Notably, we achieve 1st place on

the public leaderboard of SemanticKITTI, outperforming

2nd place by 2.6% in terms of the PQ metric 1.

1. Introduction

Autonomous driving, one of the most promising appli-

cations of computer vision, has achieved rapid progress in

recent years. Perception system, one of the most important

modules in autonomous driving, has also attracted extensive

studies in previous research works. Admittedly, the clas-

sic tasks of 3D object detection [18, 24, 32] and semantic

segmentation [20, 30, 35] have developed relatively mature

1Accessed at 2020-11-16. Codes are available at https://

github.com/hongfz16/DS-Net.
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solutions that support real-world autonomous driving pro-

totypes. However, there still exists a considerable gap be-

tween the existing works and the goal of holistic perception

which is essential for the challenging autonomous driving

scenes. In this work, we propose to close the gap by explor-

ing the task of LiDAR-based panoptic segmentation, which

requires full-spectrum point-level predictions.

Panoptic segmentation has been proposed in 2D detec-

tion [15] as a new vision task which unifies semantic and

instance segmentation. Behley et al. [3] extend the task to

LiDAR point clouds and propose the task of LiDAR-based

panoptic segmentation. As shown in Fig. 1 (a), this task re-

quires to predict point-level semantic labels for background

(stuff ) classes (e.g. road, building and vegetation), while in-

stance segmentation needs to be performed for foreground

(things) classes (e.g. car, person and cyclist).

Nevertheless, the complex point distributions of LiDAR

data make it difficult to perform reliable panoptic segmen-

tation. Most existing point cloud instance segmentation

methods [10, 14] are mainly designed for dense and uni-

form indoor point clouds. Therefore, decent segmentation

results can be achieved through the center regression and

heuristic clustering algorithms. However, due to the non-

uniform density of LiDAR point clouds and varying sizes of

instances, the center regression fails to provide ideal point

distributions for clustering. The regressed centers usually

form noisy strip distributions that vary in density and sizes.

As will be analyzed in Section 3.2, several heuristic cluster-

ing algorithms widely used in previous works cannot pro-

vide satisfactory clustering results for the regressed centers

of LiDAR point clouds. To tackle the above mentioned

technical challenges, we propose Dynamic Shifting Net-

work (DS-Net) which is specifically designed for effective

panoptic segmentation of LiDAR point clouds.

Firstly, we adopt a strong backbone design and provide

a strong baseline for the new task. Inspired by [37], the

cylinder convolution is used to efficiently extract grid-level

features for each LiDAR frame in one pass which are further

shared by the semantic and instance branches.

Secondly, we present a novel Dynamic Shifting Mod-

ule designed to cluster on the regressed centers with com-

plex distributions produced by the instance branch. As illus-

trated in Fig. 1 (b), the proposed dynamic shifting module

shifts the regressed centers to the cluster centers. The shift

targets xi are adaptively computed by weighting across sev-

eral shift candidates cij which are calculated through kernel

functions kj . The special design of the module makes the

shift operation capable of dynamically adapting to the den-

sity or sizes of different instances and therefore shows supe-

rior performance on LiDAR point clouds. Further analysis

also shows that the dynamic shifting module is robust and

not sensitive to parameter settings.

Thirdly, the Consensus-driven Fusion Module is pre-

sented to unify the semantic and instance results to obtain

panoptic segmentation results. The proposed consensus-

driven fusion mainly solves the disagreement caused by the

class-agnostic style of instance segmentation. The fusion

module is highly efficient, thus brings negligible computa-

tion overhead.

Extensive experiments on SemanticKITTI demonstrate

the effectiveness of our proposed DS-Net. To further

illustrate the generalizability of DS-Net, we customize

a LiDAR-based panoptic segmentation dataset based on

nuScenes. As one of the first works for this new task, we

present several strong baseline results by combining the

state-of-the-art semantic segmentation and detection meth-

ods. DS-Net outperforms all the state-of-the-art methods

on both benchmarks (1st place on the public leaderboard of

SemanticKITTI).

The main contributions are summarized below: 1) To

our best knowledge, we present one of the first attempts

to address the challenging task of LiDAR-based panoptic

segmentation. 2) The proposed DS-Net effectively han-

dles the complex distributions of LiDAR point clouds, and

achieves state-of-the-art performance on SemanticKITTI

and nuScenes. 3) Extensive experiments are performed on

large-scale datasets. We adapt existing methods to this new

task for in-depth comparisons. Further statistical analyses

are carried out to provide valuable observations.

2. Related Works

Point Cloud Semantic Segmentation. According to the

data representations of point clouds, most point cloud se-

mantic segmentation methods can be categorized to point-

based and voxel-based methods. Based on PointNet [22]

and PointNet++ [23], KPConv [25], DGCNN [28], Point-

Conv [31] and Randla-Net [13] can directly operate on un-

ordered point clouds. However, due to space and time com-

plexity, most point-based methods struggle on large-scale

point clouds datasets e.g. ScanNet [9], S3DIS [1], and Se-

manticKITTI [2]. MinkowskiNet [7] utilizes the sparse con-

volutions to efficiently perform semantic segmentation on

the voxelized large-scale point clouds. Different from in-

door RGB-D reconstruct point clouds, LiDAR point clouds

have non-uniform and sparse point distributions which re-

quire special designs of the network. SqueezeSeg [30]

views LiDAR point clouds as range images while PolarNet

[35] and Cylinder3D [37] divide the LiDAR point clouds

under the polar and cylindrical coordinate systems.

Point Cloud Instance Segmentation. Previous works have

shown great progress in the instance segmentation of in-

door point clouds. A large number of point-based methods

(e.g. SGPN [26], ASIS [27], JSIS3D [21] and JSNet [36])

split the whole scene into small blocks and learn point-wise

embeddings for final clustering, which are limited by the

heuristic post processing steps and the lack of perception.
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Figure 2: Architecture of the DS-Net. The DS-Net consists of the cylinder convolution, a semantic and an instance branch

as shown in the upper part of the figure. The regressed centers provided by the instance branch are clustered by the novel

dynamic shifting module which is shown in the bottom half. The consensus-driven fusion module unifies the semantic and

instance results into the final panoptic segmentation results.

To avoid the problems, recent works (e.g. PointGroup [14],

3D-MPA [10], OccuSeg [12]) use sparse convolutions to ex-

tract features of the whole scene in one pass. As for LiDAR

point clouds, there are a few previous works [13, 29, 30, 34]

trying to tackle the problem. Wu et al. [30] directly cluster

on XYZ coordinates after semantic segmentation. Wong et

al. [29] builds the network in a top-down style and incorpo-

rates metric learning. Zhang et al. [34] uses grid-level cen-

ter voting to cluster points of interest in autonomous driving

scenes. Although our work is not targeting the instance seg-

mentation for LiDAR point clouds, the proposed DS-Net

can provide some insights into the challenging task.

3. Our Approach

As one of the first attempts on the task of LiDAR-based

panoptic segmentation, we first introduce a strong backbone

to establish a simple baseline (Sec. 3.1), based on which

two modules are further proposed. The novel dynamic shift-

ing module is presented to tackle the challenge of the non-

uniform LiDAR point clouds distributions (Sec. 3.2). The

efficient consensus-driven fusion module combines the se-

mantic and instance predictions and produces panoptic seg-

mentation results (Sec. 3.3). The whole pipeline of the DS-

Net is illustrated in Fig. 2.

3.1. Strong Backbone Design

To obtain panoptic segmentation results, it is natural to

solve two sub-tasks separately, which are semantic and in-

stance segmentation, and combine the results. As shown

in the upper part of Fig. 2, the strong backbone con-

sists of three parts: the cylinder convolution, a semantic

branch, and an instance branch. High quality grid-level fea-

tures are extracted by the cylinder convolution from raw Li-

DAR point clouds and then shared by semantic and instance

branches.

Cylinder Convolution. Considering the difficulty pre-

sented by the task, we find that the cylinder convolution

[37] best meets the strict requirements of high efficiency,

high performance and fully mining of 3D positional rela-

tionship. The cylindrical voxel partition can produce more

even point distribution than normal Cartesian voxel parti-

tion and therefore leads to higher feature extraction effi-

ciency and higher performance. Cylindrical voxel repre-

sentation combined with sparse convolutions can naturally

retain and fully explore 3D positional relationship. Thus we

choose the cylinder convolution as our feature extractor.

Semantic Branch. The semantic branch performs seman-

tic segmentation by connecting MLP to the cylinder convo-

lution to predict semantic confidences for each voxel grid.

Then the point-wise semantic labels are copied from their

corresponding grids. We use the weighted cross entropy

and Lovasz Loss [4] as the loss function of the semantic

branch.

Instance Branch. The instance branch utilizes center re-

gression to prepare the things points for further clustering.

The center regression module uses MLP to adapt cylinder

convolution features and make things points to regress the

centers of their instances by predicting the offset vectors
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O ∈ R
M×3 pointing from the points P ∈ R

M×3 to the in-

stance centers Cgt ∈ R
M×3. The loss function for instance

branch can be formulated as:

Lins =
1

M

M∑

i=0

‖O[i]− (Cgt[i]− P [i])‖1, (1)

where M is the number of things points. The regressed

centers O + P are further clustered to obtain the instance

IDs, which can be achieved by either heuristic clustering

algorithms or the proposed dynamic shifting module which

are further introduced and analyzed in the following section.

3.2. Dynamic Shifting

Point Clustering Revisit. Unlike indoor point clouds

which are carefully reconstructed using RGB-D videos, the

LiDAR point clouds have the distributions that are not suit-

able for normal clustering solutions used by indoor instance

segmentation methods. The varying instance sizes, the spar-

sity and incompleteness of LiDAR point clouds make it dif-

ficult for the center regression module to predict the precise

center location and would result in noisy long strips distri-

bution as displayed in Fig. 1 (b) instead of an ideal ball-

shaped cluster around the center. Moreover, as presented

in Fig. 3 (a), the clusters formed by regressed centers that

are far from the LiDAR sensor have much lower densities

than those of nearby clusters due to the non-consistent spar-

sity of LiDAR point clouds. Facing the non-uniform distri-

bution of regressed centers, heuristic clustering algorithms

struggle to produce satisfactory results. Four major heuris-

tic clustering algorithms that are used in previous bottom-up

indoor point clouds instance segmentation methods are an-

alyzed below. The details of the following algorithms can

be found in supplementary materials.

• Breadth First Search (BFS). BFS is simple and good

enough for indoor point clouds as proved in [14], but not

suitable for LiDAR point clouds. As discussed above,

large density difference between clusters means that the

fixed radius cannot properly adapt to different clusters.

Small radius will over-segment distant instances while

large radius will under-segment near instances.

• DBSCAN [11] and HDBSCAN [6]. As density-based

clustering algorithms, there is no surprise that these

two algorithms also perform badly on the LiDAR point

clouds, even though they are proved to be effective for

clustering indoor point clouds [10, 33]. The core opera-

tion of DBSCAN is the same as that of BFS. While HDB-

SCAN intuitively assumes that the points with lower den-

sity are more likely to be noise points which is not the

case in LiDAR points.

• Mean Shift [8]. The advantage of Mean Shift, which is

used by [17] to cluster indoor point clouds, is that the
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Figure 3: (a) counts the average number of regressed centers

inside each valid voxel of instances at different distances.

(b) shows the effect of Different Mean Shift Bandwidth on

the Recognition Quality of Different Classes.

kernel function is not sensitive to density changes and ro-

bust to noise points which makes it more suitable than

density-based algorithms. However, the bandwidth of the

kernel function has great impact on the clustering results

as shown in Fig. 3 (b). The fixed bandwidth cannot han-

dle the situation of large and small instances simultane-

ously which makes Mean Shift also not the ideal choice

for this task.

Dynamic Shifting. As discussed above, it is a robust way of

estimating cluster centers of regressed centers by iteratively

applying kernel functions as in Mean Shift. However, the

fixed bandwidth of kernel functions fails to adapt to varying

instance sizes. Therefore, we propose the dynamic shifting

module which can automatically adapt the kernel function

for each LiDAR point in the complex autonomous driving

scene so that the regressed centers can be dynamically, effi-

ciently and precisely shifted to the correct cluster centers.

In order to make the kernel function learnable, we first

consider how to mathematically define a differentiable shift

opration. Inspired by [16], the shift operation on the seeding

points (i.e. points to be clustered) can be expressed as ma-

trix operations if the number of iterations is fixed. Specif-

ically, one iteration of shift operation can be formulated as

follows. Denoting X ∈ R
M×3 as the M seeding points, X

will be updated once by the shift vector S ∈ R
M×3 which

is formulated as

X ← X + ηS, (2)

where η is a scaling factor which is set to 1 in our experi-

ments.
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Algorithm 1: Forward Pass of the Dynamic Shift-

ing Module

Input: Things Points P ∈ R
M×3, Things Features

F ∈ R
M×D′

, Things Regressed Centers

C ∈ R
M×3, Fixed number of iteration

I ∈ N, Bandwidth candidates list L ∈ R
l

Output: Instance IDs of things points R ∈ R
M×1

1 mask = FPS(P ), P ′ = P [mask]
2 X = C[mask], F ′ = F [mask]
3 for i← 1 to I do

4 Wi = Softmax(MLP (F ′))
5 acc = zeros like(X)
6 for j ← 1 to l do

7 Kij = (XXT ≤ L[j])
8 Dij = diag(Kij1)

9 acc = acc+Wi[:, j]⊙ (D−1

ij KijX)

10 end

11 X = acc

12 end

13 R′ = cluster(X)
14 index = nearest neighbour(P, P ′)
15 R = R′[index]
16 return R

The calculation of the shift vector S is by applying kernel

function f on X , and formally defined as S = f(X)−X .

Among various kinds of kernel functions, the flat kernel

is simple but effective for generating shift target estimations

for LiDAR points, which is introduced as follows. The pro-

cess of applying flat kernel can be thought of as placing a

query ball of certain radius (i.e. bandwidth) centered at each

seeding point and the result of the flat kernel is the mass of

the points inside the query ball. Mathematically, the flat

kernel f(X) = D−1KX is defined by the kernel matrix

K = (XXT ≤ δ), which masks out the points within a

certain bandwidth δ for each seeding point, and the diago-

nal matrix D = diag(K1) that represents the number of

points within the seeding point’s bandwidth.

With a differentiable version of the shift operation de-

fined, we proceed to our goal of dynamic shifting by adapt-

ing the kernel function for each point. In order to make

the kernel function adaptable for instances with different

sizes, the optimal bandwidth for each seeding point has

to be inferenced dynamically. A natural solution is to di-

rectly regress bandwidth for each seeding point, which how-

ever is not differentiable if used with the flat kernel. Even

though Gaussian kernel can make direct bandwidth regres-

sion trainable, it is still not the best solution as analyzed in

section 4.1. Therefore, we apply the design of weighting

across several bandwidth candidates to dynamically adapt

to the optimal one.

One iteration of dynamic shifting is formally defined as

follows. As shown in the bottom half of Fig. 2, l band-

width candidates L = {δ1, δ2, ..., δl} are set. For each seed-

ing point, l shift target candidates are calculated by l flat

kernels with corresponding bandwidth candidates. Seeding

points then dynamically decide the final shift targets, which

are ideally the closest to the cluster centers, by learning the

weights W ∈ R
M×l to weight on l candidate targets. The

weights W are learned by applying MLP and Softmax on

the backbone features so that
∑l

j=1
W [:, j] = 1. The above

procedure and the new learnable kernel function f̂ can be

formulated as

f̂(X) =

l∑

j=1

W [:, j]⊙ (D−1

j KjX), (3)

where Kj = (XXT ≤ δj) and Dj = diag(Kj1).

With the one iteration of dynamic shifting stated clearly,

the full pipeline of the dynamic shifting module, which is

formally defined in algorithm 1, can be illustrated as fol-

lows. Firstly, to maintain the efficiency of the algorithm,

farthest point sampling (FPS) is performed on M things

points to provide M ′ seeding points for the dynamic shift-

ing iterations (Lines 1–2). After a fixed number I of dy-

namic shifting iterations (Lines 3–12), all seeding points

have converged to the cluster centers. A simple heuristic

clustering algorithm is performed to cluster the converged

seeding points to obtain instance IDs for each seeding point

(Line 13). Finally, all other things points find the nearest

seeding points and the corresponding instance IDs are as-

signed to them (Lines 14–15).

The optimization of dynamic shifting module is not intu-

itive since it is impractical to obtain the ground truth band-

width for each seeding point. The loss function has to en-

courage seeding points shifting towards their cluster centers

which have no ground truths but can be approximated by the

ground truth centers of instances C ′
gt ∈ R

M ′×3. Therefore,

the loss function for the ith iteration of dynamic shifting is

defined by the manhattan distance between the ground truth

centers C ′
gt and the ith dynamically calculated shift targets

Xi, which can be formulated as

li =
1

M ′

M ′∑

x=1

‖Xi[x]− C ′
gt[x]‖1. (4)

Adding up all the losses of I iterations gives us the loss

function Lds for the dynamic shifting module:

Lds =
I∑

i=1

wili, (5)

where wi are weights for losses of different iterations and

are all set to 1 in our experiments.
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Figure 4: Ablation Study on the Validation Set of SemanticKITTI. The proposed two modules both contributes to the

final performance of the DS-Net. The dynamic shifting module has advantages in clustering LiDAR point clouds. Weighting

on bandwidth candidates is better than directly regressing bandwidth.

3.3. Consensusdriven Fusion

Typically, solving the conflict between semantic and in-

stance predictions is one of the essential steps in panoptic

segmentation. The advantages of bottom-up methods are

that all points with predicted instance IDs must be in things

classes and one point will not be assigned to two instances.

The only conflict needs to be solved is the disagreement of

semantic predictions inside one instance, which is brought

in by the class-agnostic way of instance segmentation. The

strategy used in the proposed consensus-driven fusion is

majority voting. For each predicted instance, the most ap-

peared semantic label of its points determines the semantic

labels for all the points inside the instance. This simple fu-

sion strategy is not only efficient but could also revise and

unify semantic predictions using instance information.

4. Experiments

We conduct experiments on two large-scale datasets: Se-

manticKITTI [2] and nuScenes [5].

SemanticKITTI. SemanticKITTI is the first dataset that

presents the challenge of LiDAR-based panoptic segmenta-

tion and provides the benchmark[3]. SemanticKITTI con-

tains 23,201 frames for training and 20,351 frames for test-

ing. There are 28 annotated semantic classes which are

remapped to 19 classes for the LiDAR-based panoptic seg-

mentation task, among which 8 classes are things classes,

and 11 classes are stuff classes. Each point is labeled with

a semantic label and an instance id which will be set to 0 if

the point belongs to stuff classes.

nuScenes. In order to demonstrate the generalizability of

DS-Net, we construct another LiDAR-based panoptic seg-

mentation dataset from nuScenes. With the point-level se-

mantic labels from the newly released nuScenes lidarseg

challenge and the bounding boxes provided by the detec-

tion task, we could generate instance labels by assigning

instance IDs to points inside bounding boxes. Following

the definition of the nuScenes lidarseg challenge, we mark

10 foreground classes as things classes and 6 background

classes as stuff classes out of all 16 semantic classes. The

training and validation set has 28,130 and 6,019 frames.

Evaluation Metrics. As defined in [3], the evaluation met-

rics of LiDAR-based panoptic segmentation are the same

as that of image panoptic segmentation defined in [15] in-

cluding Panoptic Quality (PQ), Segmentation Quality (SQ)

and Recognition Quality (RQ) which are calculated across

all classes. The above three metrics are also calculated sep-

arately on things and stuff classes which give PQTh, SQTh,

RQTh, and PQSt, SQSt, RQSt. PQ† is defined by swapping

PQ of each stuff class to its IoU then averaging over all

classes. In addition, mean IoU (mIoU) is also used to eval-

uate the quality of the sub-task of semantic segmentation.

4.1. Ablation Study

Ablation on Overall Framework. To study on the ef-

fectiveness of the proposed modules, we sequentially add

consensus-driven fusion module and dynamic shifting mod-

ule to the bare backbone. The corresponding PQ and PQTh

are reported in Fig. 4 (a) which shows that both modules

contribute to the performance of DS-Net. The novel dy-

namic shifting module mainly boosts the performance of

instance segmentation which are indicated by PQTh where

the DS-Net outperforms the backbone (with fusion module)

by 3.2% in validation split.

Ablation on Clustering Algorithms. In order to validate

our previous analyses of clustering algorithms, we swap the

dynamic shifting module for four other widely-used heuris-

tic clustering algorithms: BFS, DBSCAN, HDBSCAN, and

Mean Shift. The results are shown in Fig. 4 (b). Consistent

with our analyses in Sec. 3.2, the density-based cluster-

ing algorithms (e.g. BFS, DBSCAN, HDBSCAN) perform

badly in terms of PQ and PQTh while Mean Shift leads to

the best results among the heuristic algorithms. Moreover,

our dynamic shifting module shows the superiority over all

four heuristic clustering algorithms.

Ablation on Bandwidth Learning Styles. In the dynamic

shifting module, it is natural to directly regress bandwidth

for each point as mentioned in Sec. 3.2. However, as shown

in the Fig. 4 (c), direct regression is hard to optimize in this

case because the learning target is not straightforward. It is

difficult to determine the best bandwidth for each point, and

therefore impractical to directly apply supervision on the
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Table 1: LiDAR-based panoptic segmentation results on the validation set of SemanticKITTI. All results in [%].

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

KPConv [25] + PV-RCNN [24] 51.7 57.4 63.1 78.9 46.8 56.8 81.5 55.2 67.8 77.1 63.1

Cylinder3D [37] + PV-RCNN [24] 51.9 57.5 63.8 74.2 48.5 59.5 70.2 54.3 66.9 77.1 62.9

PointGroup [14] 46.1 54.0 56.6 74.6 47.7 55.9 73.8 45.0 57.1 75.1 55.7

LPASD [19] 36.5 46.1 - - - 28.2 - - - - 50.7

DS-Net 57.7 63.4 68.0 77.6 61.8 68.8 78.2 54.8 67.3 77.1 63.5

Table 2: LiDAR-based panoptic segmentation results on the test set of SemanticKITTI. All results in [%]. “∗” denotes the

unpublished method which is in the 2nd place on the public benchmark of SemanticKITTI (accessed on 2020-11-16).

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

KPConv [25] + PointPillars [18] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8

RangeNet++ [20] + PointPillars [18] 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4

KPConv [25] + PV-RCNN [24] 50.2 57.5 61.4 80.0 43.2 51.4 80.2 55.9 68.7 79.9 62.8

LPASD [19] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2 50.9

PolarNet seg∗ 53.3 59.8 64.2 81.1 52.1 59.5 86.9 54.2 67.6 76.9 58.9

DS-Net 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6

regressed bandwidth. Therefore, it is easier for the network

to choose from and combine several bandwidth candidates.

4.2. Evaluation Comparisons on SemanticKITTI

Comparison Methods. Since its one of the first attempts on

LiDAR-based panoptic segmentation, we provide several

strong baseline results in order to validate the effectiveness

of DS-Net. As proposed in [3], one good way of construct-

ing strong baselines is to take the results from semantic

segmentation methods and detection methods, and generate

panoptic segmentation results by assigning instance IDs to

all points inside predicted bounding boxes. [3] has provided

the combinations of KPConv [25] + PointPillars [18], and

RangeNet++ [20] + PointPillars [18]. To make the base-

line stronger, we combine KPConv [25] with PV-RCNN

[24] which is the state-of-the-art 3D detection method. In

addition to the above baselines, we also adapt the state-

of-the-art indoor instance segmentation method PointGroup

[14] using the official released codes to experiment on Se-

manticKITTI. Moreover, LPASD [19], which is one of the

earliest works in this area, is also included for comparison.

Evaluation Results. Table 1 and 2 shows that the DS-Net

outperforms all baseline methods in both validation and test

splits by a large margin. The DS-Net surpasses the best

baseline method KPConv + PV-RCNN in most metrics and

especially has the advantage of 6% and 15% in terms of

PQ and PQTh in validation split. In test split, the DS-Net

outperforms KPConv + PV-RCNN by 5.7% and 11.9% in

PQ and PQTh. On the leaderboard provided by [3], our DS-

Net achieves 1st place and surpasses 2nd method “Polar-

Net seg” by 2.6% and 3.0% in PQ and PQTh respectively. It

is worth noting that PointGroup [14] performs poorly on the

LiDAR point clouds which shows that indoor solutions are

not suitable for challenging LiDAR point clouds. Further

detailed results on SemanticKITTI can be found in supple-

mentary materials.

4.3. Evaluation Comparisons on nuScenes

Comparison Methods. Similarly, two strong semantic seg-

mentation + detection baselines are provided for compar-

ison on nuScenes. The semantic segmentation method is

Cylinder3D [37] and the detection methods are SECOND

[32] and PointPillars [18]. For fair comparison, the detec-

tion networks are trained using single frames on nuScenes.

The point-wise semantic predictions and predicted bound-

ing boxes are merged in the following steps. First all points

inside each bounding box are assigned a unique instance

IDs across the frame. Then to unify the semantic predic-

tions inside each instance, we assign the class labels of

bounding boxes predicted by the detection network to cor-

responding instances.

Evaluation Results. As shown in Table 3, our DS-Net out-

performs the best baseline method in most metrics. Es-

pecially, we surpass the best baseline method by 2.4% in

PQ and 3.5% in PQTh. Unlike SemanticKITTI, nuScenes is

featured as extremely sparse point clouds in single frames

which adds even more difficulties to panoptic segmentation.

The results validate the generalizability and the effective-

ness of our DS-Net.

4.4. Further Analysis

Robust to Parameter Settings. As shown in Table 4, six

sets of bandwidth candidates are set for independent train-

ing and the corresponding results are reported. The sta-

ble results show that DS-Net is robust to different param-

eter settings as long as the picked bandwidth candidates are

comparable to the instance sizes. Unlike previous heuristic

clustering algorithms that require massive parameter adjust-

ment, DS-Net can automatically adjust to different instance

sizes and point distributions and remains stable clustering

quality. Further analyses on the iteration number settings

are shown in supplementary materials.

Interpretable Learned Bandwidths. By averaging the
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Table 3: LiDAR-based panoptic segmentation results on the validation set of nuScenes. All results in [%].

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

Cylinder3D [37] + PointPillars [18] 36.0 44.5 43.0 83.3 23.3 27.0 83.7 57.2 69.6 82.7 52.3

Cylinder3D [37] + SECOND [32] 40.1 48.4 47.3 84.2 29.0 33.6 84.4 58.5 70.1 83.7 58.5

DS-Net 42.5 51.0 50.3 83.6 32.5 38.3 83.1 59.2 70.3 84.4 70.7

Table 4: Results of different bandwidth candidates settings.

All results in [%].

Bandwidth

Candidates (m)
PQ PQ† RQ SQ mIoU

0.2, 1.1, 2.0 57.4 63.0 67.7 77.4 63.7

0.2, 1.3, 2.4 57.5 63.1 67.7 77.6 63.5

0.2, 1.5, 2.8 57.6 63.2 67.8 77.6 63.7

0.2, 1.7, 3.2 57.7 63.4 68.0 77.6 63.5

0.2, 1.9, 3.6 57.7 63.3 67.9 77.6 63.4

0.2, 2.1, 4.0 57.4 63.1 67.7 77.5 63.3

bandwidth candidates weighted by the learned weights, the

learned bandwidths for every points could be approximated.

The average learned bandwidths of different classes are

shown in Fig. 5. The average learned bandwidths are

roughly proportional to the instance sizes of corresponding

classes, which is consistent with the expectation that dy-

namic shifting can dynamically adjust to different instance

sizes.
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Figure 5: Proportional Relationship Between Sizes and

the Learned Bandwidths. The x-axis represents the class-

wise average size of regressed centers of instances while the

y-axis stands for the average learned bandwidth of different

things classes.

Visualization of Dynamic Shifting Iterations. As visual-

ized in Fig. 6, the black points are the original point clouds

of different instances including person, bicyclist and car.

The seeding points are colored in spectral colors where the

redder points represents higher learned bandwidth and bluer

points represents lower learned bandwidth. The seeding

points farther away from the instance centers tend to learn

higher bandwidths in order to quickly converge. While

the well-learned regressed points tend to have lower band-

widths to maintain their positions. After four iterations, the

seeding points have converged around the instance centers.

Regressed Centers Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 6: Visualization of Dynamic Shifting Iterations.

The black points are the original LiDAR point clouds of

instances. The colored points are seeding points. From left

to right, with the iteration number increases, the seeding

points converge to cluster centers.

5. Conclusion

With the goal of providing holistic perception for au-

tonomous driving, we are one of the first to address the task

of LiDAR-based panoptic segmentation. In order to tackle

the challenge brought by the non-uniform distributions of

LiDAR point clouds, we propose the novel DS-Net which

is specifically designed for effective panoptic segmentation

of LiDAR point clouds. Our DS-Net adopts strong baseline

design which provides strong support for the consensus-

driven fusion module and the novel dynamic shifting mod-

ule. The novel dynamic shifting module adaptively shifts

regressed centers of instances with different density and

varying sizes. The consensus-driven fusion efficiently uni-

fies semantic and instance results into panoptic segmenta-

tion results. The DS-Net outperforms all strong baselines

on both SemanticKITTI and nuScenes. Further analyses

show the robustness of the dynamic shifting module and the

interpretability of the learned bandwidths.
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